UNIVERSITY OF CAMERINO

SCHOOL OF ADVANCED STUDIES

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND
MATHEMATICS - XXXV CYCLE

Universita di Camerino

1336

Inter-Organisational Business
Processes on Blockchain

Supervisor PhD Candidate
Prof. Barbara Re Alessandro Marcelletti

Co-Supervisor
Dr. Andrea Morichetta

ACADEMIC YEAR 2022-2023

ABSTRACT OF THIA
DISSERTATION

Inter-organisational business processes involve distributed organisations col-
laborating to reach a common objective. Such kinds of processes can be
described by the Business Process Model and Notation (BPMN) choreog-
raphy diagram, which allows the representation of their interactions from a
high-level perspective. However, there is still a lack of support for execution
due to the need for a trustworthy infrastructure managing the interactions
that occur among distributed parties. Indeed, in a collaborative scenario,
trust is subjective and its perception is influenced by technical and organisa-
tional aspects. In this context, blockchain is a prominent solution to enable
the creation of trustworthy distributed infrastructures.

For this reason, the first research objective of the thesis faces the challenge
of trust by proposing a model-driven methodology and a related framework,
named CHORCHAIN, relying on blockchain to support the development of
choreographies from their modelling to execution. The proposed solution
uses a BPMN choreography model as starting specification and automatically
translates it into a smart contract deployed on the blockchain. This contract
enforces the interactions among the cooperating components as prescribed
by the choreography model.

As well as trust, the thesis identifies other relevant research objec-
tives related to the execution of inter-organisational business processes on
blockchain. In particular, the thesis focuses also on auditability, flexibility,
multiplicity, privacy, and confidentiality. All of them are crucial aspects to
consider especially when relying on a blockchain infrastructure. For each
objective, the thesis presents a specific contribution, elaborated from the
CHORCHAIN framework, that was conceptually and practically extended.The
proposed methodology and derived frameworks are assessed through a run-
ning example together with real-world and synthetic scenarios.

LIST OF PUBLICATIONQ

Tommaso Cippitelli, Alessandro Marcelletti and Andrea Morichetta.
ChorSSI: a BPMN-Based Execution Framework for Self-Sovereign
Identity Systems on Blockchain. Submitted to BPM 2023 Blockchain
Forum

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini, Barbara Re, and Francesco Tiezzi. Supporting Multiple In-
stances in Blockchain-based Model-Driven Engineering. Submitted to
ACM Distributed Ledger Technologies: Research and Practice

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini, Barbara Re, and Francesco Tiezzi. A Flexible Approach to
Multi-party Business Process Execution on Blockchain. Future Gener-
ation Computer Systems, 147, pages 219-234, 2023

Francesco Donini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini. RESTChain: a blockchain-based mediator for REST interac-
tions in Service Choreographies. Proceedings of the 38th ACM/SI-
GAPP Symposium on Applied Computing, pages 245-248, 2023

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini, Barbara Re, and Francesco Tiezzi. Flexible Execution of Multi-
Party Business Processes on Blockchain. 5th IEEE/ACM WETSEB
Workshop, pages 25-32, 2022

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini, Barbara Re, and Francesco Tiezzi. A Choreography-Driven
Approach for Blockchain-Based IoT Applications. 3rd IEEE BRAIN
Workshop, pages 255-260, 2022

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini, Barbara Re, and Francesco Tiezzi. ChorChain: A Blockchain-
Based Framework for Executing and Auditing BPMN Choreographies.

vi

CHAPTER 0. LIST OF PUBLICATIONS

Proceedings of the BPM Demo Track. CEUR Workshop Proceedings,
2022

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini, Barbara Re, and Francesco Tiezzi. ChorChain: A model-driven
framework for choreography-based systems using blockchain. Proceed-
ings of the 1st Italian BPM Forum, CEUR Workshop Proceedings 2952,
pages 26-31, 2021

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini, Barbara Re, and Francesco Tiezzi. Engineering Trustable
and Auditable Choreography-Based Systems Using Blockchain. ACM
Transactions on Management Information Systems, 13 (3) (2022)
31:1-31:53.

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini, Barbara Re, Emanuele Scala and Francesco Tiezzi. Model-
Driven Engineering for Multi-Parties Business Processes on Multiple
Blockchains. Blockchain: Research and Application, Elsevier, 2 (3)
(2021) 100018.

Alessandro Marcelletti and Barbara Re. FabNet: an Automatic Hyper-
ledger Fabric Network Wizard. In Proceedings of 1st BES Workshop
CEUR Workshop Proceedings 2749, pages 59-67, 2020

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini, Barbara Re, and Francesco Tiezzi. Engineering trustable
choreography-based systems using blockchain. In 35th ACM/SIGAPP
SAC, ACM, 2020, pp. 1470-1479.

CONTENTg

Abstract of the Dissertation iii
List of Publications v
List of Figures xi
List of Tables xiii
I Introduction & Background 1
1 Introduction 3
1.1 Motivation 3
1.2 Research Objectives. 7
1.3 Thesis Structure 8

2 Background 11
2.1 Blockchaino 11
2.1.1 Ethereum 12

2.1.2 Hyperledger Fabric 14

2.1.3 Blockchain Comparison 16

2.2 DBusiness Process Management 17
2.2.1 BPMN Choreography Diagram 18

2.2.2 Running Exampleo 20

II Blockchain for Inter-Organisational Business Pro-

viil CONTENTS

cesses 25

3 CHORCHAIN: Trusted Execution of Inter-Organisational Busi-

ness Processes 27
3.1 CHORCHAIN Conceptual Framework 28
3.1.1 Framework phases 28
3.1.2 BPMN meta-model extension 29
3.1.3 Translation approach: BPMN to Solidity 31

3.2 CHORCHAIN Tool 33
3.21 Modellingo 33
3.2.2 Publishing, Searching and Instantiation 35
3.2.3 Smart Contract Generation 37
3.24 Deploymento 42
3.2.5 Execution Lo 44

3.3 Experiments and Validation 46
3.3.1 Running Example Cost Analysis. 47
3.3.2 Choreography Elements Analysis 49
3.3.3 Real-world Use Cases 57

3.4 Comparison with Existing Approaches 60

4 CHORCHAIN: Auditing Inter-Organisational business process

execution 65
4.1 CHORCHAIN Extended Framework for Auditing 66
4.1.1 Conceptual Model 66
4.1.2 Auditing Strategies 69

4.2 CHORCHAIN Extended Tool for Auditing 71
4.3 Experiments and Validation 76
4.3.1 Running Example Performance Analysis 77
4.3.2 Assessment with the Involvement of Practitioners . . . 78

4.4 Comparison with Existing Approaches 82
5 FLEXCHAIN: Supporting Run-time Flexibility 87
5.1 FLEXCHAIN Conceptual Framework 88
5.1.1 Framework phases 88
5.1.2 Translation approach: BPMN to Drools 90

5.2 FLEXCHAIN tool 91
5.2.1 Architecture 92
5.2.2 Translation, 94
5.2.3 Instantiation. 101
5.24 Update. 103
5.2.5 Execution 106

5.3 Experiments and Validation 108

5.4 Comparison with Existing Approaches 109

CONTENTS

6 MICHAIN: Supporting Multiplicity
6.1 MICHAIN: Supporting Multiplicity
6.1.1 Framework phases
6.1.2 Modelling multi-instance elements
6.1.3 Multi-instance attributes
6.1.4 Translation approach: BPMN to Solidity
6.2 MICHAIN Tool
6.2.1 Modelling
6.2.2 Generation
6.2.3 Execution
6.3 Experiments and Validation
6.4 Comparison with Existing Approaches

7 MULTICHAIN: Supporting Privacy and Confidentiality
7.1 MuLTICHAIN Conceptual Framework
7.1.1 Framework phases
7.1.2 Hyperledegr Fabric artefacts generation
7.1.3 Translation approach: from BPMN to Javascript . . .
7.2 MULTICHAIN Tool
7.2.1 Modelling
7.2.2 Instantiation.o
7.2.3 MULTICHAIN Translator
7.2.4 Deployment L
725 Execution oo
7.3 Experiments and Validation
7.4 Comparison with Existing Approaches

IIT Conclusions & Future Works

8 Conclusions & Future Works
8.1 Conclusions
8.2 Future Works

Bibliography

X

113
114
114
115
116
117
118
118
122
125
126
127

129
130
130
131

. 132

133
134
134
136
139
140
141
145

147

149
149
151

155

LIST OF FIGUREQ

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.10
3.9
3.11
3.12
3.13

3.14
3.15
3.16
3.17

3.18
3.19

4.1

Example of 2 organisations network components. 15
BPMN choreography core elements. 20
Retail process choreography diagram. 21
Updated Retail process (flexibility). 22
Multi-instance Retail process (multiplicity). 23
Choreography life-cycle supported by CHORCHAIN. 29
ChorChain BPMN meta-model extension. 30
Created panel for task and messages definition. 34
Gateway guard example. L. 35
ChorChain home page with uploaded model. 35
Home page with a created instance. 37
CHORCHAIN architecture with software components. 43
CHORCHAIN deployment phase. 44
CHORCHAIN execution phase. 45
CHORCHAIN participant execution page. 45
Cumulative gas consumption in the Retail scenario. 49
Choreography model with five tasks. 50
Choreography model with five split and five join exclusive

gateways. 51
Choreography model with five split gateways. 53
Choreography model with five split and join parallel gateways. 53
Choreography model with five split parallel gateways. 54
Choreography model including an event-based gateway with

five messages. Lo 56
Adapted choreography from the supply chain scenario. 58
Adapted choreography from the incident management scenario. 59

CHORCHAIN framework: supporting auditing 66

xii

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
9.3
5.4
2.5
0.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6

7.1

7.2
7.3
7.4
7.5
7.6
7.7
7.8

LIST OF FIGURES

BPMN Choreography meta-model excerpt. 67
CHORCHAIN conceptual model. 68
Choreography-based auditing page. 71
Transactions view for a single instance. 72
Messages view for a single instance. 72
Audit sequence diagram. 73
User-based auditing page. 74
GraphQL query example on a single transaction. 74
Scalability of CHORCHAIN auditing. 79
Internship choreography 79
FLEXCHAIN framework: supporting run-time flexibility. 88
Component diagram of the FLEXCHAIN architecture. 92
One-way Task., 95
Sequence Flow. 96
Exclusive gateway elements. 97
Parallel gateway elements. 98
Event-based case.o 98
Sequence diagram of the instantiation phase. 102
Modelling page. 103
Sequence flow of the updating phase. 104
Updating page.o 105
Sequence flow of the execution phase. 107
Execution page.o oo 107
MICHAIN framework: supporting multiplicity. 114
Multi-instance attributes modelling. 119
Retail process multi-instance attributes modelling. 120
Provided Modeller. 121
MICHAIN modelling page. 121
Two-way task execution sequence flow. 125

MULTICHAIN framework: supporting privacy and confiden-

tiality. 130
Multi-Chain modeller. 135
MULTICHAIN homepage with a focus on Fabric instances. . . . 135
Fabric execution page. L. 140
Translation time of 10 running example choreography instances.142
Deploy time of 10 running example choreography instances. . . 143

Average transactions execution time for the running example. 143
Time required for creating a Fabric network. 144

LIST OF TABLEg

2.1

3.1
3.2
3.3
3.4
3.5

3.6

3.7

3.8

3.9

3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Ethereum and Fabric comparison based on blockchain charac-

terisations. 17
Translation approach from BPMN elements to Solidity. . . . 32
Cost Analysis for the Retail scenario. 47
Time and cost analysis for the deployment of the task element. 50
Time and cost analysis for the task element. 51
Deployment and execution time and cost for split and join

exclusive gateways.o oL 52
Deployment and execution time and cost for the split exclusive

gateway. Lo 54
Deployment and execution time and cost for split and join

parallel gateways. 54
Deployment and execution time and cost for the split parallel

gateway. 99
Deployment and execution time and cost for the event-based

gateway. L. 56
Cost Analysis for the supply chain scenario. 59
Cost Analysis for the incident management scenario. 60
Choreography-related parameters. 69
Choreography contract related parameters. 69
Transaction related parameters. 70
User-related parameters. 70
Rental process details for the Choreography entity. 76
Retail process details for the Choreography contract entity. . . 77
Retail process details for the Transaction entity. 7

Retail process details for the User entity. 78

X1v

4.9

4.10

4.11

4.12

5.1
5.2
9.3

6.1
6.2
6.3

7.1

LIST OF TABLES

Results from the questionnaires on usability related to the

subscription, instantiation and execution phases. 81
Results from the questionnaires on usability on the auditing
functionality.o 82

Distribution of scores for each question related to the sub-
scription, instantiation and execution phases (over the range

0-4). o o 82
Distribution of scores for each question on the auditing func-

tionality (over the range 0-4). 82
Translation approach from BPMN elements to a Drools rule. 92
Cost Analysis for the X-rays process. 108
Table of identified related works and their characteristics. . . . 110
Modelling cases of multi-instance participants and tasks. . . . 117
Supported multi-instance attributes. 118
Cost analysis for retail process scenario. 126

Translation approach from BPMN elements to Javascript. . . 133

LISTINGQ

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10

0.1
5.2
2.3
5.4
2.5
2.6
5.7
2.8
5.9
5.10
6.1
6.2
6.3
7.1
7.2
7.3
7.4

Contract header with state variables. 37
Modifier for participant and role access control. 38
Contract constructor with participant initialisation and start

event invocation. Lo oo 38
A message function. 39
Function for a parallel gateway. 40
Function for an exclusive gateway. 40
State change functions., 41
Function for a payment. 41
Code corresponding to the retail quotation message. 42
Code corresponding to the exclusive gateway after the retail

quotation task. 42
Rule of a one-way task. 95
Rule of a task following another one. 95
Rule of a message after a split exclusive gateway. 96
Rule of a message after a join exclusive gateway. 96
Rule of the message after the split parallel gateway. 97
Rule of a message after the join parallel gateway. 97
Rule of a message after event-based gateway. 99
Rule of quotation message. 99
Factory Smart Contract. 100
Choreography Instance Smart Contract. 101
Contract state variables definition. 123
retail quotation message function. 124
Exclsuvie gateway function. 124
Hyperledger: ChoreographyPrivateDataContract class 137
Hyperledger: Enforcing controls 137
Hyperledger: Message Function 138

Hyperledger: Exclusive gateway implementation 139

PART 1

L INTRODUCTION & BACKGROUND

CHAPTER 1

INTRODUCTION

Inter-organisational business processes deal with distributed organisations,
controlling different components (e.g., software services, business units, and
departments) to perform certain interactions to reach a common final objec-
tive [17, 117, 22|. This kind of business involving many distributed parties is
becoming crucial since it involves complex and distributed systems difficult
to coordinate and execute |67, 22].

The remaining part of the introduction is structured as follows. Section
1.1 introduces the motivation of the thesis while in Section 1.2 the identified
research objectives are presented. Finally, Section 1.3 describes the structure
of the thesis.

1.1 Motivation

Inter-organisational systems have found in the BPMN standard [89] a promi-
nent modelling language to describe their distributed interactions. In addi-
tion to the need for coordination, the involved parties also ask to keep private
their internal behaviour [113]. For this reason, BPMN choreography diagrams
are a valid solution to represent such kind of coordination in a proper way.
These diagrams allow to describe system interactions in terms of the exchange
of messages from a global perspective, without exposing internal behaviour.
In particular, this thesis considers prescriptive choreographies, representing
scenarios for future cooperation between stakeholders. However, while the
use of choreographies has gathered momentum for modelling and specifica-
tion purposes, there is still a lack of concrete realisation. Indeed, there is
little availability of run-time infrastructures supporting the interactions de-
fined in a choreography specification [81]. The cause is mainly related to

4 CHAPTER 1. INTRODUCTION

the high demand for trust during the run-time execution. In this thesis, the
term trust refers to the general notion in business relationships, as defined
in [104]:

“the belief that a party’s word or promise is reliable and that a
party will fulfil his/her obligations in an exchange relationship”.

Trust is a major concern for an organisation that has to engage
in a multi-party protocol, possibly with previously unknown partners
[120]. However, trust is subjective and somehow different from user to user
[82]. Tts perception can be positively influenced by all those aspects having an
impact during a collaboration. In inter-organisational contexts, it is possible
to recognise different trust concerns that influence the trust perceived by
organisations [82, 83, 86]. In principle, most of the time trust strictly depends
on security, since it is crucial to prevent possible attacks and to provide
capabilities to monitor and audit in a reliable and secure way certain events.
Another perspective regards access control mechanisms to limit rights only to
authorised users. In some situations, restriction to data should also consider
privacy and confidentiality requirements. Other security attributes can be
found in the integrity of both the application and the produced data.

From a business perspective instead, uncertainty is one of the most influ-
encing aspects and it can be found at different phases of a process. In general,
if a business process mostly depends on a single organisation, it can cause
uncertainty for the other involved parties due to centralisation. When using
a software infrastructure instead, usability and openness should be consid-
ered so to make a system easily accessible and transparent on how it works.
During the execution, it is important to ensure the correct control flow so
that each involved party respects the agreed standard, especially under cer-
tain anomalous or unexpected situations. Non-repudiation of resulting traces
and events guarantees then that organisations cannot deny the occurrence of
certain actions.

All the aforementioned attributes can so impact the execution of a chore-
ography which somehow represents a contract specification that the partic-
ipant organisations agree to follow. Indeed, this kind of collaboration takes
place in a distributed and inter-organisational context, in which it is gener-
ally difficult, if not impossible, to have enough guarantees on the fact that
the other participants actually abide by rules, or to prove that they did not
follow the choreography specification practically. This occurs also because
choreography participants have trust concerns about the underlying infras-
tructure which does not provide enough guarantees on the correct execution
of the specified interactions.

In current approaches, this problem is generally delegated to a trusted
third party that acts as a central guarantor for the fair behaviour of each
participant. With the passing of time and the evolving of scenarios, this

CHAPTER 1. INTRODUCTION 5

solution is not considered suitable anymore since it represents a point of
failure bringing also additional costs to the involved organisations [69]. Other
solutions as traditional databases are instead recommended when parties
mutually trust each other, without considering any participant as malicious.
In this case, single or shared writers in a database are assessed valid [124].
When considering instead other innovative technologies, cloud computing
can introduce new vulnerabilities and threats caused by collaboration and
data exchange over the Internet [82|. For these reasons, this thesis faces the
challenge of trusted execution of inter-organisational business processes.
In this context, the thesis considers also the different trust concerns in a
collaborative scenario providing novel solutions for their resolution.

Blockchain is an emerging distributed ledger technology for decentralised
and transactional data sharing across a network of untrusted participants
[128]. Thanks to its infrastructure, blockchain provides different charac-
teristics enabling the development of new forms of multi-party distributed
systems [100, 94, 8|. The adoption of blockchain brings several advantages
compared to traditional technologies. Indeed, blockchain contributes to miti-
gating trust concerns, thanks also to its strong verifiability, whenever multiple
mutually mistrusting parties want to collaborate and change the state of a
system, without agreeing on a trusted third party [124, 101]. Indeed, the
distributed environment allows the creation of systems that do not rely any-
more on central authorities |28, 76]. Moreover, the consensus algorithm
and the cryptographic link between blocks provide the immutability of ex-
changed data and a strong security layer. This permits to have a system in
which participants can interact in a direct and autonomous way, without the
need for a central authority that guarantees the correct execution. This is
supported also by the enforcing characteristic of the smart contracts that
contain the code to execute in an immutable way without the possibility of
updating it at run-time. This ensures that each participant is enforced to
behave as defined in the initial specification, avoiding the execution of ma-
licious interactions. Finally, in public blockchains, the transparent nature
of the network allows all the participants to have a clear view of the ongoing
system execution and can have tangible proof of the actions performed by
their counterparts.

Thanks to all these characteristics, blockchain is advocated for creating
novel solutions providing trusted environments.

For this reason, this thesis investigates the use of blockchain facing the
challenge of trust during the execution of inter-organisational business pro-
cesses. Indeed, blockchain can be exploited to allow organisations, repre-
sented by choreography participants, to achieve trust without a central au-
thority. This can be done by enabling a distributed and transparent execu-
tion between parties in a non-repudiable manner. However, if on one hand,

6 CHAPTER 1. INTRODUCTION

the trusted execution of inter-organisational business processes can leverage
the blockchain, the adoption of such technology in those contexts opens new
challenges to face such as auditability, flexibility, multiplicity, privacy, and
confidentiality.

