Non–small cell lung cancer (NSCLC) is a leading cause of cancer-related death worldwide. NSCLC often harbors onco- genic K-RAS mutations that lead to the aberrant activation of several intracellular networks including the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. Oncogenic K-RAS predicts poor prognosis and resistance to treatment with ionizing radiation (IR). Oncogenic K-Ras expression in the respiratory epitheli- um is sufficient to initiate NSCLC tumorigenesis, which requires the catalytic subunit of PI3K. Thus, effective inhibition of the PI3K signaling should lead to significant antitumor effects. However, therapy with rapamycin ana- logues has yielded disappointing results due in part to compensatory up-regulation of AKT. We hypothesized that dual PI3K/mTOR blockade would overcome these limita- tions. We tested this hypothesis with BEZ235, a novel dual PI3K/mTOR inhibitor that has recently entered clinical development. We found that BEZ235 induces a striking antiproliferative effect both in transgenic mice with oncogenic K-RAS–induced NSCLC and in NSCLC cell lines expressing oncogenic K-RAS. We determined that treatment with BEZ235 was not sufficient to induce apoptosis. However, we found that dual PI3K/mTOR blockade effectively sensitizes NSCLC expressing oncogenic K-RAS to the proapoptotic effects of IR both in vitro and in vivo. We conclude that dual PI3K/mTOR blockade in combination with IR may benefit patients with NSCLC expressing oncogenic K-RAS. These findings may have general applicability in cancer therapy, because aberrant activation of PI3K occurs frequently in human cancer.

Dual phosphoinositide 3-kinase/mammalian target of rapamycin blockade is an effective radiosensitizing strategy for the treatment of non-small cell lung cancer harboring K-RAS mutations.

KONSTANTINIDOU, GEORGIA;AMICI, Augusto;
2009-01-01

Abstract

Non–small cell lung cancer (NSCLC) is a leading cause of cancer-related death worldwide. NSCLC often harbors onco- genic K-RAS mutations that lead to the aberrant activation of several intracellular networks including the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. Oncogenic K-RAS predicts poor prognosis and resistance to treatment with ionizing radiation (IR). Oncogenic K-Ras expression in the respiratory epitheli- um is sufficient to initiate NSCLC tumorigenesis, which requires the catalytic subunit of PI3K. Thus, effective inhibition of the PI3K signaling should lead to significant antitumor effects. However, therapy with rapamycin ana- logues has yielded disappointing results due in part to compensatory up-regulation of AKT. We hypothesized that dual PI3K/mTOR blockade would overcome these limita- tions. We tested this hypothesis with BEZ235, a novel dual PI3K/mTOR inhibitor that has recently entered clinical development. We found that BEZ235 induces a striking antiproliferative effect both in transgenic mice with oncogenic K-RAS–induced NSCLC and in NSCLC cell lines expressing oncogenic K-RAS. We determined that treatment with BEZ235 was not sufficient to induce apoptosis. However, we found that dual PI3K/mTOR blockade effectively sensitizes NSCLC expressing oncogenic K-RAS to the proapoptotic effects of IR both in vitro and in vivo. We conclude that dual PI3K/mTOR blockade in combination with IR may benefit patients with NSCLC expressing oncogenic K-RAS. These findings may have general applicability in cancer therapy, because aberrant activation of PI3K occurs frequently in human cancer.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/104034
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 133
  • ???jsp.display-item.citation.isi??? 127
social impact