In addition to the trusted execution, the second challenge is related to the
auditing of blockchain-based systems. While blockchain provides a trans-
parent environment in which transactions are visible to everyone, the exe-
cution of business processes requires more complex mechanisms for auditing
purposes. Indeed, single executions are connected to the initial agreement
and to specific participants so they must be processed together in order
to understand the overall state of the process. Furthermore, the enforcing
mechanisms based on smart contracts can guarantee the correct execution
step to be performed (for example, that a participant has sent/received a
given message and with which content) but can not avoid the sending of
incorrect information or human mistakes while using dedicated instruments.
The conduction of auditing procedures is indeed useful not only to monitor
the execution of the process and resolve potential disputes (e.g., if the pay-
load of a message is different from what is expected) but also to extract some
data used for optimising the next executions. For this, novel and concrete
instruments are required to support auditing strategies extracting data from

the blockchain.

In the third challenge, while the immutable nature of blockchain permits
achieving trustworthiness by providing transparent and secure proof of past
interactions, at the same time it hinders the flexibility of the business pro-
cess execution [105]. Flexibility, in fact, refers to the possibility of reacting
to an unexpected situation at run-time and it is a crucial property due to the
high dynamism of the interactions in business scenarios [33]. Indeed, flexibil-
ity property could be required to deal with factors exogenous and endogenous
to the blockchain-based business process (e.g., new laws, market dynamics,
or changes in customers’ attitudes). In these situations, a blockchain-based
solution does not allow updating the underlying infrastructure, thus requiring
a new version of the implementation. This brings additional costs in terms
of time and money, and the loss of connection between the data already reg-
istered in the blockchain and the new smart contracts. In this situation, a
new mechanism has to be defined in order to enable the run-time update of
business process logic inside the blockchain.

The fourth challenge is connected to the multiplicity aspect of the mod-
elled and implemented scenarios. In the simplest case indeed, the develop-
ment of trustable systems refers to scenarios where single organisations are
willing to collaborate exchanging a single message for each step defined in the
choreography. However, this is limiting when considering more complex be-
haviours, requiring the expression of multiplicity aspects of both participants

CHAPTER 1. INTRODUCTION 7

and their actions. Some examples are the retailing and auction processes,
in which roles can be associated with more participants performing multi-
ple actions such as the producers providing different quotations to a retailer
or a buyer bidding multiple times. In these situations, the issue of repre-
senting multiplicity reflects in the starting model that in those cases results
limiting. For this reason, it is necessary to support multiple-instance ele-
ments inside the choreography and create associated mechanisms inside the
resulting smart contract coordinating multiple interactions.

The last challenge comes from the permissionless nature of public
blockchains (e.g., Ethereum [26]). Those have a public and open network
without any restriction regarding access to the recorded transactions or the
identity of the participants that can join the blockchain. However, while these
categories of blockchain suit untrusted environments, where transparency is
one of the fundamental requirements to ensure trust, they do not consider
privacy and confidentiality aspects [57]. Indeed, in some situations, par-
ties do not want to expose both the content of exchanged messages (privacy)
and their partner (confidentiality), since those provide a potential business
advantage with respect to the competitors. For this purpose, alternative
permissioned blockchain infrastructures (e.g., Hyperledger Fabric [9]) can
be adopted to ensure access control mechanisms and restrict access to the
stored data. In this way, the usage of both a permissionless and permissioned
blockchain lead to different scenarios about the engineering of the multi-party
business processes the thesis targeted. To support this, it is necessary to con-
sider the different technological requirements and peculiarities and integrate
them into the proposed model-driven methodology.

1.2 Research Objectives

This thesis aims at providing a novel solution for supporting inter-
organisational systems using blockchain technology and relying on a model-
driven strategy for their development. To this aim, the thesis also faces the
challenges arising from the usage of blockchain for the execution of inter-
organisational systems and related to auditability, flexibility, multiplicity,
privacy, and confidentiality. More specifically five research objectives were
identified and the following were presented:

1. provide a trusted execution environment for inter-organisational busi-
ness Processes;

2. guarantee the auditing of inter-organisational business processes on

blockchain;

8 CHAPTER 1. INTRODUCTION

3. provide run-time flexibility in inter-organisational business processes
on blockchain;

4. support multiplicity aspects in inter-organisational business processes
on blockchain;

5. support privacy and confidentiality in inter-organisational business pro-
cesses on blockchain.

1.3 Thesis Structure

The thesis is organised into three parts and eight chapters and they are
described in the following.

Background. Part I introduces the motivation of the thesis and the back-
ground concepts. In particular, Chapter 2 provides all the fundamentals
required for the thesis starting with a description of the different blockchains
used, and other relevant technologies passing then to the BPMN notation
highlighting the choreography diagram. Finally, the Retail Process running
example is shown, providing different contexts in which the defined challenges
arise.

Blockchain for inter-organisational business processes. In Part II
the thesis describes the main contributions by first providing an insight into
the general CHORCHAIN framework focusing then on the other approaches
related to the faced challenges:

e Chapter 3 presents the CHORCHAIN framework and tool exploiting
a model-driven methodology for the development and execution of
trustable inter-organisational business processes. The framework sup-
ports the entire choreography life-cycle. In particular, the execution is
supported by the use of a public blockchain providing a trusted envi-
ronment in which users can interact in a distributed manner without
relying on a central authority;

e Chapter 4 focuses on the auditing challenge and its implementation.
The thesis defines a set of audit strategies and concrete instruments
supporting the monitoring of inter-organisational business processes.
In particular, the CHORCHAIN framework was extended to support
the auditing phase, by exploiting the immutability of information ex-
changed inside the blockchain;

CHAPTER 1. INTRODUCTION 9

e Chapter 5 describes the flexibility aspect and the mechanisms for sup-
porting run-time process updates in the FLEXCHAIN framework. To
this purpose, the business logic is divided from the process state, thus
allowing to modify part of the process according to internal or external
situations without losing the already exchanged information;

e Chapter 6 introduces the multiplicity concept and the support of
multiple-instance elements in the proposed MICHAIN framework sup-
porting the modelling and development of multiple-instance participant
and task elements. Thanks to this, it is possible to represent multiplic-
ity aspects related to the number of participants performing a certain
task multiple times;

e Chapter 7 faces the privacy and confidentiality challenge resulting
in the MULTICHAIN framework taking advantage of a permissioned
blockchain to permit the generation of a different target infrastruc-
ture starting from the same model. MULTICHAIN was integrated into
CHORCHAIN enabling the choice of a certain blockchain setting at run-
time according to different needs of privacy and confidentiality.

Conclusions and Future Works. Finally, Part III concludes the thesis
resuming the contributions starting from the usage of blockchain for the exe-
cution of inter-organisational systems and the challenges related to auditabil-
ity, flexibility, multiplicity, privacy, and confidentiality. Then, an overview of
future works is provided.

CHAPTER 2

BACKGROUND

This part introduces all the concepts used during the thesis and that will be
presented in the next parts. In particular, a first description of blockchain
technology and its characteristics is provided. Here both the Ethereum and
the Hyperledger Fabric blockchains are analysed, highlighting their pecu-
liarities and usage scenarios.Then a section introduces the Business Process
Management (BPM) discipline and the Business Process Modeling and No-
tation (BPMN) specification with a focus on choreography diagrams. The
concluding part of the Chapter reports the Retail Process scenario which
will be used as a running example in the remainder of the thesis. In partic-
ular, the case study is analysed from different perspectives, emphasising the
challenges in using blockchain for a trusted execution. For each challenge,
a different context of the retail process is presented, with a focus on those
characteristics requiring a novel approach.

2.1 Blockchain

A blockchain is a distributed ledger composed of a linked list (cf. chain) of
records called blocks. Each block contains a limited number of transactions
in its body, while the header includes, among the others, the number of the
current block and the hash of the previous block. This hash cryptographi-
cally ensures that previous data (i.e., blocks) is not changed since this would
corrupt the related hashes. Transactions can be included in an append-only
manner, thus, it is not possible to delete old interactions, but only update
them, keeping track of all past events. New blocks are added to the chain at
regular intervals of time by the so-called “miners”. These are computational
nodes, related to the blockchain infrastructure, that are needed to derive the

12 CHAPTER 2. BACKGROUND

hash of a block. The entire blockchain data structure is instead stored and
replicated among some nodes of the network called “full” [130].

The mining process and the use of consensus protocols permit the ver-
ification of the genuineness of the transactions included in each block. In
addition, the replication of the chain in the network guarantees decentrali-
sation and trustworthiness, without the need for an independent third-party
authority.

Blockchain ideas have been initially proposed to support payment systems
based on cryptocurrencies. However, in the last years, blockchain technolo-
gies have been adopted in many different contexts, especially after the intro-
duction of smart contracts. These can be considered special programs that
are deployed in the blockchain and executed in transactions. Smart contracts
code is deterministic and once deployed it is immutable. The code execution
is validated in each node of the blockchain, providing verified proof of the
obtained results for the final users [59]. Calls of smart contract functions pro-
duce public transactions that are stored in the blockchain, thus making their
execution auditable. A contract has a state and it can store both user-defined
data and cryptocurrency. Over the years, the growing interest in blockchain
has led to the creation of many implementations. From the initial Bitcoin
solution, the newest platforms support the creation of complex software and
applications [110].

2.1.1 Ethereum

In this context, one of the most prominent and mature blockchain technolo-
gies is certainly Ethereum [26]. Each node of the Ethereum network includes
an Ethereum Virtual Machine (EVM) supporting the execution of the smart
contracts. The operations executed in the EVM, like storage of information
or contract instructions, have an associated complexity measure defined in
terms of gas. The multiplication of this measure for the gas price results in
a fee to be sustained by the user requesting the execution of the operation.
The gas price is defined by the user and corresponds to the amount to be
paid for each unit of gas; a higher value guarantees a faster inclusion of the
transaction in the blockchain. The execution fees encourage also mining ac-
tivities by network participants and, hence, permit keep the overall system
working [44]. Indeed, miners are rewarded for each block they mine with a
default amount of Ethers (i.e., the Ethereum cryptocurrency) plus the sum
of the transaction fees included in the block. To bound the computation for a
smart contract and for a block, a gasLimit sets the maximum amount of gas
used by transactions. However, if from one side this parameter avoids poten-
tial denial-of-service attacks and errors, it limits the complexity of blockchain
and the overall throughput. To write smart contracts, Ethereum provides the

CHAPTER 2. BACKGROUND 13

Solidity' programming language. Once the code is generated, it is compiled
into a low-level bytecode executed deterministically inside the EVM. After
the smart contract is deployed in the blockchain through a dedicated trans-
action, it becomes available for user interaction. It is worth mentioning that
a hex address uniquely identifies any user account in the Ethereum network.
An account can also correspond to a smart contract deployed on the network
hosting code. This feature is a fundamental aspect during the choreography
execution to identify participants. Indeed, in Ethereum, Externally Owned
Address (EOA) identifies public accounts storing cryptocurrency that can
send transactions inside the blockchain. Those addresses are 42-character
hexadecimal corresponding to part of the public key of an Ethereum ac-
count. This, combined with a unique private key, form the cryptographic
proof of an account. Indeed, having these couple of artefacts, an account
signs a transaction with its private key permitting the other participants to
verify it with the sender’s public key.

Consensus Protocol A fundamental aspect of public permissionless
blockchains is the consensus protocol. In 2022, Ethereum switched from
Proof-of-Work (PoW) to Proof-of-Stake (PoS) protocol thanks to less energy
consumption, better security and the possibility for scaling mechanisms. In
PoS, nodes validating blocks (i.e., validators) stake their ETH into a smart
contract as collateral in case of malicious or erroneous behaviours. Indeed,
validators are responsible for checking the correctness of propagated blocks
and sometimes also for creating new ones. This procedure starts with the
validator receiving new blocks from other peers and the contained transac-
tions are executed again. In case the block is considered valid, the validator
sends a vote across the network in favour of it. In case instead of a new block
proposal, a validator is randomly selected and it is responsible for creating
and delivering the new block to the other nodes. At this point, a committee
of validators is selected and their vote will determine the validity of the block.
Differently from PoW, PoS has a fixed block interval time which is divided
into slots and epochs respectively of 12 seconds and 32 slots.

Layer 2 and Polygon Ethereum is currently one of the most used imple-
mentations for building blockchain-based applications. However, the contin-
uous growth of its usage and popularity has led to an increase in costs asso-
ciated with it. For this reason, there is a demand for scaling solutions that
enable developers to build sustainable (in terms of costs) and performing (in
terms of transaction speed and throughput) projects on top of Ethereum. In
this context, Layer 2 approaches are nowadays gaining interest and many
implementations are currently available. In general, a Layer 2 approach

'nttps://solidity.readthedocs.io/

https://solidity.readthedocs.io/

14 CHAPTER 2. BACKGROUND

takes advantage of Ethereum’s underlying infrastructure (Layer 1) while ex-
tending it taking advantage of its security and decentralisation. Alongside,
the concept of Sidechain has been developed [16]. Sidechains are indeed
blockchains that run independently from Ethereum and are connected to it
through a bridge. Those chains can have different consensus algorithms and
block settings, thus improving the network performance. One of the most
stable is Polygon, a sidechain-based scaling solution using a Proof-of-Stake
(PoS) consensus and enabling the creation of EVM applications. The na-
tive currency is named MATIC and the Polygon architecture is divided into
three-layer that can be synthesised into:

e node layer producing blocks;

e PoS layer that runs parallel to Ethereum and aggregates the procured
blocks into a Merkle tree whose root is periodically committed to the
Ethereum chain (checkpoints);

e Ethereum layer handling smart contracts and data from other layers.

Thanks to this architecture and relying on Ethereum, Polygon provides
fast, low-cost, secure and high-throughput transactions.

2.1.2 Hyperledger Fabric

Hyperledger Fabric |9, 68, 27, 23| differs from the previously described public
blockchain paradigm, due to its architecture and permissioned aim. It is a
modular system more versatile for enterprise applications, providing features
such as consensus management, private channels, and contracts, full-featured
programming languages in smart contracts, and access control policies. It
introduces the execute-order-validate architecture, that allows distributed
execution of untrusted code in an untrusted environment [10]. Indeed, Fab-
ric executes transactions before reaching a final agreement on their order,
then all peers validate transactions in the same order with a deterministic
validation. Execute-order-validate paradigm represents the main innovation
in Fabric architecture, making Fabric a scalable system for permissioned
blockchains supporting flexible trust assumptions.

This kind of system allows providing flexibility, scalability, and privacy
in contexts that require these features [68]. The absence of a mining mech-
anism enables a fast validation and confirmation of transactions. This is
achieved thanks to the consensus management system, which allows config-
uring an arbitrary consensus algorithm, taking into account the requirements
of the system intended to implement. Indeed, the arbitrary consensus and
the permissioned nature of Fabric guarantee a faster protocol respecting the
Ethereum Proof of Stake.

CHAPTER 2. BACKGROUND 15

]
; Org‘l Consortium OrgQ |
G ! L i
Ledger Peer Chaincode Ledger Peer Chaincode
T | —T
i MSP | i MSP |
| ! | !
i Adrnin i i Adrmin i
] !] !
Channel
£
OSN

Figure 2.1: Example of 2 organisations network components.

The privacy aspect concerns the confidentiality of transactions and data.
This is achieved in Fabric by using its channel architecture and membership
service to restrict the distribution of confidential information exclusively to
authorised nodes. This is achieved by defining channels inside the network
in which only a set of chosen nodes can participate. Nodes and channels
are also regulated through policies. Consequently, the channel’s ledger is
only accessible to its members and the channel’s organisations must approve
each peer’s membership to the channel. Authentication and identity manage-
ment are guaranteed through a flexible infrastructure based on the Public
Key Infrastructure cryptographic scheme and Certificate Authority, which
facilitates the joining of a new organisation in the private network. Also,
Transport Layer Security cryptographic protocol is used to provide commu-
nications security over the network nodes.

The Fabric network is made of different components, reported in Fig. 2.1
and described below.

Peers are the nodes grouped into organisations, defined as a trusted
domain in which a peer trusts all peers only within its organisation. Peers
execute and/or validate transactions, and maintain the ledger. The group of
defined organisations participating in a channel is called consortium. The
ordering service, composed of a set of Ordering Service Nodes (OSNs),
establishes consensus and atomically broadcasts state updates. The ordering
is stateless and decoupled from the peers, it does not take part in the transac-

16 CHAPTER 2. BACKGROUND

tion execution and validation process. The Membership Service Provider
(MSP), maintains the identities of all the nodes (clients, peers, OSNs) inside
an organisation. It comprises mechanisms for authenticating transactions,
verifying the integrity of transactions, signing and validating endorsements,
key management, and registration of nodes. Smart contracts with system
chaincodes define the transaction logic and the blockchain settings. They
are defined in the channel and stored in each organisation’s peer. The ledger
maintains the transactions history, there is one ledger for a channel in which
copies are stored in the organisations’ peers. In addition, a snapshot of the
most recent state is stored in a key-value world state. Finally, the adminis-
trators have permissions for different operations, like creating and assigning
peers, creating network configuration files, and modifying policies through
system files.

2.1.3 Blockchain Comparison

The current trend towards introducing different blockchain technologies, with
different characteristics, has led to a proliferation of technologies to be ac-
quired and learned. For our purpose, it is possible to distinguish among the
following characterisations.

e Permissionless vs Permissioned: a permissionless blockchain is an
open network where participants can join, and leave the network with-
out the need for any authorisation. A permissioned blockchain runs a
ledger among a set of previously identified and authorised peers.

e Auditability vs Confidentiality: an auditable blockchain has an im-
mutable and transparent nature, and it naively allows independent au-
diting over the stored data. On the contrary, a permissioned blockchain
introduces confidentiality so that stored data are not visible to anyone.
Moreover, it restricts the distribution of information only to authorised
nodes.

e High decentralisation vs Performance and scalability: the us-
age of strong consensus algorithms allows to trust nodes previously
unknown or not trusted, in a decentralised context. On the contrary,
the introduction of access control mechanisms leads to a trusted net-
work with higher scalability and transaction throughput

e Anonymity vs Identity: a blockchain technology could permit any-
one to join the network without putting in place any access control
mechanism. Trust over the stored data will be in any case guaranteed
by the consensus algorithm. On the other hand, access to a blockchain
can be restricted to authorised users introducing specific mechanisms.

CHAPTER 2. BACKGROUND 17

Ethereum implementation | Hyperledger Fabric implementation
Permissionless Permissioned

Auditability Confidentiality

High Decentralisation Performance and Scalability

Anonymity Identity

Table 2.1: Ethereum and Fabric comparison based on blockchain
characterisations.

Consequently, it will be possible to associate identities with partici-
pants, and cryptographic credentials can be issued to new members.
All communications can also be made use of authentication mecha-
nisms.

In particular, this thesis considers two specific blockchain implementa-
tions: Ethereum and Hyperledger Fabric. The two technologies present
rather orthogonal characteristics and have been conceived for different ap-
plication domains. Table 2.1 compares Ethereum and Hyperledger Fab-
ric with respect to the list of properties presented above, as confirmed in
[93, 118, 102, 127, 119]. The permissionless characteristic of blockchain,
like Ethereum, guarantees trusted and verifiable communication between
untrusted and unknown organisations. At the same time, Ethereum lacks
privacy, performance, and access controls. Permissioned blockchains, like
Hyperledger Fabric, cover these aspects, leaving more freedom to the users
in the network’s organisation. In particular, this suits well when partial trust
relationships between parties can be assumed.

In most cases, the right selection of the underlining blockchain technology
for a given choreography scenario does not depend only on the system’s
behaviour. It is also influenced by the context in which the system will have
to operate. This means that the same choreography model could be deployed
in different situations within different blockchain technologies, depending on
the level of trust required by the considered scenarios.

2.2 Business Process Management

Business Process Management is the discipline overseeing the work conducted
by organisations to ensure consistent outcomes and to take advantage of im-
provement opportunities [46]. In particular, BPM aims to manage the entire
chain of events, activities, and decisions connected to an organisation. These
chains are called business processes and BPM includes concepts, methods,
and techniques to support their design, administration, configuration, enact-
ment, and analysis [121]. Those processes can be used to represent many
kinds of interactions as in the case of collaborative ones. Those are called

18 CHAPTER 2. BACKGROUND

in general multi-party business processes and usually take place when many
parties are involved in collaborations where there is a global awareness of the
relevant interactions [25].

Business process activities can be enacted automatically by information
systems, without any human involvement. Hence, inter-organisational busi-
ness processes are an important concept in facilitating collaboration between
companies and information systems. More and more business processes also
play an important role in the design and realisation of flexible information
systems. These information systems are essential for providing the technical
basis useful for a quick implementation of new functionalities that realise
new products or services.

BPM is characterised by a set of steps that occur cyclically in order to
adapt and improve the model. Hence, BPM involves a continuous cycle, com-
prising the following phases: modelling, analysis, execution, and monitoring.

2.2.1 BPMN Choreography Diagram

Nowadays, a prominent modelling language to describe collaborative dis-
tributed systems is the BPMN standard [89]. BPMN is a graphical notation
to represent the graphical layout of business processes |32, 123], it has been
standardised by the Object Management Group (OMG) and it is actually
widely accepted both in industry and academia. BPMN permits the repre-
sentation of business processes with different levels of detail through the use
of diagrams. Each diagram consists of a set of modelling elements expressing
different behaviours.

Although it has been initially introduced to define and document business
processes, the use of BPMN models has successively gathered momentum as a
starting point for model-driven engineering of distributed systems |91, 5. For
such a purpose, BPMN provides a set of flowchart-based notations, permit-
ting the representation of different distributed systems perspectives, starting
from the internal behaviour of the composing sub-systems, till their interac-
tion. In inter-organisational cooperations, in addition to the need for coordi-
nation in a distributed setting, the involved parties also ask to keep private
their internal behaviour [113|. For this reason, organisations have found in
BPMN choreography diagrams a valid solution to represent such kind of co-
ordination in a proper way [36, 6]. These diagrams allow to describe system
interactions in terms of the exchange of messages from a global perspective,
without exposing internal behaviour. In a distributed environment, organisa-
tions wishing to collaborate can refer to specific choreographies that describe
in detail how the different parties should interact to achieve common objec-
tives. The integration of processes in this way leads to more peer-to-peer
collaboration, shifting responsibility for each execution step of the collab-
orative process to the individual nodes. Consequently, in a choreography

CHAPTER 2. BACKGROUND 19

approach, each participant is responsible for partial orchestration, based on
its individual rules without a central coordinator, and the final behaviour is
specified as a family of permitted message exchange sequences. Figure 2.2
depicts the most used modelling elements that can be included in a BPMN
choreography diagram. On the left, elements are used to define the control
flow, while on the right, the elements are used to represent communication
tasks.

e Events are used to represent something that can happen. An event can
be a Start Event representing the point from which the choreography
starts, or an End Fvent representing the choreography termination.
Events are drawn as circles.

e Sequence Flows are edges used to connect events, gateways and tasks,
permitting to specify the choreography execution flow.

e Gateways are used to drive the flow of a choreography. They can act
either as join nodes (merging incoming sequence edges) or split nodes
(forking the flow into multiple outgoing edges). Different types of gate-
ways are available. An ezclusive gateway (XOR) permits to represent
choices. In particular, a XOR-split gateway is used after a decision to
fork the flow into branches. When executed, it activates exactly one
outgoing edge. A XOR-join gateway acts as a pass-through, meaning
that it is activated each time the gateway is reached. A XOR gateway
is drawn with a diamond marked with the symbol “x” A parallel gate-
way (AND) enables parallel execution flows. An AND-split gateway is
used to model the parallel execution of two or more branches, as all
outgoing sequence edges are activated simultaneously. An AND-join
gateway synchronises the execution of two or more parallel branches,
as it waits for all incoming sequence edges to complete before triggering
the outgoing flow. An AND gateway is drawn with a diamond marked
with the symbol “+”. An event-based gateway is similar to the XOR-
split gateway, but its outgoing branches activation depends on taking
place of catching messages. Basically, such messages are in a race con-
dition, where the first event that is triggered wins and disables the
other ones. An event-based gateway is drawn with a diamond marked
with the symbol of a double-rounded pentagon.

e Tasks are used to specify the message exchange between two partic-
ipants. They are drawn as rectangles divided into three bands: the
central one includes the name of the task, while the other two refer to
the involved participants (the one in white is the initiator, while the
grey one is the recipient). Messages can be sent either by one par-
ticipant (One-Way tasks) or by both participants (Two-Way tasks).

20 CHAPTER 2. BACKGROUND

When creating tasks and participants it is also possible to specify the
Multiplicity aspect by including parallel Multi-instance markers. The
resulting behaviour indicates that a participant can send/receive many
messages or that a single message can be sent/received from/to many

End Event . Multnphcnty Marker

participants.
| |Events | |Gateways | IT.’aE{s _______ Message A Message
I | I I I Name Name |
(—'—“ /—'—\

| Q | | @ ® ’ | | Initiator Initiator :

| Start Event . | | Parallel Exclusive Event-Based | | | Task Name Task Name i

| art Even | | Gateway Gateway Gateway I | (One-Way) (Two-Way) :

| I L J | Recipient | Recipient i
Message .

l : I E Name g |

| O [Flow : I ___________________________________ |

I || |

I | |

I ' l

I
m |
Parallel Multi-instance]

Figure 2.2: BPMN choreography core elements.

2.2.2 Running Example

To clarify the motivations and research challenges faced in this thesis, this
part reports a running example consisting of a multi-party business process
that allows a customer to buy goods from a retailer. The proposed example
refers to warehousing management, and in particular, the considered policy
aims at reducing warehousing costs. The retailer does not keep in the ware-
house a high volume of goods and generally starts the acquisition process as
soon as it receives a specific request. It is also possible that the customer’s
request indicates a specific producer to involve in the provisioning. This ex-
ample highlights an interaction scenario in which the requirements of trust
and privacy change according to the contexts in which the system operates.

Running example description The choreography reported in Fig. 2.3
represents the communications that should take place among the participants
for the scenario described above. The model starts with the request by the
customer for a quotation of goods. In case the goods are available, the
customer proceeds with the payment, and the retailer commits to deliver the
goods. In the other case, the retailer has to buy goods from the producer
that the customer could have indicated, which then proposes a quotation.
This quotation will be followed by the payment and the shipment of goods
to the retailer that can close the customer’s order with the final shipment.

CHAPTER 2. BACKGROUND 21

retail_quotation(string good, ship_address(string
uint amount) payment1() customerAddress)

Customer C Customer
O_. Retail
quotation

Retailer

isAvailable==true i Retail
X Retail payment — shipment —>O

Retailer Retailer

H quotation(string product, ship_info(string H H
B uint quantity) payment0() shipment_address) E E
E T T T retail_order(string retailishiﬂ(string
retail_response(uint price, i H : orderDetail) customerShipment)
bool'isAvailable) Retailer Retailer Retailer

isAvailable==false, Ask goods >

quotation Pay goods — Ship goods

Producer Producer Producer
response(bool availability, order_info(string shipment(string
uint cost) orderlD) shipinfo)

Figure 2.3: Retail process choreography diagram.

Trust requirement In the first considered business context, the described
interactions pertain to a “fair trade” business model in which participants are
not known a priori and each instantiation of the model can involve different
customers and organisations. In this business model, several needs emerge.
As the first aspect, Customers want to make sure about fair remuneration
to the Producer, requiring a mechanism for trusting this kind of market.
The second aspect is instead related to the certification of goods and their
effective origin. In this case, a need for assessing that a certain good comes
from a valid Producer arises. For these reasons, blockchain can guarantee the
sharing of certified information about the entire production chain, making
it possible for the end customer to verify the source of a certain product.
Furthermore, the use of blockchain does not require additional authorities
or central parties to ensure the fairness of the process, avoiding the price
increase due to their involvement.

Auditing requirement In the case of a fair market model, it is of interest
for all the participants to keep a certain level of transparency over the trans-
actions they perform. In particular, a Retailer operating in such a context
should be interested in making publicly accessible the origin, and the price of
the sold goods. In this way, current and future Customers can see exactly who
the Producer is and if the history of prices is somehow fair, and related to a
reasonable treatment of the producer. In particular, the public nature of the
information stored in the blockchain permits the creation trustable auditing
mechanism for the Retailer’s specific goods, and the prices applied over time
for the products. This transparency will increment the retailer’s reliability
from the customer’s perspective in the specific business model context.

Flexibility requirement Considering the flexibility aspect in the pro-
posed scenario, a possible case is shown in Figure 2.4. Here, the Retailer

22 CHAPTER 2. BACKGROUND

proposes an internal update of the process in order to optimise the overall
costs and execution steps. The new agreement consists of a different type of
shipment that involves the Producer. Indeed, after the change in the chore-
ography, this time the Producer directly ships the goods to the Customer
without requiring the intermediary Retailer. This affects the entire process
starting from the initial request of the Customer that, after the response of
the Retailer, pays for the goods and passes the information for the shipment.
After this, if the goods are available, the Retailer ships them and the process
ends. In the other case instead, the Retailer concludes the business with the
Producer that will ship the acquired goods to the Customer thus, ending the
process.

retail_quotation(string good, ship_address(string retailishiﬂ(string
uint amount) p)) customerShipment)

Customer Customer Customer Retailer

() > Retail o Customer : o\ isAvailable == true Retail) > > O
quotation Retail payment details X shipment X
Retailer Retailer Retailer Customer

E retail_order(string
retail_response(uint price, orderDetail)
bool isAvailable)
quotation(string product, shipment(string
uint quantity) payment1() shipinfo)

Retailer Retailer Producer

isAvailable == false Ask goods Producer
L IsAvallable == Talse 0 — — ¢ —
quotation Pay goods shipment

Producer Producer Customer

response(uint cost) order_info(string
orderlD;

Figure 2.4: Updated Retail process (flexibility).

Multiplicity requirement In the previously mentioned process, each role
defined in the choreography corresponds to one single organisation at run
time. However, it is common to have a single market in which several types
of goods are available, having for example a Retailer that communicates with
more Producers at once asking for different quotations and selecting the most
proper one. Also, in a standard setting, a Retailer can serve more Customers
asking for one or more goods to purchase. This kind of multiplicity becomes
so a fundamental aspect to consider when modelling and implementing a
system. Indeed, when this factor is not considered, for every new product
or Producer, a new instantiation of the process is required thus increasing
the related costs inside the blockchain. For this reason, expressing multi-
plicity both in the model and in the resulting implementation is a relevant
challenge, especially when relying on a blockchain. To highlight this kind
of behaviour, Figure 2.5 depicts the Retail process with multi-instance tasks
and participants.

CHAPTER 2. BACKGROUND 23

retail_quotation(string good, ship_address(string
uint amount) payment1(string receipt1) customerAddress)

Customer Customer Customer
Retail isAvailable==true . Retail
() > quotation > <X> X Retail pay shipment > O
m
Retailer Retailer Retailer
H q i ing product, p ing receipto, string H H
H uint quantity) shipment_address, address _producer), EI E
. . . H H retail_order(string retail_ship(string
retallszisﬁ:‘l\'l:aei(lualbnlte;:rlce, Retailer Retailer orderDetail) customersﬂlpmen()
Ask goods Pay goods

Producer Producer
—w SRS TRAN
response(bool availability,

uint cost)

Figure 2.5: Multi-instance Retail process (multiplicity).

Privacy and Confidentiality requirement The last scenario takes place
when the parties operate in a close environment where, for business pur-
poses, the participants are more interested in keeping private most of the
information related to the products. In particular, considering the partici-
pants actively involved in “traditional” business operations, the retailer and
the producers are generally interested in keeping confidential the quotations
they agree on about a specific selling. While a producer may want to keep
secret the quotation applied to a specific retailer, this may want to make a
private offer to a particular customer without showing the price for the same
goods. The retailing scenario provides an example of a multi-party business
process that, when different operative domains are considered, does not differ
much from the operative aspects, and the interactions put in place to reach
specific objectives. Instead, the operative domains result in rather diverg-
ing needs when modalities of such interactions, and capabilities of successive
analysis, are considered.

PART 11

BLOCKCHAIN
FOR INTER-ORGANISATIONAL BUSINESS
PROCESSES

CHAPTER 3

CHORCHAIN: TRUSTED

EXECUTION OF
INTER-ORGANISATIONAL
BUSINESS PROCESSES

In this chapter, the thesis introduces the CHORCHAIN framework and tool
supporting the trustable execution of inter-organisational business processes.
CHORCHAIN relies on a model-driven approach and it poses the basis of the
contributions presented in this thesis. In particular, CHORCHAIN supports
various phases of the choreography, from the modelling to its instantiation
and execution exploiting blockchain for a trusted environment. Thanks to
the model-driven approach, the proposed solution automatically generates
smart contracts, making the process entirely transparent to the final user. In
particular, CHORCHAIN targets all that kinds of users that intend to collab-
orate without having to deal with technicalities or that want to exploit the
model-driven development. For instance, those users can be referred to the
organisations’ developers or to business parties involved in a choreography.
The use of BPMN as modelling notation permits to have a visual represen-
tation of system implementation and makes it usable also by non-technical
people [55]. Furthermore, the enforcement provided by blockchain and smart
contracts, allows choreography participants to perform only those actions
that are enabled at the current step of the choreography. It guarantees
that the execution of the choreography complies with the given specification.
The rest of the chapter first introduces the peculiarities of the CHORCHAIN
framework, consisting in its phases, the BPMN meta-model extension and

28 CHAPTER 3. CHORCHAIN FRAMEWORK

the conceptual translation of BPMN to smart contract. Those aspects are
then described in practice with a focus on the implemented tool. Then, a
set of experiments on the running example and other use cases are reported.
Finally, a comparison with already existing approaches is provided.

3.1 CHORCHAIN Conceptual Framework

The CHORCHAIN framework aims at providing a trustable execution environ-
ment addressing various trust concerns. To this purpose, CHORCHAIN im-
plements most of the patterns used in a collaborative environment to reduce
uncertainty and increase trust [86]. In particular, the proposed framework
supports data integrity provided by storing data in the smart contracts and
non-repudiation of actions performed by organisations, using the blockchain
logs to identify which action is performed by whom. Also, the integrity of
the system is ensured by storing the entire process in the blockchain, and
by enforcing the prescribed execution. Finally, the availability of activities
and resources is provided to each organisation by interacting through the
smart contracts and by monitoring them. Considering other technical fac-
tors, the usage of a model-driven technique and of a blockchain environment,
makes CHORCHAIN support security aspects and other attributes such as
the usability and transparency of the solution [83].

3.1.1 Framework phases

The CHORCHAIN framework supports different phases of the choreogra-
phy development. Those are reported in Figure 3.1 and they consist of the
initial modelling of a choreography that becomes available to be instantiated.
The resulting instance is then deployed on the blockchain and the involved
parties can finally interact with it.

The first phase of the proposed model-driven methodology is the system
modelling, consisting of the creation of a choreography diagram. The main
motivation for using a specification to design how the different system com-
ponents should interact to reach a common goal concerns the possibility to
abstract from implementation details. Indeed, in the blockchain-based solu-
tion, the use of a high-level specification permits alleviating the burden on
the shoulders of the developer, who can avoid dealing with smart contract
technicalities directly.

The resulting model is published in a choreography repository
making it publicly available and enabling the searching phase. Open access
to models can foster cooperation among unrelated parties. In the CHOR-
CHAIN approach, a choreography model is conceived as a blueprint, which

CHAPTER 3. CHORCHAIN FRAMEWORK 29

Existing instances i Smart contract Blockchain
: SEIT1E QRoea|
: o 52255 8 Roles |) @)
: " st 01 N Contra_ct Deploy
! ! 'Subscribe| nStance V- 1, generation
. SE1 T4 A RoleA| I Generation &
: & = v & v LhZEE o H Deployment
=4 T +E == ;"A = _ " = -RoleB :,::::::::::::::::::::::::::::::::::_
= l:'|> |:|'> ————— " Instance ID: 2 " '
= | pyblish —== :—ISearch o= " H H
I - N '
Choreographies Choreography " |:"> ¥ 1 H |
Modelling G54 & N '
Enviornmegm repository model " - Ll T A Role A i . = = . |
11 Create 5w s " @_@ H
I o . I
il I W - Pt Py -)
Modelling riinstance |- Instance ID: 3 " RoleA (7 Role B |
""""""""""""""""""""""""""""" New instance = Ch
v— v—
Instantiation " Execution

Figure 3.1: Choreography life-cycle supported by CHORCHAIN.

can be instantiated to activate multiple cooperations with the same struc-
ture, but possibly involving different participants. To increase the reusability
of choreography models, the instantiator can indicate which roles in the newly
created instance are mandatory and which are optional. In this case, the ini-
tiator has to accurately select the mandatory/optional roles to ensure the
proper completion of the instance execution. When a choreography instance
is created, in order to be executed it has to be subscribed by the partic-
ipants that aim at playing a given role in that specific cooperation. Before
passing to the next phase, it is necessary that each mandatory role has been
subscribed to by a participant.

Once all the required roles are filled, the smart contract corresponding to
the choreography instance is generated and then automatically deployed
on the blockchain. At that time, the execution phase starts, and the par-
ticipants can cooperate following the message protocol established by the
choreography specification, and implemented in the smart contract. The
smart contract permits to ensure that the participant interactions are com-
pliant with the choreography specification since only the enabled actions are
allowed to the partner in charge for their execution.

3.1.2 BPMN meta-model extension

Since a choreography, due to its level of abstraction, does not include all
the information needed for its execution, CHORCHAIN asks the modeller ad-
ditional data related to the specification of (i) messages and (i) guards.
Such a modelling activity is conceptually supported by a small extension of
the BPMN standard meta-model, so to permit the inclusion of blockchain-
specific information within the model as represented in Figure 3.2. The figure
reports in grey (upper part) the concepts coming from the BPMN stan-
dard, while the bottom part in orange reports the CHORCHAIN ones. To
derive a blockchain-based infrastructure, supporting a choreography-based

30 CHAPTER 3. CHORCHAIN FRAMEWORK

ChoreographyTask MessageFlow Message
(from Choreography Activites) (from Collaboration) (from Common)
0..1 +messageFlowRef|name: String * +messageRef | name:string
tchoreograpyTask 1..2 0..1
<<enumeration>> MessageParameter StructuredMessage
SolidityType (ChorChain) (ChorChain)
-bool name: String * isPayment: Boolean
-uint type: SolidityType kmmmmmmmmm e
-string
_address +messageParams
-bytes
-etc

Figure 3.2: ChorChain BPMN meta-model extension.

system at run-time, it is necessary to specify a list of parameters for the
exchanged messages. Therefore, a stereotyped form of the message is de-
fined, named StructuredMessage, to which a list of MessagePameter objects
is associated. Each element in this list has a name and a type taken from
an enumeration including all the Solidity types. Thus, during the modelling
phase, the modeller can annotate the message(s) of each choreography task
with the parameters needed to perform the underlying function call in the
generated smart contract. More in general, the specification of a task re-
quires a set of information related to: the participant names, the name of
the exchanged message, its parameters, and in case the message contains
a payment this has to be clearly specified. The result of this procedure is
the addition of a list of parameters after the message name in the form of:
msgName(param Type; paramNamey, . . ., paramType, paramName,,).

The blockchain naively supports financial transactions among the interact-
ing partners for exchanging amounts of cryptocurrency. Thus, CHORCHAIN
gives the possibility to include messages in a choreography producing finan-
cial transactions. To do this, the name assigned to the message is of the
form paymentn (). The lack of any parameter is justified by the fact that
the only information required by the payment function refers to the involved
participants, which can be directly and automatically retrieved from the task
description. The amount to be paid is indicated by the sender during the
choreography execution, exploiting the dedicated page. The resulting trans-
action transfers the amount in Ether from the sender to the receiver wallet.
The second aspect to consider when deriving models that can be translated
into executable smart contract refers to the specification of the guards in the
sequence flows outgoing from an exclusive gateway, used to determine the
path to be triggered. In CHORCHAIN, a guard is an expression in Solidity
format, written using the message parameters combined with the standard
comparison operators for boolean, numeric and string values.

CHAPTER 3. CHORCHAIN FRAMEWORK 31

3.1.3 Translation approach: BPMN to Solidity

The smart contract generation is an automatic phase where the choreography
instance is translated into Solidity code starting from a BPMN choreogra-
phy. To this purpose, a novel approach to the automatic generation of smart
contracts is proposed. In particular, this translation maps each BPMN ele-
ment of a choreography to a Solidity construct as reported in Table 3.1 where
the different translation cases are shown. In general, each generated smart
contract shares a similar structure and an initial header defining general in-
formation such as state variables and roles definition. After this part, each
choreography element generates a specific function that varies depending on
the model. To enforce the correct execution flow, inside the smart contract,
each element is associated with a state that is originally blocked and can be
activated only by its predecessor depending on its behaviour. The states are
as follows: DISABLED is used when the element has never been called and is
waiting for being enabled, ENABLED when is waiting for being executed, and
DONE once it has completed the execution. Indeed, inside each generated
function, there is an initial check on the current state of the element that
has to be active. Then, before terminating the execution, the next connected
element is enabled.

The choreography elements appearing in the contract can be divided into
two main categories, the first one contains messages, representing the inter-
actions between participants. During the generation, the concept of choreog-
raphy task is concealed in favour of the connected messages (case 2). In par-
ticular, in a one-way choreography task, only the single message exchanged
by the two participants is translated. Similarly, in a two-way task, both
exchanged messages are translated. Thus, the translation generates a pub-
lic function for each message of a (one-way or two-way) task containing the
inputs defined inside the message name. In case the function is marked as
payment, the corresponding code is generated. It is worth noticing that the
participants represented in a task (case 3), are associated inside the smart
contract to Ethereum addresses used for access control inside a special So-
lidity function called modifier. Another important aspect is related to the
user inputs which are parsed starting from the message name. Indeed, each
parameter is translated to a state variable inside the smart contract which
keeps the memory of the exchanged data.

The second category is instead related to control flow elements which
determine and enforce the execution flow. In this case, a private function for
each of them is generated, hence it cannot be directly called by the choreog-
raphy participants, but only from inside the contract. This guarantees that
the control flow of the model is only managed by the contract and not influ-
enced by external users. Different from the message function, this one has
no parameters since the execution semantics of the corresponding element do

32 CHAPTER 3. CHORCHAIN FRAMEWORK

Table 3.1: Translation approach from BPMN elements to Solidity.

BPMN element Solidity code BPMN element Solidity code
e Private function e Private function
1) O e Check on its state 5) e Check on its state
Start Event e Activates next element Exclusive e Activates next element
Gateway
e Public message function . .
e Public payment function * Private function
2) E - bayiie 6) e Check on its state
e Check on its state .
Message . Parallel o Activates next elements
e Activate next element Gateway
Participant e Ethereum account @ e Private fupction
3) . 7) e Check on its state
e Modifier access control Event.Based .
—— s e Activates next elements
. e Private function
4) _ soenceron e Guard expression 8) O e Check on its state
End Event

not require external inputs.

In particular, the first considered control flow element is the start event
(case 1) which generates a private function starting the execution of the pro-
cess inside the blockchain by activating the next element. Similarly, the end
event terminates the execution (case 8) without activating any other func-
tions. Sequence flows instead, do not directly derive Solidity code but they
are used to enforce the overall execution sequence and to derive the activa-
tion mechanism between elements. Furthermore, those elements contain the
expressions used as guards evaluated inside the connected exclusive gateway.
The last considered control flow elements are gateways which share the same
translation logic. Indeed, all of them are represented as a private function
deciding the path to follow according to some conditions. In the case of an
exclusive gateway (case 6), this decision is evaluated through an expression
previously defined. Parallel and event-based gateways enable instead all the
following elements (case 6 and 7). The difference is that the event-based
defines a race condition in which only the first function executed by the user
is valid, thus disabling the others.

CHAPTER 3. CHORCHAIN FRAMEWORK 33

3.2 (CHORCHAIN Tool

This section presents the CHORCHAIN tool!, by focusing on the design
choices that have driven its development, and the technical solutions adopted
to implement it. The presentation is organised according to all the method-
ology phases previously introduced, from modelling to execution.

3.2.1 Modelling

The modelling phase is the starting point of the choreography life cycle. To
support it, the chor-js [65] modelling environment is integrated into the tool.
More specifically, chor-js is imported in the modelling page of the CHOR-
CHAIN front end, which is based on Angular JS. The modelling area offers
several functionalities, such as the creation, the import, the export and the
saving of a model in the CHORCHAIN repository. Some of these actions are
also connected to the CHORCHAIN back end, which is based on a JAX-RS
web service. For example, when a model is saved, a REST call containing
the XML of the diagram to store is directed toward the back end, which
then handles it by creating and saving the file. It is worth mentioning that,
from a technical point of view, in the development of the framework for the
inclusion of blockchain-specific information in the models the usage of the ex-
tension mechanisms made available by the BPMN standard is avoided. The
main objective, indeed, is to derive a supporting infrastructure and not to
export the instrumented model out of CHORCHAIN. Therefore, similarly to
[87], the additional information is included just as text in the name attribute
of messages, and hence it is included in the resulting XML file and graphi-
cal representation. The text is then parsed by CHORCHAIN to generate the
needed infrastructure. In the integrated modelling environment, the speci-
fication of a task is supported by an intuitive panel depicted in Figure 3.3
that requires the insertion of the related information. Furthermore, in case
the payment checkbox is selected, the corresponding function is created and
the message is automatically filled with no parameters accordingly to the
payment format. In particular, for each payment function, a counter n man-
ages the uniqueness of the names, and it is incremented at each new included
function.

Retail Process Example (Modelling) Here some excerpts of the mod-
elling phase for the retail process example are discussed. Figure 3.3 depicts
the panel in the CHORCHAIN modelling environment for the definition of the
Retail quotation task. This is the first task in the retail process scenario that

IThe tool can be used and tested at http://virtualpros.unicam.it:8080/
ChorChain.

http://virtualpros.unicam.it:8080/ChorChain
http://virtualpros.unicam.it:8080/ChorChain

34 CHAPTER 3. CHORCHAIN FRAMEWORK

Message top

retail_quotation
string + good

uint *$ | amount

Check this box if the message is a payment function
Participant top

Customer

Task name

Retail quotation

Participant bottom

Retailer

Message bottom

retail_response

price

LL3

uint

boolean %+ isAvailable

Add param

Check this box if the message is a payment function

Figure 3.3: Created panel for task and messages definition.

involves the Customer and the Retailer. The panel permits to set the name
of the task, the participants, and the parameters of the exchanged messages.
CHORCHAIN provides a straightforward way to annotate the model without
incurring syntactic issues. In particular, it allows for the dynamic inclusion of
information in a guided manner. This functionality annotates the task in the
graphical representation of the model (see Figure 2.3) with the task’s name
(Retail quotation), the participant’s names (Customer and Retailer), and
the messages definition (retail quotation(string good, wint amount) and
retail _response(uint price, boolean isAvailable)). Figure 3.4 shows the ex-
clusive gateway used to manage the choice coming after the first task. In
particular, the progress of the model is controlled by a boolean expression
that labels the outgoing sequence flow of the gateway. The guard evaluates
the isAvailable variable, instantiated in the precedent interaction (Retail quo-

CHAPTER 3. CHORCHAIN FRAMEWORK 35

isAvailable==true

Figure 3.4: Gateway guard example.

{ ChorChain HomePage Modeler ExecutionPage Querying Audit Personal Page

RetailProcess.bpmn
Uploaded by: 0x7A224d367EB99e849dC80F3d7bOFACIEO3Fe8Be0
Al roles: Retailer - Producer - Customer

Model File List

B RetailProcess.bpmn

Figure 3.5: ChorChain home page with uploaded model.

tation task), and it is defined using the standard boolean expression syntax
for equality.

3.2.2 Publishing, Searching and Instantiation

A choreography specification can have an impact only if concrete instances
are derived from it so that from time to time the participants specifically
involved in the created instance interact to reach the specified choreography’s
goals. Therefore, CHORCHAIN provides support for publishing, searching
and instantiating a choreography specification.

To publish the choreography, CHORCHAIN provides a repository that can
be accessed via an intuitive user interface. However, in order to interact with
the repository, it is necessary to register and login into the platform. To ease
access to the platform, the user can exploit the Metamask browser plugin?,
which provides a web interface for managing Ethereum accounts. The ac-
count selected in Metamask then constitutes the identifier of the participant
in the choreography contract. After the login, the user is redirected to the
homepage depicted in Figure 3.5. On the left side of the web page, the user
has the possibility to publish a new model, by uploading the corresponding
file. Alternatively, it is possible to search for an existing one.

The searching phase is an important aspect of the framework since it en-
ables reusability and facilitates the meeting between the supply and demand
of services. Any registered user, once logged in, can search for a particular
choreography and the framework proposes a list of all models matching the

’https://metamask.io/

https://metamask.io/

36 CHAPTER 3. CHORCHAIN FRAMEWORK

searched topic. These are listed below the search form (bottom left corner
in Figure 3.5). At this stage, a simple discovery functionality is provided, as
this is not the main focus of the thesis. More advanced mechanisms can be
adopted, by resorting, for instance, to semantic annotations of choreography
models. The information about the selected choreography is shown on the
right side of the homepage. In particular, CHORCHAIN shows the owner of
the model, the maximum number of involved participants and the required
roles. The preview of the graphical representation, and the possibility to
create a new choreography contract, are also visualised.

In the instantiation phase, the user generates a new instance for a specific
model. In this phase, he has to select possible optional roles, otherwise,
they are considered mandatory. Consequently, the choreography instance
is kept in a “suspended” state while waiting that all the mandatory roles
to be subscribed. CHORCHAIN supports both public choreographies, where
participants are free to enter, and private ones where only pre-selected parties
have the opportunity to join. Figure 3.1 shows three choreography instances
deriving from the same choreography composed of two mandatory roles (Role
A and Role B). Instance 1 is the one deployable on the blockchain since both
roles are subscribed (green colour). Instances 2 and 3 are suspended since
just one role is subscribed (Role B) and one is vacant (Role A, in red colour).
The latter instance is instead newly created and all its roles are vacant.

When a choreography instance has no more vacant mandatory roles,
CHORCHAIN considers the partnership complete and starts the generation
of the Solidity smart contract, deploying it on the blockchain. If the con-
tract has some optional roles, the subscription form remains enabled on the
homepage with only the optional roles, also after its deployment. In case a
user selects an optional role, the correlated subscription function is triggered
directly on the already deployed smart contract. This operation generates a
standard transaction, that needs to be accepted via the metamask plugin.

Retail Process Example (Instantiation) Considering the Retail pro-
cess example, Figure 3.6 depicts the home page with a created instance in
which the Customer and Retailer were set as mandatory roles and are cur-
rently available to be subscribed. The Producer, instead, was set as optional,
since its participation is not always required. This means that after the
deployment of the contract, a participant can join the running instance by
covering the Producer optional role.

CHAPTER 3. CHORCHAIN FRAMEWORK 37

{ ‘ ChorChain HomePage Modeler ExecutionPage Querying Audit Personal Page

&, Upload model Q Search RetailPro bpmn Create instance
Uploaded by: 0x7A224d367EB99e849dC80F3d7b9FACIEO3Fe8Be0 4
See model preview

All roles: Retailer - Producer - Customer -

Model File List

B RetailProcess.bpmn

n° 6349716184a1ec1940858591 - created By: 0x7A224d367EB9%849dCB0F3d7hIFACOED3Fe8Be0

+ | subscribe |

Figure 3.6: Home page with a created instance.

3.2.3 Smart Contract Generation

The generation of the smart contract code starts after the parsing of the
choreography model, performed by means of the Camunda Java library?, to
which some functionalities were added to deal with choreography diagrams
syntax as defined in the standard. More in detail, once a participant sub-
scribes to a choreography instance if the covered role is the last one left free,
the .xml file of the instance is retrieved and parsed using the Camunda func-
tionalities. These allow the translator to iterate every BPMN element inside
the instance file, creating the respective Solidity code. As mentioned above,
the Camunda library was extended with some controls for the recognition of
choreography tasks and messages, and some utility functions for the extrac-
tion of specific information, such as elements IDs and names. Here below
are some hints of the automatic translation performed by CHORCHAIN for
each choreography element admitted by the BPMN standard following the
translation logic described in Section 3.1.3.

Listing 3.1 reports the header of the contract. This part is quite standard
and similar for each newly generated contract.

contract Choreography{

1

2

3 enum State {DISABLED, ENABLED, DONE} State s;
4 struct Element{string ID; State status;}

5 struct StateMemory{

6 string varl;

7 bool var2;

8 uint var3;

9

.}
10

11 event functionDone(string eventID);

12

13 Element [7] choreographyElements;

14 StateMemory currentMemory ;

15

16 mapping(string=>address payable) roles;

17 mapping(string=>address payable) optionalRoles;

18

3https://docs.camunda.org/javadoc/camunda-bpm-plat form/7.11/

https://docs.camunda.org/javadoc/camunda-bpm-platform/7.11/

38 CHAPTER 3. CHORCHAIN FRAMEWORK

19 string [2] roleList = ["Role A", "Role B"];
20 string [1] optionalList = ["Role C"];

Listing 3.1: Contract header with state variables.

A contract keeps track of the choreography instance state by means of
the list of elements choreographyElements (Line 13) and the structure
of variables currentMemory (Line 14). In particular, this last one con-
tains all the information influencing the state of the contract and they are
derived from all the inputs defined in the messages. Each element of the
choreography is represented as a structure of type Element (Line 4) con-
taining the information related to that model element (i.e., its identifier and
current status), while the current memory has type StateMemory (Line
5) containing instead all the global variables appearing in the model. The
states of an element are defined by the enumeration State (Line 3). The
event functionDone (Line 11) is emitted for each completed element, and
it permits the direct retrieval of the contract transactions. In addition, the
function is also used to notify the partners about a possible contract state
change. The header also includes the list roleList and optionalList of
the mandatory and the optional roles involved in the choreography (Lines 19-
20) and generated by participants elements.

After the declaration of the global variables, the contract includes the
definition of the modifier (Listing 3.2).

21 modifier checkRole(string memory role) {

22 require (msg.sender — roles|[role| || msg.sender —
optionalRoles|[role]) ;

23 ;

24}

Listing 3.2: Modifier for participant and role access control.

A modifier has the same structure as a method but can be called only
inside the definition of a function. In this case, the contract invokes the
modifier inside the functions representing messages. Specifically, the modi-
fier checkRole (Lines 21-24) checks if the mandatory/optional role of the
sender in that particular function corresponds to the role for which the same
account was subscribed. This construct is used to enforce, from the contract
side, the right identity of the sender according to what is expressly defined
in the choreography instance.

The contract constructor (Listing 3.3) is the principal method executed
at contract deployment time. It performs all the operations concerning the
start and participants initialisation, necessary for the subsequent execution
of the contract.

25 constructor () public{

26 elements[O] = Element("StartEvent Ogb8jks", State.ENABLED) ;
27 oles initialisation with participants addresses

28 roles['Role A"]| = 0x9bAAf595

CHAPTER 3. CHORCHAIN FRAMEWORK 39

29 roles ["Role B"| = 0x2BBc833C...;

30 optionalRoles ["Role C"] = 0x0000000...;
31 emit functionDone("Contract creation");
32 StartEvent Ogb8jks();

33 }

34

35 //function for the optional subscribe

36 function sub_as part(string memory role) public {
37 if (optionalRoles| role]==0x00000000...) {

38 optionalRoles| role|=msg.sender;

39 }

40 }

Listing 3.3: Contract constructor with participant initialisation and start
event invocation.

The first operation performed by the constructor is the initialisation of the
start event element (Line 26) with its status set to ENABLED. Lines 28-
30 report the initialisation of the roles with the addresses of the participants.
The mandatory roles are hard-coded in the constructor since they are roles
without which the execution of the choreography model can take place. For
the optional roles, instead, the participants can subscribe at run-time using
the sub_as_part function in (Lines 36-39). At this point the event related
to the contract creation is emitted (Line 31); this informs the external users
that the contract is deployed and ready to be executed. Finally, in Line 32,
the function related to the enabled start event is invoked, allowing the next
elements to be executed.

After the generation of this first part, which is similar to each choreog-
raphy contract, the generation continues by appending the functions corre-
sponding to the translation of the elements included in the choreography
model. Listing 3.4 shows the public function depicting a message exchanged
between two participants in a choreography task. The function name in the
contract is represented by the message identifier inherited from the model,
while the parameters are from the annotated name.

41 function Message ID(string memory _varl) public

42 checkRole(roleList [1]) {

43 //checking the status of the current element that is the invoked message
44 require (elements [0]. status = State .ENABLED) ;

45 currentMemory . varl = _varl;

46 done (0) ;

47 //it enables the next element

48 enable ("Next_Element_ID", 1);

49 }

Listing 3.4: A message function.

First of all, the modifier checkRole is called with the assigned role (Line
42). Once the right identity of the caller inside the function is ascertained,
a second check on the status of the task is performed: as expected it should
be equal to ENABLED (Lines 44). After that, it is performed the registration
of the _varl parameter in the memory of the contract (Line 45). The last

40 CHAPTER 3. CHORCHAIN FRAMEWORK

step before enabling the execution of the next element is to change the status
of the current element to DONE (Line 46) and set to ENABLED the status of
the next element (Line 48).

After messages, which translation produces code with the same structure,
the other considered elements are control flow ones. More specifically, these
are gateways directly translated as private functions. In Listing 3.5 there is
the representation of the parallel gateway.

50 function parallelGateway ID() private {

51 require (elements[1].status = State .ENABLED) ;
52 done (1) ;

53 //enable the next elements

54 enable ("Next_Element_ID1", 2);

55 enable ("Next_Element_ID2", 3);

56

57 }

Listing 3.5: Function for a parallel gateway.

In addition to the private visibility and the absence of inputs (see Section
3.1.3), the other characteristic of the control flow functions is the absence of
the modifier for the role checking since there is no interaction coming from
outside the blockchain. The body of the function contains just the code to
complete the current element (Line 52) and to enable the next ones directly
connected (Lines 54-55). A similar code can be expected for an event-based
gateway, as in principle all the tasks connected to that gateway have to be
enabled, and only when the message has received the tasks waiting for the
antagonistic messages have to be disabled. A different implementation is ex-
pected for an exclusive gateway, where the logic of the function is depicted in
Listing 3.6. In this case, the next element is enabled only after the evaluation
of a condition that discriminates which element to enable. This condition is
inherited from the boolean expressions annotated in the outgoing sequence
flows of the exclusive gateway. In the smart contract, the choice is managed
by using an if-else control (Lines 60-67); this gives more guarantee on the
mutual exclusion but limits the execution to the first satisfied condition.

58 function exclusiveGateway ID() private {

59 require (elements [2]. status = State .ENABLED) ;
60 if (currentMemory .var2=—false) {

61 //If the next is an internal element it is invoked
62 enable ("Next_Element_ID", 4);

63 Next Element ID () ;

64 }else if(currentMemory.var2=—true){

65 //if the next is a message it is only enabled

66 enable ("Next_Element_2", 5);

67 }

68 done (2) ;

69 }

Listing 3.6: Function for an exclusive gateway.

The state changes for the elements are simplified by the usage of three
auxiliary functions defined in Listing 3.7. The enable function takes as in-

CHAPTER 3. CHORCHAIN FRAMEWORK 41

put a string representing the element identifier and a numeric position. This
information is used to create and push a new element in the list with the
ENABLED status (Line 71). The disable and done functions are similar;
they change the status of the indicated element position to DISABLED and
DONE, respectively. The only difference is in the done function, which no-
tifies the participants about the current completed element by emitting the
functionDone event (Line 79).

70 function enable(string memory taskID, uint position) internal {
71 elements | position| = Element(taskID, State.ENABLED) ;
72}

73 function disable(uint position) internal {

74 elements | position|. status=State .DISABLED;

75}

76

77 function done(uint position) internal {

78 elements | position|. status=State .DONE;

79 emit functionDone (elements|[position|.ID);

80 }

Listing 3.7: State change functions.

Finally, a specific function, reported in Listing 3.8, is used for dealing
with payments.

81 function payment() public payable checkRole(roleList [0]){

82 require (elements [3]. status=—State .ENABLED) ;
83 roles ["Role B"]. transfer (msg. value);

84 done (3) ;

85 enable ("Next_Element_ID", 6);

86 }

Listing 3.8: Function for a payment.

This function is used to send money to the receiving participant indicated
in the model. The function is marked as payable and allows the account
of the participant executing it to transfer Ether. The transfer function
(Line 83) sends to the addressee (the role between squared brackets) an
amount of Ether specified by msg.value, which is defined by the sender
user.

Retail Process Example (Contract Generation) This example
presents a sketch of the smart contract generated after the subscriptions of
the users for the retail process example. Listing 3.9 depicts the representation
of the retail quotation message into a Solidity function, while Listing 3.10
shows the code generated for the exclusive gateway after the retail quotation
task. The first function is now identified in the smart contract using the type
and the “ID” of the element in the BPMN model (see Line 87). The second
one, instead, does not require any parameter and it only checks the expres-
sions (Lines 96, 98) derived from the guards isAvailable==false and
isAvailable==true annotating the sequence flows outgoing from the ex-
clusive gateway in the BPMN model. Depending on this check, it enables the

42 CHAPTER 3. CHORCHAIN FRAMEWORK

next element. For a more complete account of the translation of the retail
process example into the corresponding Solidity contract, the contract code
is available on-Line*.

87 function Message 0b917rc(string memory good, uint amount) public
checkRole(roleList [1]){

88 require (elements [2]. status=—State .ENABLED) ;
89 enable ("Message_lxxdwx2",3);

90 currentMemory . good=good ;

91 currentMemory . amount=amount ;

92 done (2) ;

93

Listing 3.9: Code corresponding to the retail quotation message.

94 function ExclusiveGateway 042aut8() private {

95 require (elements [4]. status=—State .ENABLED) ;
96 if (currentMemory.isAvailable=—false){

97 enable ("Message_lh3ew6l", 5);

98 }else if(currentMemory.isAvailable=—true){
99 enable ("ExclusiveGateway_1johog7", 6);

100 ExclusiveGateway 1johog7();

101 }

102 done (4) ;

103}

Listing 3.10: Code corresponding to the exclusive gateway after the retail
quotation task.

3.2.4 Deployment

Once the contract has been generated, the framework automatically deploys
it into the Ethereum blockchain.

4The Solidity contract of the retail process example is available at the following link
https://bit.1ly/39GxxJU

https://bit.ly/39GxxJU

CHAPTER 3. CHORCHAIN FRAMEWORK 43

Back end Front end

Tomcat Server Web browser

i HTTP | <<components> g]
<<component>> El ‘ ChorChain application
ChorChain REST APIs I

<<component>> g
chor-js Modeler

<<artifacz> [

Hibernate Camunda APIs

<<artifact>> D‘

<<artifact=> [
Web3js

<<component>> E
Metamask

<<artifact=> [3
AngularJs

<<component=>5|
Mongodb

<<artifac> [
GraphQL

<<artifact=> [}
Web3j

Blockchain

Ethereum
Node

JSON-RPC

JSON-RPC |

g]

EVM

Figure 3.7: CHORCHAIN architecture with software components.

To get a better understanding of this process, a first clarification is made
on the architectural organisation of CHORCHAIN depicted in Figure 3.7. The
framework follows the typical DApp architecture, and it can be divided into
the following components: the back end, the front end and the blockchain.

The Back end contains a web server, running on a Tomcat server, that
provides the REST APIs for communication. It also includes the database for
storing information related to the choreography models/instances and their
subscription state exploiting the Hibernate framework. The Web3j library
is used for interacting with the blockchain, and the Camunda APIs are for
parsing the choreography models.

The Front end communicates through the CHORCHAIN REST APIs with
the back end. In particular, the front end contains the CHORCHAIN web
application providing the interface for the interaction with the tool. It is
created using the AngularJS framework and it includes the chor-js modeller
for the design of the BPMN choreographies, the GraphQL API for support-
ing custom blockchain queries, and the Web3js library (connected to the
Metamask service) for enabling the user-blockchain interactions.

The Blockchain is connected to the other components by means of JSON-
RPC communication using the Web3 APIs targeting an Ethereum node of
the network. When the smart contracts are triggered, the Ethereum Virtual
Machine (EVM) inside the node is used for executing the Solidity code.

The interactions between a participant, the CHORCHAIN components and
the Ethereum blockchain, for the subscription and the deployment of the
choreography contracts, can be now summarised as depicted in Figure 3.8.
Given a suspended contract, the participant can subscribe to a role by send-
ing a request to the back end, through the front end. At this point, two

44 CHAPTER 3. CHORCHAIN FRAMEWORK

alternatives are admitted. In case all the mandatory roles are covered, the
CHORCHAIN back end generates the smart contract, by sending a transac-
tion to the blockchain using the web3j library®. The Ethereum blockchain
uniquely identifies the contract with a hexadecimal number, which is gener-
ated only after the corresponding transaction is mined. The contract creation
event is then caught by the back end, which updates the front end, and shares
the contract identifier among all participants. The choreography execution
can now be started. The other alternative in Figure 3.8 describes instead the
case where the instance is still incomplete. In this case, the back end just
updates the subscribed role without involving the blockchain.

ChorChain ChorChain Blockchain
Front-end Back-end
Participant : : :
Instance subscription _ | 1 I
B REST call 1 |
L |
1
alt Contract creation >l
[Fubscribed_users == num_njandatory_roles] Mine transaction

”

Contract address
generation

Get contract info ;]

Pass contract information | €= ==========~4

Personal page updated I e

[pubscribed_users < num_mgndatory_roles] Update users subscribed

Pass updated instance

Interface updated

Figure 3.8: CHORCHAIN deployment phase.

3.2.5 Execution

Once a new contract is deployed into the blockchain, the execution phase
takes place and the participants can collaborate by means of the functions
exposed by the contract. In order to facilitate these interactions, CHOR-
CHAIN provides an execution page accessible by each (human) participant
shown in Figure 3.9.

Shttps://web3j.1io

https://web3j.io

CHAPTER 3. CHORCHAIN FRAMEWORK 45

ChorChain Blockchain
Front-end

Participant f
[1 Send atask message

T
|
|
Send transaction JI_

Mine transaction

Emit event

Get updated contract D

I —
Update interface
ez - o] T

Figure 3.10: CHORCHAIN execution phase.

& | ChorChain HomePage Modeler ExecutionPage Querying Audit Personal Page

Model File List

RetailProcess.bpmn 63:571613421ec1940258591

retail quotation(string good, uint
amount)

Status: Enabled

string good : goodToPurchase

retail_quotation(string good, uint
aaaaaa 1)

Figure 3.9: CHORCHAIN participant execution page.

The left-hand side of this interface reports a list of all contracts to which
the participant is subscribed. On the right-hand side, it is shown a preview of
the model: in green, there are the messages done, and the ones actually active
below the respective forms that are dynamically constructed by CHORCHAIN
for executing them. Each form contains information, like the name of the
message, the role of the participant, the space for inserting all the required
parameters, and the submit button. Notably, the submission form is visible
only to the participant in charge of sending the enabled message. In addition,
by double-clicking on a completed message, a little panel with the exchanged
values is shown.

The sequence diagram reported in Figure 3.10 summarises the steps for
the execution of a single message. To send it, the participant has to fill up
the corresponding form and then click on the submit button. The generated
transaction has to be confirmed using the Metamask pop-up. It contains

46 CHAPTER 3. CHORCHAIN FRAMEWORK

the gas price plus the total amount of Ether to spend for the transaction.
As soon as the transaction is included in a block (i.e., it is mined), the
related event is emitted. This event is used by the front end to update
the interfaces of all participants involved in the choreography with the new
contract status, thus enabling the next admitted message(s). It is worth
noticing that the choreography is executed in a distributed manner since the
participants interact via the front end directly with the blockchain, without
referring anymore to the back end component.

Retail Process Example (Execution) The example in Figure 3.9 de-
picts the execution page for the Retailer. The request quotation message
in green on the model represents the completed activity performed by the
customer that requested a good to purchase with an amount. The Retailer
at this point answers using the dedicated form, inserting the availability as a
boolean value and its cost. The transaction can be then sent to the blockchain
using the submit button.

3.3 Experiments and Validation

In this section, the thesis illustrates the results of the experiments carried
out to assess both the cost (in terms of transaction fees) of the execution
via the CHORCHAIN framework of choreography-based systems and the per-
formance and scalability of the facilities provided by the framework. First,
the experiments on the cost of the proposed running example are presented®,
and then the validation is extended by analysing the costs and performances
of a collection of synthetically generated choreographies. Overall, the re-
sults of our experimentation show that CHORCHAIN has the potential to be
effectively used in practice.

Notice, all the considered case studies assume a common interest among
participants in keeping transparent the overall execution and identities. For
this reason, user anonymity is not considered a core property of CHORCHAIN
but it is demanded in a permissioned approach as presented in Chapter 7.

6Tt is worth noticing that, beyond the Retail process case study, the approach was tested
also on scenarios from other application domains (e-commerce, hotel booking, procedures
for student internship and exam registration, review of scientific papers, smart heating sys-
tem management, etc.), to check how the CHORCHAIN approach works in different appli-
cation contexts. The implementations of these scenarios are available at the following link:
https://bitbucket.org/proslabteam/chorchain/src/master/Examples/.

https://bitbucket.org/proslabteam/chorchain/src/master/Examples/

CHAPTER 3. CHORCHAIN FRAMEWORK 47

Table 3.2: Cost Analysis for the Retail scenario.

Transaction Name Gas Used Gas Used
Shortest path Longest path
contract creation 3,482,898 3,482,898
retail quotation 126,765 126,765
retail response 221,246 153,657
optional subscribe none 45,686
quotation none 126,741
response none 106,011
payment0 none 92,603
order _info none 107,013
ship _info none 104,508
shipment none 154,621
payment1 92,648 92,648
retail order 104,473 104,473
ship address 104,520 104,484
retail ship 107,142 107,082

3.3.1 Running Example Cost Analysis

Following the proposed methodology, the choreography model of the Retail
scenario depicted in Figure 2.3 has been published into the CHORCHAIN
framework. Then, two new choreography instances were generated and,
after the subscription of participants, the contracts were deployed in the
blockchain. The first contract was subscribed by the two mandatory partic-
ipants and they followed the shortest path. In the second case, the optional
producer participant subscribed at run-time, participating in the execution.
The path followed this time is the longest one and it comprises the messages
exchanged by the retailer and the producer, including also a payment. The
two choreography instances were then completely executed from the start
to the end event. Then, from the transaction logs, the gas used parameter
was extracted, as it corresponds to the pure cost for executing smart con-
tract code. Indeed, external factors such as the gas price, depending on the
network status, can significantly impact the resulting fees. On the contrary,
the gas used exclusively depends on the proposed approach so it is the most
interesting unit of measurement. = The experiments had been performed
on September 18Th, 2022 on the Sepolia Testnet blockchain. The reader
can refer to Sect. 3.2 for insights into the Solidity code, while the executed
transactions are publicly accessible on the Etherscan website’.

"Transactions for the shortest path are available at the link https://sepolia.
etherscan.io/address/0xb927340c2a5bacebae0c3144al1f9d7bf8e291a6b,
while those for the longest one are at the link https://sepolia.etherscan.io/
address/0xd88e798efc5a87bd20daf5dba5ffaa9e8£783035.

https://sepolia.etherscan.io/address/0xb927340c2a5bace6ae0c3144a1f9d7bf8e291a6b
https://sepolia.etherscan.io/address/0xb927340c2a5bace6ae0c3144a1f9d7bf8e291a6b
https://sepolia.etherscan.io/address/0xd88e798efc5a87bd20daf5dba5ffaa9e8f783035
https://sepolia.etherscan.io/address/0xd88e798efc5a87bd20daf5dba5ffaa9e8f783035

48 CHAPTER 3. CHORCHAIN FRAMEWORK

Table 3.2 reports the cost analysis for the retail contracts according to
the two different paths. For each transaction, its name and the used gas are
reported. Looking at the transactions, the first concerns contract creation,
while the remaining are related to the control flow and the exchange of mes-
sages between participants. The contract creation transactions are the most
expensive: they consumed around 3.4 millions unit of Gas. All the other
transactions, instead, are rather cheap, since the used amount of gas ranges
from a minimum of 92,648 to a maximum of 221,246.

Except for the contract creation, the fees paid during the contract execu-
tion are charged to the user accounts. The amount requested can be simply
calculated as follows:

gas used X gas price = total fee

Notice, the gas price is a parameter chosen by the user according to its
necessity to include the transactions in a faster way. The execution of the
shortest path in Table 3.2 without including the contract creation requires
756,794 gas units. As expected, the total gas used is mainly influenced by
the contract creation, while the number of exchanged messages has a minor
impact. Setting the gas price to 0.000000001 Eth (1 Gwei), the execution
of the whole path corresponds to 0.0007568 Eth, which at the date of the
experiment corresponds to USD 0.99 given the Eth-USD exchange rate of
1,312.84.8.

The gas price could be increased by the user for improving the registration
of the transactions. However, the obtained benefits are limited by technology
constraints given by the public network. To have a better transaction inclu-
sion throughput the CHORCHAIN framework could be deployed in a private
Ethereum blockchain. Nevertheless, the cost of using the public net is still
reasonable in return for the trust.

To provide a more detailed evaluation of the gas consumption for the
retail process, Figure 3.11 shows the cumulative graph resulting from the
two execution paths represented in Table 3.2. The graph shows that the
consumed gas increases linearly with the number of messages. This trend is
encouraging since it can be kept under control. Also, the current (October
2022) Ethereum block gas limit is 30 million, which hence permits with-
out big restrictions to deploy and execute contracts that can be created for
each choreography. In case, the gas limitation could be simply overcome by
splitting the contract into separate sub-contracts.

8Notably, the resulting fee in US dollars is volatile due to the high fluctuations of
the Ethereum exchange rate. The reader can easily calculate the cost at a given date
in fiat money by using an online converter (e.g., https://coinmarketcap.com/
converter/eth/usd/).

https://coinmarketcap.com/converter/eth/usd/
https://coinmarketcap.com/converter/eth/usd/

CHAPTER 3. CHORCHAIN FRAMEWORK 49

Cumulative gas consumption

5,500,000.00
5,000,000.00
4,500,000.00

4,000,000.00

Gas Used

3,500,000.00

3,000,000.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14

N° of Messages

e ShOrt Path e===|ong Path

Figure 3.11: Cumulative gas consumption in the Retail scenario.

3.3.2 Choreography Elements Analysis

Here are reported experiments performed on 30 different choreographies
aimed at measuring the effectiveness of the approach by isolating and ex-
ecuting all the BPMN choreography elements supported by CHORCHAIN.
Specifically, for each element, a family of simple models were created, with
a growing number of elements in order to capture the incremental trend of
costs and times, both for the deployment and for the execution. Below the
experiments carried out for each choreography element are discussed and
they are related to choreography task, exclusive gateway, parallel gateway,
and event-based gateway.

Choreography task Figure 3.12 shows the last model in which 5 chore-
ographies are created containing from 1 to 5 tasks. Notice, as explained in
Section 3.2.3, during the translation of tasks, CHORCHAIN considers only
the messages they exchange.

50 CHAPTER 3. CHORCHAIN FRAMEWORK

msg1(bool par1) msg2(bool par2) msg3(bool par3) msg4(bool par4) msg5(bool par5)
Participant 1 Participant 2 Participant 1 Participant 2 Participant 1
O—> Activity 1 | Activity2 | Activity 3 > Activity 4 > Activity s —»O
Participant 2 Participant 1 Participant 2 Participant 1 Participant 2

Figure 3.12: Choreography model with five tasks.

The results regarding the deployment of the 5 contracts are reported in
Table 3.3. Here the transactions were included on average every 13 seconds
with a gas cost growing from a minimum of 1 million, for the contract with
only one message, to a maximum of 1.5 million for the contract with 5 mes-
sages (hence, 5 functions in the contract). From this data, it is possible to
observe that each new message added to the model costs on average around
123,000 units of gas in the deployment.

Table 3.3: Time and cost analysis for the deployment of the task element.

1 Message | 2 Message | 3 Message | 4 Message | 5 Message
Deploy - Time (s) 16.133 6.024 11.537 16.200 16.150
Deploy - Gas used 1,081,646 1,204,181 1,326,819 1,449,434 1,575,483

Table 3.4, instead, reports the execution times and costs for the five
contracts. In particular, each column contains the execution times/costs
for each message exchanged in the corresponding contract; thus, the first
column contains only one measure of execution time and one measure for the
consumed gas, while the last column contains the measures for five messages.
The execution times are very variable and cannot be associated directly with
a behaviour. A different consideration can be done for the gas usage; it is

indeed possible to observe that the average gas usage for each message is
92,904.73.

CHAPTER 3. CHORCHAIN FRAMEWORK 51
Table 3.4: Time and cost analysis for the task element.
1 task | 2 task | 3 task | 4 task | 5 task
24.005 20.369 9.387 19.019 21.197
10.969 11.966 13.811 19.695
Time 22.474 26.971 22.780
25.380 15.426
29.744
106,011 | 103,397 | 103,397 | 103,419 | 103,397
88,961 86,325 86,347 | 86,325
Gas used 89,005 86,391 | 86,369
88,939 | 86,348
88,940

Exclusive gateway The performance of the exclusive gateway element
by means of 5 choreography models has been analysed, with an incremen-
tal number of split-join pairs of gateways, the last of which is reported in

Figure 3.13.

msgi(uint a)

Participant 1

Activity 1

Participant 2

Figure 3.13: Choreography model with five split and five join exclusive
gateways.

These models are composed of an initial dummy task, which has the
role of initialising the variable used for executing the exclusive paths after
the gateways. According to the definition of the translation of the exclusive
gateway (see Section 3.2.3), all gateways are represented by internal functions
that are executed automatically by the execution of a message (in our models,
this is the dummy message at the beginning), hence their executions are

52 CHAPTER 3. CHORCHAIN FRAMEWORK

included in the transaction of the message. For this reason, in all reported
experiments the cost of the gateway is included in the cost of a message
function. Table 3.5 reports the costs in terms of gas and time required
for the deployment and execution of the models. The average time for the
deployment is quite standard, around 9 seconds, while the gas used is higher
and varies from a minimum of 1.1 million to a maximum of 1.5 million. Each
pair of gateways, consisting of a split and a join, impacts around 108,000
units of gas. For the execution, differently from the case of the task element,
the measure for every single element is not reported because, as mentioned
above, the gateway transactions are executed internally in the contract and
are included in the transaction of the message. Thus, once the first message is
executed, all the split and join elements are automatically triggered until the
end event. In this case, there is a very different behaviour, especially when
analysing the execution time that is much higher and around 23 seconds.
The transaction size ranges from a minimum of 201,000 to a maximum of
582,000. It is also possible to notice that each split-join pair increases the
transaction by around 95,000 units of gas.

Table 3.5: Deployment and execution time and cost for split and join
exclusive gateways.

1 Split 2 Split 3 Split 4 Split 5 Split

1 Join 2 Join 3 Join 4 Join 5 Join
Deploy - Time (s) 1.700 5.550 9.240 17.972 13.862
Deploy - Gas used 1,161,950 | 1,270,822 | 1,379,516 | 1,488,198 | 1,596,887
Execution - Time (s) 17.114 22.090 19.352 40.100 17.500
Execution - Gas used 201,231 296,644 392,057 487,348 582,640

Another experiment was conducted on exclusive gateways, with the aim of
isolating the behaviour of the split elements, using 5 models with a growing
number of paths, the last of which is reported in Figure 3.14. Here it is
important to measure the impact of the splitting element since this is one of
the most recurrent elements in the choreography model.

CHAPTER 3. CHORCHAIN FRAMEWORK 53

msg1(uint a)

Participant 1

O—h Activity 1

Participant 2

Figure 3.14: Choreography model with five split gateways.

The results reported in Table 3.6 show an average deployment time of 10
seconds, with a gas cost lower with respect to the previous case. In fact, this
time each new contract has an increment of 73,000 units of gas with respect
to the 108,000 of the previous experiment. Thus, it is possible to derive that
each join element costs around 35,000 units of gas. For what concerns the
execution, there is an average time of 20 seconds, which could be impacted
by the cost of the transactions that range from 153,680 to 344,648 units of
gas. This time the average cost without the join element is lower and the
cost of each split is around 47,000 units of gas. An interesting result comes
from the comparison of the execution costs of the models with and without
the join element. Indeed, it is possible to extract that the two gateways cost
around 47,000 each.

msgi(bool par1)

S S
Participant 1

Oref o [o—eeas e}‘o S G et e

Participant 2

Figure 3.15: Choreography model with five split and join parallel gateways.

Parallel gateway Similar models to those used for the exclusive gateway
were analysed to measure the impact of parallel gateways, with and without
join elements. In particular, the first 5 models have a growing number of
both split and join, the last one reported in Figure 3.15, from which the
results reported in Table 3.7 are reported.

o4

CHAPTER 3. CHORCHAIN FRAMEWORK

Table 3.6: Deployment and execution time and cost for the split exclusive

gateway.
1 Split 2 Split 3 Split 4 Split 5 Split
Deploy - Time (s) 12.970 6.849 14.154 15.119 9.792
Deploy - Gas used 1.146.617 | 1,220,152 | 1,293,490 | 1,366,823 | 1,440,156
Execution -Time (s) 25.314 17.160 8.325 30.001 19.935
Execution - Gas used 153,680 201,452 249,225 296,997 344,648

It results to be the most expensive element since the deployment of the

model with 10 elements (5 splits and 5 joins) reaches the cost of 1,750,864
units of gas, and its execution is 748,032 units of gas. This behaviour comes
from how the parallel gateway operates: differently from the exclusive gate-
way, it activates and triggers all the outgoing paths, significantly increasing
the amount of code to execute and, as consequence, the overall cost. It is
also interesting to notice that, this time, the growing number of elements
leads to a linear increment of the used gas.

Table 3.7: Deployment and execution time and cost for split and join
parallel gateways.

1 Parallel | 2 Parallel | 3 Parallel | 4 Parallel | 5 Parallel
Deploy - Time (s) 13.804 18.574 18.049 11.712 2.480
Deploy - Gas used 1,191,686 1,331,617 1,471,358 1,611,113 1,750,864
Execution - Time (s) 43.564 20.699 16.956 17.312 30.871
Execution - Gas used 213,992 333,555 462,413 600,571 748,032

msg1(bool par1)

e
Participant 1

Activity 1

Participant 2

Figure 3.16: Choreography model with five split parallel gateways.

The second analysis performed on the parallel gateway aims at isolating
the behaviour of the split element reported in Figure 3.16. Table 3.8 reports
the related times and costs. Here there is no particular behaviour; in general,
every single split element increases the deployment cost of around 65,000
units of gas and the execution cost of 95,000 units of gas.

CHAPTER 3. CHORCHAIN FRAMEWORK

95

Table 3.8: Deployment and execution time and cost for the split parallel

gateway.
1 Parallel | 2 Parallel | 3 Parallel | 4 Parallel | 5 Parallel
Deploy - Time (s) 9.227 1.800 15.278 7.375 8.823
Deploy - Gas used 1,147,637 1,213,618 1,279,437 1,345,215 1,411,010
Execution - Time (s) 16.949 36.552 16.915 6.472 22.285
Execution - Gas used 201,003 296,018 391,033 486,048 581,064

Event-based gateway For the next experiment, due to the nature of the
event-based gateway, in these experiments, five choreographies were used
with a single event-based gateway having an increasing number of messages,
and a dummy task at the start. The resulting model is reported in Fig-
ure 3.17. Table 3.9 reports the experiment data related to the deployment
and execution costs and times. The deployment is the most expensive one,
with a maximum of 1,918,233 units of gas, while the execution has a quite
standard range. This derives from the fact that many messages have to be
included, considerably increasing the deployment cost. For the execution,
instead, the reported transactions do not include the executions of the mes-
sages connected to the gateway, so it is possible to observe only the cost of
executing the dummy message and the activation of the event-based outgoing
paths.

56 CHAPTER 3. CHORCHAIN FRAMEWORK

msg2(bool par2)

Participant 2

o Activity 2 —b()
Participant 1
msg3(bool par3)
Par:i:i‘pan: 2
- Activity 3 —D()
Participant 1
msgi(bool par1) msg4(bool par4)
O—D Activity 1 —b@ P Activity 4 —DO
Participant 2

Participant 1

msg5(bool par5)

S S
Participant 2

L Activity 5

Participant 1

msgé6(bool par6)

Participant 2

—0

= Activity 6

Participant 1

Figure 3.17: Choreography model including an event-based gateway with
five messages.

Table 3.9: Deployment and execution time and cost for the event-based

gateway.
1 Event 2 Event 3 Event | 4 Event 5 Event
Deploy - Time (s) 12.488 8.752 13.584 13.382 16.321
Deploy - Gas used 1,237,189 | 1,409,482 | 1,573,563 | 1,745,489 | 1,918,233
Execution - Time (s) 15.072 10.773 16.131 16.314 25.864
Execution - Gas used 150,910 195,790 240,692 285,596 330,476

The results presented in this section show a variety of elements tested
in different situations, for assessing how the single elements impact the ap-
proach. The costs discussed above could seem high but is important to
consider that they are all encapsulated in a single transaction representing
the initial message sending, which is added to the model for enabling the ex-
periments. In a realistic scenario, like the proposed running example, it never

CHAPTER 3. CHORCHAIN FRAMEWORK o7

happens to have a large number of gateways concatenated without messages,
so the costs for a single transaction are significantly reduced. Moreover, when
talking about the CHORCHAIN costs, it is necessary to consider that the exe-
cution of the model is split between the involved parties, as each participant
pays only the transactions corresponding to the sent messages.

Finally, it is worth mentioning that an experimental comparison of exe-
cution costs with other similar tools (like Caterpillar and Lorikeet) could not
be done. In fact, it turned out that it is not possible to run the same models
in the different tools, because either they rely on different kinds of diagrams
(choreography vs. collaboration), or there are anyway some issues in using
our choreography models.

3.3.3 Real-world Use Cases

To further show the feasibility and the applicability of the CHORCHAIN ap-
proach, two additional experiments on use cases taken from real-world situa-
tions are reported. The first scenario was originally presented in [48], but the
one under consideration is the revised and analysed version of [120]. To deal
with the CHORCHAIN architecture, to each task of the original choreography
model, messages were added and formatted as described in Section 3.2.

The resulting model is reported in Figure 3.18; the example involves six
business partners and describes the manufacturing and delivering process of
product orders. Specifically, the Bulk buyer starts by placing an order with
the Manufacturer, which orders the calculated materials to a Middleman. In
its own turn, the Middleman forwards the request to a Supplier and also
arranges transportation by means of a Special carrier. At this point, the
Special carrier picks the materials and delivers them to the Manufacturer,
which interacts with the Bulk buyer to finalise the order.

o8

order(string order)

placed_order(string placed_order)

CHAPTER 3. CHORCHAIN FRAMEWORK

Bulk buyer

Manufacturer

fwd_order(string fwd_order)

Middleman

Forward order for

supplies

Order goods

-

Place order for supplies

_-.,+

Manufacturer

Middleman

delivered_product(string_deliver)

report(string report)

Supplier

transport_order(string

transport_order)

Middleman

Place order for
transport

delivered_order(string del_order)

Special carrier

waybill(string waybill)

requested_details(string req_details)

T

Special carrier

Request details

supplier

provided_details(string prov_details)

Manufacturer Manufacturer Special carrier supplier Supplier
Oq— Deliver goods -t port start of production = Deliver supplies —| Send waybill - Provide details g —

Bulk buyer

Bulk buyer

Manufacturer

Special carrier

Special carrier

Figure 3.18: Adapted choreography from the supply chain scenario.

The supply chain choreography was instantiated and the corresponding
smart contract was executed using CHORCHAIN. The results of this exper-
iment are reported in Table 3.10. As for the previous examples, the most
expensive transaction is contract creation, which requires 2,802,543 units of
gas. For the total execution, instead, the supply chain scenario requires
1,156,734 units of gas?. From these results, linear behaviour can be noticed
since each transaction has a similar cost. The only exceptions concern the
messages before the split and join parallel gateways since they need to acti-
vate them in the smart contract. In particular, the placed order transaction
consumes 196,838 units of gas required to activate all the next elements.

9The entire execution is available at https://bit.ly/Sup_Chain.

https://bit.ly/Sup_Chain

CHAPTER 3. CHORCHAIN FRAMEWORK 29

Table 3.10: Cost Analysis for the supply chain scenario.

Transaction Name Gas Used

contract creation 2,802,543
order 104,416
placed order 196,838
fwd order 109,538
transport order 116,939
requested details 104,342
provided details 104,446
waybill 104,337
delivered order 104,477
report 104,364
delivered product 107,037

The second use case concerns an Incident Management choreography
taken from [88]. The model was adapted to meet the CHORCHAIN require-
ments and the result is shown in Figure 3.19. The choreography represents
an incident management process of a software manufacturer and is started
by a customer asking support due to a problem in the purchased product. In
the first place, the account manager is responsible for providing a solution
to the customer. In the negative case, request is forwarded to the 1st level
support agent and, in case the issue is still not resolved, to the 2nd level sup-
port. As final solution, the 2nd level support can also contact the software
developer asking for an opinion. Assuming a solution is finally found, this is
forwarded back to the account manager that explain it to the customer.

Figure 3.19: Adapted choreography from the incident management scenario.

Table 3.11 shows the execution costs of the longest path in which all the
messages are sent. Compared with the performance of the previous scenario,
here the contract creation has a higher cost (3,278,656 units of gas), since
the choreography, hence the smart contract contains more elements. The
execution cost, instead, remains lower and requires a total of 1,440,071 units
of gas.

60 CHAPTER 3. CHORCHAIN FRAMEWORK

Table 3.11: Cost Analysis for the incident management scenario.

Transaction Name Gas Used

contract creation 3,278,656

problem 104,394
questions 104,406
answer 104,316
handle 131,207
issuel 104,395
resultl 131,161
issue2 104,365
resolved 131,227
issue3d 104,351
feedback1 104,422
feedback?2 104,409
feedback3 104,410
solution 107,008

As in the previous case, the transactions corresponding to the sending
of a message have a quite similar cost, while the ones activating a gateway
consume more gas units. This time the highest transaction costs are around
131,000 units of gas; they activate the internal choice of the exclusive gate-
ways!?.

3.4 Comparison with Existing Approaches

The usage of choreography-based specifications, to drive the development of
multi-party distributed systems, has been extensively studied and investi-
gated. In the last years, the EU commission financed various projects specif-
ically devoted to the topic (see, for instance, CHOReOS! [13] and CHOREV-
OLUTION!?). The relevance of choreographies in relation to the description
of complex inter-organisational systems, and the need for suitable infrastruc-
tures for the management of the choreography life-cycle, is discussed in [7].
In particular, the authors propose ServicePot, a complex choreography reg-
istry elevating choreography specifications to first-class citizens, in order to
facilitate the dynamic integration and interoperability of services managed
and made available by different organisations. A correlated work is the one
in [14], where the authors propose an automatic approach for enforcing the
realizability of choreographies providing adapters. Starting from a choreog-
raphy model and a set of services, the proposed adaptation and coordination

10The entire execution is available at https://bit.ly/IncidentMan.
Hhttps://cordis.europa.eu/project /ren /96288 /factsheet /en
2http:/ /www.chorevolution.eu/bin/view /Main/

https://bit.ly/IncidentMan

CHAPTER 3. CHORCHAIN FRAMEWORK 61

solution allows services to collaborate according to the choreography spec-
ification. In [20] the authors propose a correct-by-construction method to
build realisable choreographies described using conversation protocols, while
in [38] the authors propose an approach for checking the conformance of
possible system implementations, with respect to choreographies.

Similarly, the use of blockchain technology in the development of de-
centralised applications is discussed thoroughly in the literature [122| and
different works move in this direction, reinforcing the motivations that led
the effort in this context. In particular, in [54] the authors propose an appli-
cation for automatic gasoline purchase to highlight the concrete possibilities
and limitations related to the adoption of blockchain technologies. Among
the various possibilities, the authors identify three main important aspects
that can be synthesised in: transparency, longevity and trust. The latter is
a key aspect also in this thesis. Other concrete applications can be found
in environments where the innate characteristics of this new technology can
replace old system components. For example, in [125] the authors propose a
design approach for building a blockchain-based product traceability system,
replacing the central database with the blockchain. In the same direction,
in [77] the authors presented a blockchain agent-based simulator for cities in
which the agents communicate via smart contracts. This solution takes ad-
vantage of blockchain decentralisation and of its encryption mechanism that
stores information in a secure way.

In [100] the authors explain the importance of developing blockchain-
oriented software using smart contracts in a model-driven approach. In this
scenario, BPMN is recognised as an enabler for the process-driven develop-
ment of contracts. Also, the authors in [15] present a conceptual model-driven
approach based on BPMN choreographies, whose target platform relies on
Hyperledger technologies. Other works investigate instead how blockchain
technologies can be used in enterprise modelling to provide a trusted mecha-
nism for attesting the existence of information in a transparent and publicly
verifiable way. In particular, in [49] the authors present the concept of Knowl-
edge Blockchain, which is a solution for storing in an immutable and tamper-
resistant way the knowledge in enterprise models exploiting the blockchain.
In a similar direction, in [55] the authors propose the same approach applied
to ontologies. In [56], instead, the authors exploit the blockchain for the
decentralised attestation of information and knowledge represented in con-
ceptual models. These works have in common the scope to guarantee trust
by exploiting blockchain technology; however, the CHORCHAIN framework
has an additional focus on the enforcement of the execution phase. In [81]
the blockchain is recognised as a key enabler for the use of BPMN chore-
ography diagrams as appropriate abstractions for the top-down design of
cross-organisational business processes.

62 CHAPTER 3. CHORCHAIN FRAMEWORK

Choreographies are used also in [66], where the authors propose an ex-
tension to the BPMN 2.0 standard in order to give more expressiveness to
blockchain concepts. In particular, the proposed elements are related to data
objects, sub and call choreographies, condition expressions and script tasks.
Differently, the main goal of CHORCHAIN is to use already existing nota-
tion elements to support the full life-cycle in the blockchain, without adding
extension elements to the language.

Finally, in [51] the authors explain the advantages of a decentralised
blockchain solution for cross-organisational workflow management, highlight-
ing the possibility to use the blockchain as an instrument for auditing manual
operations performed in relation to process execution.

Among the works combining process management and blockchains, it is
certainly worth mentioning [120]. Here the authors propose the usage of
smart contracts for monitoring and coordinating multi-organisational collab-
orative business processes. Similarly to CHORCHAIN, choreography diagrams
are the input model and the lack of trust is the main driver for the work.
On the other hand, this work differs in its objectives. In fact, in [120] the
choreography model is used to generate a monitor and a mediator. The for-
mer checks the conformance of the messages exchanged by the participants
with respect to the protocol defined by the choreography; in case of a non-
conforming message, an alert is broadcast. The latter plays an active role,
by sending and receiving messages and by performing computation and data
transformation. CHORCHAIN objective instead, is the enforcement of the
interactions among the choreography participants preventing the execution
of non-conforming interactions. Only the conforming actions are proposed to
the participants via the interfaces automatically generated and, anyway, also
in case the interface would be bypassed, the logic inside the smart contract
enables only the conforming interactions. Other differences between the two
approaches concern some technicalities. In [120], a factory smart contract is
generated, while CHORCHAIN directly generates a smart contract for each
specific choreography instance so as to deal with the subscription of par-
ticipants in a previous phase of the choreography life-cycle. Moreover, the
considered fragment of the BPMN choreography element is richer; in particu-
lar, CHORCHAIN supports the event-based gateway that plays an important
role in modelling collaborative processes.

In [107] collaboration diagrams provide a framework permitting the exe-
cution of decentralised processes exploiting blockchain-related technologies.
Apart from a different kind of model used to represent the processes co-
operation (collaborations, not choreographies), this approach differs from
CHORCHAIN as it introduces a scaffolding smart contract that must be in-
stantiated for each model instance. This implies that, for each instance, a
sequence of transactions is required to instrument the contract with the logic

CHAPTER 3. CHORCHAIN FRAMEWORK 63

of the model, specifying tasks and organisation addresses. This architec-
ture reduces the deployment cost (the used gas is always 1,265,261) since
the smart contract has an ‘empty’ logic, but it requires additional transac-
tions to upload the logic of the model (around 127,000 gas units for each
included element), which introduce a long delay. Another weakness is re-
lated to the need for a supervisor that has to fill the smart contract, who
has to be a trusted third party in contrast with the decentralised nature of
the blockchain. Differently, CHORCHAIN generates a new contract already
filled with all the information necessary for the execution. This may lead to
a higher deployment cost, but the execution has no additional set-up costs
or delays.

The work in [106] extends the architecture proposed in [107], considering
the lack of trust issue in an inter-organisational context. The authors use col-
laboration diagrams, translated into process models, to provide a framework
permitting the execution of decentralised processes, exploiting blockchain-
related technologies. Differently, in [61] collaborations are translated directly
to smart contracts, without requiring a reduction to a single pool process.
Nevertheless, the logic of some elements has to be added manually, while in
CHORCHAIN once the model is created no additions are needed. The cited
work presents features like the division of the deployment costs, which is out
of the scope of this work, and the pre-creation of a consortium between par-
ticipants, which can lead to a possible centralisation point. In addition, their
mechanism of events subscription is optional, while in CHORCHAIN it is in-
cluded by design, allowing a built-in direct and decentralised communication
between the user client and the blockchain.

In [74] and [75] the Caterpillar tool is proposed. This is one of the first
attempts to support the combination of business process management with
blockchain infrastructure. The tool takes as an input a process model and
transforms it into Solidity code. Again, the use of a different kind of diagram
distinguishes this proposal from the one illustrated in this thesis, and the
same considerations reported above apply here. Extensions of this tool are
presented in [71], where the authors propose a dynamic role-binding model
and a binding policy language for supporting collaborative business processes.
A similar extension of Caterpillar is proposed by the same authors in [72],
where a list of components is provided for the update of models and their
smart contracts at run-time, in order to react to unexpected situations during
the execution. Lorikeet [111] is a similar tool, which however focuses more on
the asset management and business process interactions on the blockchain.

Simple process models are also used in [90] where the authors extended
the LabChain tool to support the execution of business processes on DLTs.
However, the lack of model expressiveness and the tool purpose are the main
differences with CHORCHAIN. Indeed, via choreographies, it is possible to

64 CHAPTER 3. CHORCHAIN FRAMEWORK

support complicated interactions. In addition, the proposed tool was built
from scratch to provide a complete set of functionalities to work with BPMN
processes. A similar direction is followed in [29, 28], where the authors trans-
late BPEL processes into smart contracts. However, in this case, the authors
are mainly interested in investigating how to ensure data confidentiality in
the presence of an untrusted oracle. In [52], the authors provide an optimised
execution method for contracts generated from business process models via
a 2-step translation. Firstly, a model is translated into a Petri net, which is
optimised by removing ‘tau’ transactions, and then the resulting Petri net is
translated into a smart contract. CHORCHAIN instead avoids the use of an
intermediate language, like Petri nets, as it provides a direct translation from
choreography models to the Solidity language. Indeed, CHORCHAIN aims at
achieving a one-to-one correspondence between the choreography elements
of the model and the Solidity functions of the generated smart contract,
which allows a compositional construction of the code and results in a read-
able and understandable smart contract. In this way, it is not required any
additional transformation phase, as the created BPMN choreography (fol-
lowing the CHORCHAIN principles) contains all the information necessary to
be directly deployed and executed. Furthermore, the natural translation of
choreographies without intermediate models does not need to be optimised
and it permits to achieve a lighter translation process.

It is worth mentioning that the works reported above mainly, or only, fo-
cus on aspects related to the generation of the smart contract, while they gen-
erally overlook integration aspects related to the need for an infrastructure to
support the whole life-cycle of choreographies and processes. CHORCHAIN,
instead, permits the derivation of a concrete implementation of choreogra-
phy models, by relying on the underlying blockchain technology. The whole
approach is encapsulated in a user-friendly framework that allows the de-
veloper to deal with all the phases of the choreography life-cycle, from the
modelling to the deployment and execution. All these phases are supported
by a web-based interface, easily accessible also to users not familiar with
blockchain-related technologies. Furthermore, CHORCHAIN is the first tool
implementing choreographies into a smart contract following a model-driven
approach and permitting their execution in a trustable way, also supporting
naively the exchange of Ether represented as payments at the choreography
level.

CHAPTER 4

CHORCHAIN: AUDITING
INTER-ORGANISATIONAL
BUSINESS PROCESS

EXECUTION

In this chapter, the thesis presents the challenge of auditing inter-
organisational business processes implemented and executed on the
blockchain. Indeed, the immutability of the data stored in the blockchain,
and the access of data in a transparent, secure, and consistent way, open
the possibility to apply auditing techniques for detecting possible deviations
and anomalies that happened during the execution of the smart contracts
[30] in a completely independent manner [12]. This is reflected in the CHOR-
CHAIN approach, where the guarantees on stored data enable the auditing
of exchanged messages during the choreography-based system execution. To
support such capabilities, the CHORCHAIN framework was extended includ-
ing an additional phase dedicated to the auditing of the executed process.
This phase was concretely implemented by providing auditing strategies
which take their basis on a conceptual model and that can be exploited
by the involved parties. In this way, the time and cost of auditing con-
tracts are reduced, without involving manual operations on a set of selected
transactions. This makes also it easier to investigate deviations highlighting
anomalies during choreography execution since auditors are enabled to mon-
itor the process in a continuous way and are kept updated simultaneously
on information disclosure [99]. The next section introduces the CHORCHAIN
framework extension for supporting auditing capabilities regarding the con-

66 CHAPTER 4. SUPPORTING AUDITING

! Existing instances i: Smart contract Blockchain | @\%
H 1 aRo\eA i :
-- = S - =S =N Y
i ' L I . | :
o " eploy H Auditor
Hisubscribe| IMstance ID: 1 i1 generation :
" ':>) & Rolea| Generation & i Auditing
I , " Deployment H
=> " & RoleB| Merrsrzsrzsszssiisiziiizezsszzszaz
':> " Instance ID: 2
=1 Publish —= Search o
cl cl "
Modelling " ':> t Role A
i Enviommenl t fepository model ! Create)) ﬁ Q@ = @ _@ = @
: 11 new ’ aRoI B| 1! M« <« M
! Modelling jyinstance | - Instance ID: 3 'l RoleA g} Role B |
""""""""""""""""""""""""""""""""" H New instance " . . !
H Instantiation " Execution

Figure 4.1: CHORCHAIN framework: supporting auditing

ceptual model and auditing strategies. The implemented capabilities are
then presented in the CHORCHAIN tool with a final evaluation involving
practitioners. Finally, a comparison with related works is provided.

4.1 CHORCHAIN Extended Framework for Au-
diting

The provided auditing mechanisms are a direct outcome of the proposed au-
diting strategy that can be considered choreography-centric. This strategy
relies on the retrieval of information related to a choreography model and
to the execution of possible instances. Such mechanisms complement those
related to the enforcement of the interactions among the choreography par-
ticipants. The objective is to enable the assessment of constraints related
to data exchanged by the participants in a choreography instance, as well
as time and gas-related aspects with respect to a choreography instance ex-
ecution. The combined usage of enforcement and auditing mechanisms can
highly increase accountability and trust in a multi-organisational interaction
context. Figure 4.1 depicts the CHORCHAIN framework extended with the
auditing phase. The CHORCHAIN auditing mechanisms are based on two
main elements. The first one is a conceptual model that has been defined
to structure the retrieval of relevant information from the blockchain, for
auditing purposes. The second one complements the first one, defining the
auditing strategies that have been implemented in CHORCHAIN and can
be accessed via a graphical user interface.

4.1.1 Conceptual Model

CHORCHAIN auditing mechanisms are based on a carefully elaborated con-
ceptual model that has driven the development of the querying infrastruc-
ture made available by CHORCHAIN. The definition of this conceptual model

CHAPTER 4. SUPPORTING AUDITING 67

*
+choreographyRef
*
fon

Participant rati WMessag Wessage
(from Collaboration) (from i {from i (from Common)
+messageFlow [name : String g *

+collaboration ¥ 0.1

Figure 4.2: BPMN Choreography meta-model excerpt.

started with the identification of relevant concepts within the BPMN chore-
ography meta-model. The idea was to identify that information considered
relevant for the auditing purpose that is related to a choreography model,
and that could also be associated with an execution trace. Figure 4.2 reports
an excerpt of the BPMN choreography meta-model highlighting (in light or-
ange) the concepts that, as a result of such activity, have been included in
the conceptual model. Successively, concrete manifestations of such concepts
were added within a trace execution. The resulting conceptual model is rep-
resented in Figure 4.3, where six different entities and related relations are
included. The model constituted the base for the definition of the data model
adopted by the CHORCHAIN auditing mechanisms.
The entities included in the conceptual model are as follows:

e Choreography relates to the BPMN model diagram stored in the CHOR-
CHAIN repository;

e Participant related to a participant that plays a specific role in the
choreography;

e Message relates to the single interaction between two participants in a
choreography;

e User relates to and identifies the blockchain account and can assume
a specific participant role in the choreography;

e Choreography contract relates to the instance generated from a chore-
ography model in the form of a smart contract;

e Transaction relates to a blockchain transaction containing either the
message execution with the corresponding payload or the contract de-
ployment.

In addition, relations among the presented entities included in the con-
ceptual model, and that are relevant to define the retrieving mechanisms that
relate to the information stored in the blockchain, are following presented:

68 CHAPTER 4. SUPPORTING AUDITING

Participant | 2 _* includes 1 | Choreography | 4 contains 1.+ | Message
0.* 1 0.1
associates generates represents
0. o.* 0=
User Choreography contract Transaction
2. involves 0.* 1 produces 1.*

Figure 4.3: CHORCHAIN conceptual model.

e The includes relationship between a Choreography and a Participant
underlines that a choreography includes from two participants (this is
certainly the case where the choreography includes just a single task)
till N participants. A participant can belong to a single choreography
model since it is not possible to assume that the connected role has the
same behaviour in every model.

e The contains relationship between Choreography and Message confirms
that the choreography has at least one message. Each message belongs
to a single choreography.

e The generates relationship between Choreography and Choreography
contract shows that a choreography relates to any number of choreog-
raphy contracts, even zero if nobody instantiated it. Each contract, of
course, refers to a given choreography model.

e The produces relationship between Choreography contract and Trans-
action underlines the fact that the contract must have at least one
transaction, corresponding to the contract creation. A transaction cor-
responds to the occurrence of a specific interaction in a given contract.

e The involves relationship between a Choreography contract and a User
confirms that the contract has at least two users. A user could be
bound to zero or more contracts according to the instances in which
he/she subscribes.

e The associates relationship between Participant and User shows that
a participant role could be not subscribed by any user, this is the case
of an optional role that has not been subscribed.

e The represents relationship between Transaction and Message repre-
sents the fact that a message could have zero or more transactions
associated. A transaction represents at most one message; it does not
refer to a message when it corresponds to the contract deployment.

CHAPTER 4. SUPPORTING AUDITING 69

4.1.2 Auditing Strategies

In CHORCHAIN it is possible to audit information relative to choreographies
with three different strategies, each of them corresponding to a specific view
in the CHORCHAIN tool. The first two strategies are completely automatic
and transparent for the auditor since the information can be extracted from
the blockchain and navigated through the CHORCHAIN user interface with-
out the need for any technical knowledge. The third one, instead, consists of
directly using the ‘raw’ query engine, which can be used by expert auditors
that own technical skills. The high-level views of the first two strategies al-
low the auditors to concentrate on their main objectives, as they can easily
browse the choreography-related data set looking for relevant information.
The third strategy is left for those users that know how to build queries and
extrapolate information within the blocks.

Table 4.1: Choreography-related parameters.

Choreography

list of generated choreography contracts

number of generated choreography contracts
number and percentage of completed choreography contracts
all the users for each participant

cardinality of users for each participant

all the transactions for each message

cardinality of the transactions for each message

all the users involved for each message

min, max and avg execution time, calculated on the
completed choreography contracts

e min, max and avg gas used, calculated on the
completed choreography contracts

Table 4.2: Choreography contract related parameters.

| Choreography Contract |

blockchain contract address

total cost, both in fees and gas

cumulative cost/percentage for each user both in fees and gas
emitted transactions

completion status

involved users, and their role

transaction(s) generated for each message

70 CHAPTER 4. SUPPORTING AUDITING

Table 4.3: Transaction related parameters.

Transaction

e timestamp

user sender

gas consumed
fee paid
message payload

Table 4.4: User-related parameters.

User

list of choreography models in which the user was involved
all covered participant roles

participant roles covered in each choreography contract
number and percentage of completed choreography contracts

min, max and avg gas used for all completed choreography contracts

min, max and avg execution time for all completed choreography contracts

The first strategy is the Choreography-based one and it allows for
the retrieval of information starting from the selection of a choreography
entity. In particular, this strategy is based on the information reported in
Tables 4.1-4.3 and related to a choreography, its contract implementation and
the resulting transactions. From here, the system will start the extraction
of data from the blockchain and will organise it for making the information
easily accessible to the user. This view is accessible by both internal and
external auditors, who in this way have a global and complete vision of all
occurred interactions.

The second strategy is User-based and it is similar to the previous one,
but with a different starting point. Indeed, its aim is to present only the
choreography models in which the user was directly involved, showing the
information described in Table 4.4. Notably, this information is retrieved
from the blockchain. Access to such a perspective is also dependent on the
auditor’s role. In particular, only internal auditors can use this perspective
to access details on the choreographies in which a role has been played.

The third strategy provides a Query engine with low-level interactions
with the blockchain data, hence it is targeted to expert users that intend
to query directly the blockchain. This last case was included to enable the
exploration of the blockchain without any limitation given by the boundaries
of the CHORCHAIN approach.

CHAPTER 4. SUPPORTING AUDITING 71

4.2 CHORCHAIN Extended Tool for Auditing

This section describes how the CHORCHAIN tool was extended to concretely
support the presented choreography-based, user-based and query engine au-
diting strategies. Those were implemented inside new dedicated pages that
are accessible to all interested users.

The first implemented strategy is the Choreography-based reported in
Figure 4.4. The graphical user interface allows the auditors to retrieve in-
formation in relation to specific choreography models. The page is organised
into three main parts and allows the user to navigate the information listed
in Tables 4.1-4.3.

{ ‘ ChorChain HomePage Modeler ExecutionPage Querying Audit Personal Page

RetailProcess.bpmn Model roles
Uploaded by: 0x7A224d367EB! 49dC80F3d7b9IFACIEO3Fe8B:

Model instances
Instances completed: 1/2 (50%)

Execution time
Max. 2399645 Min. 239964s Av. 239964s

Total gas used
Max. 4262812 Min.4262812 Av. 4262812

Total fee (Ether)

./ 6349716184a1ec1940858591

6349716184a1ec1940858591

created By: 0x7A224d367EB99849dCE0F3d7bOFACOEN3FeBBe0
contract: 0x95%ef4ba53f108396e22efeS5cdd6 cAc14arf628 P
{} 634d24b71e19f61d5cb6f19e
Total gas used: 4262812 \d

Total fee: 0.0369062574 Ether
Role User Gas used Fee (Ether)

Retailer (mandatory) 0x7422401367£B3902490 CB0F3d THOFACOED3FeBBE0 00383565550 (98.51054409512192%)

Customer (mandatory) 0xaeD0aBbDECS5caf1247ED 157CSb7CTbBAF2583 54 324137 (7.603830523138248%) 0.0005497024 (1.4894559048781073%)

Figure 4.4: Choreography-based auditing page.

On the left-hand side, it is shown the list of all choreography models up-
loaded in CHORCHAIN. Clicking on one of them, the corresponding BPMN
choreography diagram appears in the centre, together with all the deployed
contracts on its right. Clicking on a specific contract, the CHORCHAIN sys-
tem shows under the model the information concerning the respective trans-
actions. Here, two additional views are accessible via the Transactions and
Messages links. As shown in Figures 4.5 and 4.6, the two panels contain
the information related to all the exchanged messages of the choreography
contract (i.e., the process instance), and their associated transactions. In
this way, an interested auditor can see the execution path written in the
blockchain and automatically retrieved by CHORCHAIN. The sequence dia-
gram in Figure 4.7 graphically describes the steps performed in the auditing
phase using the CHORCHAIN interface. The first operation consists of the

CHAPTER 4. SUPPORTING AUDITING

TRANSACTIONS

0x10083160620d1f59b37c3e20ddedh0d0a24bed2c2efc6a638ef588151¢
2f9d5c

GasUsed: 3505790

Fee: 0.0350579000 Ether

Fram: 0x7a224d367eb99e849dca0f3d7befac0e03fe8bel
Timestamp: 14/10/2022 16:48:12

0xf64cc71f1db18734036629163c794784445cc19743e2b9c06897dcdcTa
cd57cd

GasUsed: 126873

Fee: 0.0003806190 Ether

From: Oxaed0abbd8c55caf1247ed157c5b7c7bb4f358354
To: 0x959ef4ba53f1083%6e22efe5cddb 1c4c14a7i628
Timestamp: 17/10/2022 11:03:36

Message: Message_0b217rc{good: goodToPurchase, amount: 10)

0x371440a3b6a0fd0cd48bbecde3de8422dd0a%%eb0e97a347f9bd3008dal
d6b0hof

GasUsed: 221246
Fee: 0.0006637380 Ether

Crams M7 AATETARANAS AN A 0N AThOA 0 AN FaThan

Figure 4.5: Transactions view for a single instance.

MESSAGES

Message_0b917rc(good) [sent 1 times]

Transactions Users

0xf64cc71§1db187340366e9163c794784445¢¢ 19743e2b9c06857dcdc1acd57ed
91

Oxaed0abbd8c55caf1247ed157c5b7c7bb4f358354
Instance: 63497161842

Message_Txodwx2 (price) [sent 1 times]

Transactions Users

0x371440a3b620fd0c448bbede3esd: 02572347
0x7a224d367eb3%e849dcB0f3d7bofacoe03feBbed
Instance: 6349716184a1ec1940858591
Message_1k6i830() [sent 1 times]
Transactions Users
0x52f560819c4585e688fd9c3fb92cd675884cef1d41fc003b9b7e458abf56faee -

fvaedNabhAR 85af1247ad157r5h7cThhaf252354

Figure 4.6: Messages view for a single instance.

CHAPTER 4. SUPPORTING AUDITING 73

ChorChain Blockchain
Front-end

Auditor i
Select Choreography ’l
Query .
Ll
Give back data H
<
Store all data
Show Choreography information D
........................... i
|
I
Select Choreography contract 1
Return Choreography contract information
Select transactions o
L
Return transactions information
e - - - s T - .

Figure 4.7: Audit sequence diagram.

selection of a choreography, which triggers a set of preconfigured queries to
retrieve from the blockchain the information regarding the model and all the
connected contracts and transactions. To limit the interactions and provide
a better user experience, all the retrieved data is kept in memory. At this
point, the auditor can select a specific choreography contract and the related
transactions, without interacting anymore with the blockchain.

The second implemented strategy is the User-based one, reported in Fig-
ure 4.8. This time the CHORCHAIN interface is used to audit those chore-
ographies in which a user played a role according to the data reported in
Table 4.4. In this case, the user has the opportunity to select one model at
a time, and all the contracts for which the user was one of the participants
are displayed. In this view, an analysis of costs and completion statistics is
provided.

The last strategy is the Query engine available on a dedicated page in
Figure 4.9 showing a GraphQL query. The syntax used is composed of the
hash of the transaction and the list of parameters to extract. This auditing
strategy is built on top of GraphQL, a modern query language introduced
in Geth (the standalone Ethereum client) since the 1.9.0 version, allowing
an Ethereum node to open a dedicated endpoint. This makes it possible to
create a flexible query mechanism for extracting extra information not shown
in the previous strategies and permits to avoid waste of bandwidth and faster
querying response. Obviously, in this case, the user needs to know the inputs
to be used in the query (e.g., transaction hash or block number) that can be
retrieved on the execution page or in the other auditing strategies.

4

Your models

RetailProcess.bpmn

CHAPTER 4. SUPPORTING AUDITING

ChorChain Home Page Modeler Execution Page Querying Audit Personal Page

RetailProcess.bpmn

Model instances: 2
Completed instances: 1 (50%)

Your roles Fee (Ether)
Retailer (Mandatory) - Producer (Mandatory) Max. 0.0369062574 Min. 0.0360062574 Av. 0.0369062574
Execution time Gas used
Max, 2399645 Min. 2359645 AV 2399645 Max, 4262812 Min, 4262812 Av. 4262812
Instances

+/ 6349716184a1ec1940858591

Execution time: 239964s Your roles
Total gas used: 4262812 Retailer (Mandatory)
Total fee: 0.0369062574 Ether

(‘) 634d24b71e19f61d5cb6f19e

Execution time: 0s Your roles
Total gas used: 2505790 Producer (Mandatory)
Total fee: 0.0350579000 Ether

Figure 4.8: User-based auditing page.

{
transaction(hash:"@x4659a88ef1Thb35a9b%sef45") { = “data": {

hash

nonce

index

from { address }
to { address }
value

gas

gasPrice

gasUsed
cumulativeGasUsed
inputData

block { number }
block { hash }
status

block { timestamp }

* “transaction™: {
"hash":
"@x465%a8@ef1fb35a9b94fb8323a6863e8d2177T48T66b80671982f c4T4749bT45",
"nonce "@xlce",
"index": 39,

s": "@x7a224d367eb99e843dcBef3d7bofac9e@3fe8be”

T
TEo's {
“address™: "Oxe93d1695b49cB8BB371d7fc6a9f2766ab2co9b7988"
T
"walue™: "@x@",
"gas": "@xlaged",

"cumulativeGasUsed": 9777896,
"inputData™:
"Ox7e66a757
ea",
¥ "block™: {
“number™: 9381721,
“hash":
"@xcy6T50893b34206;
"timestamp

4e6eacaad4487dbb22739a04853808cad6aledff39b4018",
"@x61436ad8"

3
"status”: 1

o

Figure 4.9: GraphQL query example on a single transaction.

CHAPTER 4. SUPPORTING AUDITING 75

It is worth noticing that GraphQL queries are also used in the implemen-
tation of choreography-based and user-based auditing strategies. Indeed, to
retrieve the necessary information, CHORCHAIN executes a set of automatic
queries and combines the corresponding results in a browsable structure. In
particular, the queries target a blockchain node to get the selected parame-
ters in a certain transaction or block. The resulting output contains then all
the data usually visible in other online tools such as Remix IDE! or a block
explorer. However, using such instruments requires the end user to have a
certain level of expertise and to perform a lot of manual operations to get
every single piece of data. With the CHORCHAIN auditing instead, it is pos-
sible to drastically reduce the manual effort and the technical skill required
thanks to the automatic query mechanism that also extracts the entire set
of blockchain data, increasing the overall performance.

Considering the provided auditing mechanism, once a model is selected,
the automatic queries executed by CHORCHAIN can be synthesised as follows:

1. firstly, all the choreography contracts generated from the model are
retrieved;

2. for each transaction in the contract, a query is executed for retrieving
information.

Finally, the results are parsed and shown to the user via the CHORCHAIN
front-end. Notably, all the inputs used in the described process, like the smart
contract addresses and the transaction hashes, are automatically injected
in the queries by CHORCHAIN. This provides high-level and user-friendly
functionalities.

Retail process example (Auditing) To clarify how the CHORCHAIN
audit mechanisms can be used, and which information can be retrieved from
the blockchain, the retail process scenario is presented.

The first case concerns the information related to the contracts generated
from the retail choreography model and they are reported in Table 4.5. In
particular, the information available in this table refers to: the number of
instances, with the relative hashes; the percentage of completed instances; the
list of users, and the number of times they participated. Similar information
is available for each message. Finally, it reports the minimum, maximum,
and average measures of completed contracts with respect to the required
time and the used gas.

In case a single choreography contract is selected, a set of information is
visible as listed in Table 4.6. The reported example is related to the retail
process choreography, in which the contract contains: the contract address;

"https://remix.ethereum.org/

https://remix.ethereum.org/

76 CHAPTER 4. SUPPORTING AUDITING

Table 4.5: Rental process details for the Choreography entity.

Choreography Values

ID: 6349716184alec1940858591
list of generated choreography contracts ID: 6349716184alec1940858591
number of generated choreography contracts 5

number and percentage of completed 3 (60%)
choreography contracts

Retailer: 0x7A224d367EB9%e...
Customer: O0xaeD0aBbD8C55¢a...
Retailer: 0x7A224d367EB9%e... (x4)

cardinality of the users for each participant Customer: OxaeD0aBbD8C55ca... (x1)

all users for each participant

0x100831606e0d1{59b37c...
all transactions for each message Instance: 6349716184alec1940858591

request _quotation(string good, unit amount)
cardinality of the transactions for each message| (Sent 4 times)

Message: request quotation(string good, unit amount)
all users involved for each message Transaction: 0x100831606e0d1{59b37c...
User: OxaedOabbd8cb5ca...

Min. 2.028s Max. 239.964s Avg. 82.952s

min, max and avg execution time calculated
on all completed choreography contracts
min, max and avg used gas calculated on all
the completed choreography contracts

Min. 4,262,488 Max. 4,439,142 Avg. 4,321,480

the costs in terms of Ether afforded by each user involved in the collaboration;
the list of emitted transactions with the respective messages; and the users
involved in each existing role.

Once the choreography contract has been selected, the auditor can in-
vestigate the information related to a specific transaction. In Table 4.7, the
available information concerns the timestamp of the transaction, with the
respective sender and payload, and all data related to the consumed gas and
paid fee.

Finally, when the information retrieving starts from the User entity, Table
4.8 provides the example of the available view in the deployed retail process.
In such a case, the retrieved information concerns the list of models in which
the user was involved with the respective role. Furthermore, additional in-
formation refers to the percentage of completed instances by the user, and
the statistics related to the minimum, maximum and average execution time
and used gas.

4.3 Experiments and Validation

This section reports the experiments conducted on the extended CHORCHAIN
tool and on the auditing strategies. Initially, an evaluation of auditing per-
formances is made, while in the last part of the section, an overall assessment

CHAPTER 4. SUPPORTING AUDITING 77

Table 4.6: Retail process details for the Choreography contract entity.

Choreography Contract Values
blockchain contract address 0x959ef4bab3f108396e22efe5cdd61cdc14aT7f628
total cost, in fees and gas 0.0369062574 Ether - 4.262.812

cumulative cost/percentage i | 105197004 Ether (1.4%) - 324137 (7,6%)

fees and gas for each user
Transaction: 0xf64cc71f1dbl...

emitted transactions

completion status Complete

Retailer (mandatory)
involved users and their role Customer (mandatory)

Producer(optional)
transaction(s) generated for request__quotation(string good, unit amount) (Sent 1 time)
each message Transaction: 0xf64cc71f1db18734036...

Table 4.7: Retail process details for the Transaction entity.

Transaction Values

timestamp 17/10,/2022 11:03:36

user sender Oxaed0abbd8ch5caf1247ed157chb7cTbb4f358354

gas consumed 126,873

fee paid 0.0003806190 Ether

message payload | Message 0b917rc(good: goodToPurchase, amount: 10)

of the complete CHORCHAIN framework is done.

4.3.1 Running Example Performance Analysis

Here the results of some experiments are discussed aiming at assessing the
performance and scalability of the CHORCHAIN auditing facilities. In partic-
ular, here is measured the time requested for retrieving information from the
blockchain by means of the query operations delineated in Figure 4.7. For
this scope, the Sepolia Testnet blockchain was used along with the GraphQL
endpoint hosted in the node within our lab. It is worth noticing that the ex-
periment results are influenced by the network conditions, the node conges-
tion, and the number of transactions contained in each choreography contract
to query.

To measure the scalability of auditing with respect to the increasing num-
ber of contracts, five different contracts were created from the Retail chore-
ography and executed following the shortest path. In particular, at the end
of each execution, the audit page was launched ten times and the final result
corresponds to the average time for loading the page. Figure 4.10 displays
the resulting graph showing an evident increment of the response time with
respect to the number of existing choreography contracts. Indeed, 1.039
seconds are requested with just one contract, while 4,399.1 seconds are re-
quested for the same choreography with five contracts. The graph depicts

78 CHAPTER 4. SUPPORTING AUDITING

Table 4.8: Retail process details for the User entity.

User Values
list of choreography models in which the
user was involved

all the covered participant roles Retailer

the participant role covered in each 6349716184alec1940858591 : Retailer
choreography contract

number and percentage of completed
choreography contracts

min, max and avg execution time for Min. 2.028s - Av. 82.952s - Max. 239.964s
all completed choreography contracts

min, max and avg gas used for all Min. 4,262,488 Max. 4,439,142
completed choreography contracts Avg. 4,321,480

RetailProcess

Instances: 5 - completed: 3 (60%)

a linear growth, representing a constant time requested for accessing each
single choreography instance. Notably, for each newly completed contract,
the auditing test is re-executed and it is comprehensive also of the contracts
already created and executed.

4.3.2 Assessment with the Involvement of Practitioners

Here are reported the results obtained from those experiments devised to
assess the effectiveness of the approach and the tool. The objectives of the
experiment, indeed, are to establish if the proposed approach can actually
help the engineering of trustable and auditable systems and to verify whether
the auditing tools provide easy access to the necessary information.

Experiment Set-Up The experiment involved 12 students enrolled at the
University of Camerino at the 1st year of the MSc in Computer Science (In-
formation Systems Engineering curriculum). MSc students cannot be cer-
tainly considered experts in choreography modelling and blockchain-based
systems; however, they can be neither considered novices in the discipline:
all of them have got a BSc degree in Computer Science and have taken
two semestral courses at master level about business process modelling as
well as one semestral course about enterprise software infrastructure. Thus,
the students selected for the experiments can be considered knowledgeable
about modelling practices and process automation platforms, even though
not really experts. In addition, as suggested by other studies [53, 80|, the
involvement of students for the kind of experiments is considered rather effec-
tive, as students are not biased by prior practical knowledge and experience,
which could influence the final results.

CHAPTER 4. SUPPORTING AUDITING 79

7.00
6.00
5.00
4.00
3.00
2.00

1.00

Seconds requested to load

0.00
1 2 3 4 5

Number of contracts

Figure 4.10: Scalability of CHORCHAIN auditing.

Figure 4.11: Internship choreography .

In the experiments, the students had to use the CHORCHAIN framework
focusing on two different parts of the methodology, i.e., (i) subscription, in-
stantiation, execution and (ii) auditing. To this aim, a common scenario
referring to the internship process flow depicted in Figure 4.11 was provided.
It shows a company, a university office and a student interacting in order
to publish, select, assign and complete a given internship. According to the
selected scenario, the students were divided into groups of three forming a
total of 4 groups. Each member of a group was asked to subscribe to a par-
ticipant role in the choreography and start to interact with the CHORCHAIN
interface in order to interact with the choreography execution. In the end,
the members of each group were asked to use the auditing functionalities to
check the transactions performed by the other members of the group, as well

80 CHAPTER 4. SUPPORTING AUDITING

as the executions of the other groups. The activity took one hour and a half
and involved the members of the groups executing the same scenario and
playing different roles.

At the end of the activity, the students filled out the questionnaires re-
ported in the Appendix, in order to judge the CHORCHAIN tool in relation
to its usability and perceived usefulness. The questionnaire has been con-
ceived according to the guidelines provided in [24]. For each of the considered
questions, the student could mark just one box, that would best describe the
experience with the usage of CHORCHAIN. The students separately marked
the auditing feature to have a more precise view of its maturity with respect
to the subscription, instantiation and execution features. To evaluate the
results, the System Usability Scale (SUS) was used, since it “provides a quick
and dirty reliable approach for measuring usability” [18].

Experiment Results After the students ended the experiment, 11 com-
pleted instances of the internship choreography were obtained. To assess the
effectiveness of the approach and the tool, the results of the questionnaires
filled out by the students were considered. Tables 4.9 and 4.10 report the
answers provided by the students with reference to the subscription, instan-
tiation and execution phases and auditing phases, respectively. The strategy
used in the questionnaires alternates questions for which the “positive” answer
is somehow inverted. In particular, for questions 1, 3, 5, 7 and 9 the greater
the number the better, while for questions 2, 4, 6, 8 and 10 the smaller the
number the better. This technique somehow tries to avoid answers provided
in a superficial way. Once all administered questionnaires have been filled,
the following formula has been computed:

5 4
> 1(5 —res; o) + ZO(TeSi72j+1 - 1))
- =

i=1 5
S = 2.5
N 8

It provides a way to get an overall score (S) that can be used to globally
assess the experiment results. In the formula, N represents the number of
returned questionnaires, while res; ; is the response provided to the ques-
tionnaire by each participant (i) to every single question (). The formula at
first conducts all the answers to the scale 0 — 4, where positive answers now
always correspond to higher values. Then, for each questionnaire the total
sum is computed, getting a number between 0 and 40, and the average over
all the questionnaires is derived. Finally, the number is multiplied by 2.5 to
get a final score § in the range 0 — 100. For the experiment, the calculation
of the SUS score gives the value of 68.54 to the subscription, instantiation
and execution phases and 66.25 to the auditing phase. According to the
proponents of the SUS approach, this is somehow a good result in particular

CHAPTER 4. SUPPORTING AUDITING 81

for what concerns subscription, instantiation, execution. Indeed, in their ex-
perience, values for S greater than 68 relate to perceived usability somehow
better with respect to other used software. Being the involved users some-
how experienced with process automation, this suggests that overall they got
a relatively positive experience in using CHORCHAIN. It is worth noticing
that the usability test related to the auditing phase performed worst than
the subscription, instantiation, execution phases; this suggests the need of
investing in this part of our solution, to make it even more usable to the
users.

Going more in detail, Tables 4.11 and 4.12 report the distribution of
the evaluation over the range 0-4 for each question. Considering the sub-
scription, instantiation and execution phases, it is possible to observe that
the best evaluation was obtained by question 5 (“ I found the various func-
tions in CHORCHAIN were well integrated”) that got an average score of
3.0, while the worst evaluation was reported by question 4 (“I think that I
would need assistance to be able to use CHORCHAIN.”) and question 10 (“/
needed to learn many things before I could get going with CHORCHAIN") with
an average score of 2.15. Considering the auditing phase, instead, the best
evaluation was obtained by question 5 (* I found the various functions in
CHORCHAIN were well integrated”) that got an average score of 2.77, while
the worst evaluation was reported by question 4 (“I think that I would need
assistance to be able to use CHORCHAIN”) with an average score of 2.08.
The two questionnaires show a similar trend. On the positive side, the tool
seems well integrated; instead, on the negative side, it seems to require some
background knowledge to be used in practice.

o
[y
o
N
o
w
o
=~
i'®)
(S}

[Q6]Q7[Q8] Q9 Q1o |

Student 1 3 1 5 1 4 1 5 1 5 1
Student 2 5 3 4 3 5 2 5 3 4 5
Student 3 4 3 5 2 4 2 4 2 4 2
Student 4 3 1 3 2 4 2 5 3 4 2
Student 5 4 1 4 3 5 2 5 1 5 2
Student 6 5 2 4 3 4 2 4 3 3 2
Student 7 4 3 4 4 4 3 3 3 3 4
Student 8 4 3 2 3 4 3 2 4 3 2
Student 9 4 2 4 2 4 2 4 2 4 4
Student 10 4 1 4 2 4 2 3 3 4 4
Student 11 5 3 2 4 5 2 2 3 4 2
Student 12 4 3 3 3 4 3 4 3 3 2

Table 4.9: Results from the questionnaires on usability related to the
subscription, instantiation and execution phases.

82 CHAPTER 4. SUPPORTING AUDITING

[y
o
N
o
w
o
IS
&
(934
o)
(=]
I®)
~J
o
Qo
o
=)
o
-
=)

Student 1
Student 2
Student 3
Student 4
Student 5
Student 6
Student 7
Student 8
Student 9
Student 10
Student 11
Student 12

»&m%%»&»&»&wp&.&»&wg
ORI I Ol CRJUIYJU R JU R Ol O
O W R DD R O T O N
OO WD LWL NN W
NGO NN NSNS IV NN NN NI SO
WD WM WN — NN NN
NNQNCIN SN NG JURNJCRY JURN NS I NS
O W N WD N W W W W
[SCI NG SURN N JUR U JORIN NG N JORN JURIN
RO Lo WO N N N W W N

Table 4.10: Results from the questionnaires on usability on the auditing

functionality.

Ql] Q21 Q3] Q4] Q5] Q6] Q7| Q8] Q9] Q10
0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 0 0 2 1 0 3
2 2 6 2 5 0 3 2 7 4 0
3 7 2 6 4 9 8 4 2 6 7
4 3 4 2 1 3 1 4 2 2 1
Avg || 2.85 | 2.62 | 246 | 2.15 | 3.00 | 2.62 | 2.62 | 2.23 | 2.62 | 2.15

Table 4.11: Distribution of scores for each question related to the
subscription, instantiation and execution phases (over the range 0-4).

QL] Q2] Q3] Q4] Q5] Q6] Q7] Q8] Q9] Q1o
0 0 0 0 0 0 0 0 0 0 0
1 0 0 3 1 0 0 0 0 0 1
2 1 3 3 7 1 3 5 8 7 4
3 9 7 5 4] 10 8 6 4 5 5
4 2 2 1 0 1 1 1 0 0 2
Avg || 2.85 | 2.69 | 2.15 | 2.08 | 2.77 | 2.62 | 2.46 | 2.15 | 2.23 | 2.46

Table 4.12: Distribution of scores for each question on the auditing
functionality (over the range 0-4).

4.4 Comparison with Existing Approaches

Blockchain conveniently enables auditing activities, since all operations reg-
istered on the blockchain are verifiable. Blockchain technology represents
a new opportunity for Computer-Assisted Audit Tools and techniques, re-
ferring to software supporting auditors in the audit process. In particular,
blockchain is recognised as useful to reduce the workload of the auditors and
to reduce frauds [1]. Indeed, it guarantees secure and immutable information
storage thanks to the possible verification of the executed transactions. The

CHAPTER 4. SUPPORTING AUDITING 83

literature also discusses how this new technology could be affected by GDPR,;
in particular, in [92] it is highlighted the impact of this European regulation
in data sharing environments.

Many works focus on enabling auditing by exploiting process min-
ing algorithms applied directly to transactions stored in the blockchain
[37, 45, 63, 84|. They show how this kind of procedure is not trivial, and some
retrieved information could be incomplete or very difficult to aggregate. How-
ever, the main objective is not the application of process mining techniques
on data stored in the blockchain, but the definition of an integrated approach
able to support the entire life-cycle of choreographies, considering the possi-
bility to examine and evaluate statements usually happened in the collabora-
tion, providing also information relative to quantitative indicators like costs
and times. In the auditing part, CHORCHAIN is able to retrieve all the de-
tailed information related to the exchange of messages between organisations
through a scan of the events generated by the smart contracts. The parsed
information will be shown to the auditors in an aggregated way, permitting
the auditors to navigate between the details. Moreover, the choreography-
centric approach in the auditing phase permits to have a one-to-one mapping
of information with the related choreography instances, guaranteeing always
a good level of details in an efficient way.

In [64], the blockchain is recognised as an improvement of the auditing
system, referring to continuous auditing and continuous monitoring technolo-
gies. In particular, continuous process auditing is the constant monitoring
and analysis of systems, that improves the focus and the scope of the audi-
tors [115]. In this context, the authors focus on accounting and assurance
functions, these could indeed benefit from a new blockchain approach.

In [11], the auditors are seen as beneficiaries of the blockchain in order to
verify records in accounting systems. This is relevant both for internal and
external auditors, interacting with accounting records. The authors expose
also issues of actual audit systems that are addressed by blockchain: data re-
liability, data security and transaction transparency. Data must be reliable in
order to be trusted; blockchain could guarantee reliable evidence thanks to its
structure. Data security refers to the assurance that the information has not
been corrupted; thanks to cryptographic algorithms blockchain makes data
secure and immutable. Finally, transaction transparency is required in order
to have observable and verifiable data; again, blockchain has native prop-
erties of transparency suitable for this requirement. CHORCHAIN leverages
these properties of blockchain in order to provide its audit functionalities.

In addition to verification, tamper-proof and security properties, pseudo-
real-time is highlighted in [96] and [42]|. In particular, this last work recon-
siders accounting environments, suggesting a permissioned blockchain. This
could indeed ensure an authorisation layer that prevents companies from

84 CHAPTER 4. SUPPORTING AUDITING

external attackers while the auditing process remains visible to auditors.
Another opportunity is seen in smart contracts that can contain policies and
assertions, enabling a continuous and automatic execution of smart controls.
Both works expose also possible issues in the use of blockchain. On the
one hand, the permanent loss of private key, the impossibility of reverting a
transaction, and the lack of a central administration that can be contacted
[96]. On the other hand, the scalability of blockchain when a lot of data
is produced, the investments required to create a new infrastructure and
the instruction needed by the internal department for acquiring blockchain
knowledge [42].

An approach for auditing based on the client-server model is proposed
in [109]. Here the blockchain is used to audit the exchanged messages with-
out relying on a client and/or server for storing data. Thanks to its prop-
erties, blockchain is used as a message-storing system allowing secure and
distributed auditing to auditors that can access the network. Every time a
message is exchanged, a new transaction is generated and then stored in the
blockchain. This makes it possible for auditors to see and verify data. The
authors propose also a scheme with blockchain and message requirements,
evaluating also that scheme with experiments relying on the Bitcoin tech-
nology. However, the authors show how the time for a message exchange
is higher than a normal interaction between a client and a server. Another
problem is the cost of fees in the Bitcoin blockchain. In this thesis, a similar
use of blockchain is made to store the messages exchanged by the participants
of a choreography. However, the use of a different blockchain in CHORCHAIN
allows better performance in terms of time and cost. Indeed, in Ethereum,
the time for a block inclusion is much lower (around 15 seconds) and fees are
not so expensive.

Bitcoin is also used in [108] where the authors propose a solution for
tamper-proof privacy audit logs. In a collaborative environment, it is in-
deed important to have compliance with privacy policies when personal in-
formation is shared. In actual systems, where a central authority is present,
auditors may not rely on data that, in addition, can also be corrupted. In
this context, blockchain technology is used to guarantee distributed and im-
mutable storage. As stated by the authors, Bitcoin and the proposed solu-
tion is limited considering costs, speed, and scalability. The authors indicate
Ethereum as possible evolution in terms of fee, scalability, and smart con-
tracts. This analysis reinforces the choice of using Ethereum as blockchain
technology underlying CHORCHAIN.

In |3] the authors consider a client-server model to build a secure audit-
ing system based on the Hyperledger technology. This model is analysed
under security aspects, showing potential attacks and issues with the ac-
tual way of maintaining audit logs. The presented BlockAudit application

CHAPTER 4. SUPPORTING AUDITING 85

is implemented over the permissioned Hyperledger Fabric blockchain, which
guarantees a secure logging activity. This reduces the risks of potential at-
tacks due to security vulnerabilities of current database systems. Differently
from this work, in CHORCHAIN the transactions generated from participants’
activities are performed directly in the blockchain, without passing from the
database. This ensures a high level of security in all the information and
operations of the process, eliminating risks of attacks on the database layer.

A permissioned structure is used also in [4], where a multi-chain solution,
called BlockTrail, is implemented starting from Hyperledger. The blockchain
structure guarantees secure storage of audit logs while the multi-layering al-
lows a throughput increment, reducing costs and efficiency of the audit ac-
tivity. This is obtained with replicas and partitioning of peers and networks,
creating a hierarchical infrastructure. Similarly, the CertChain certificate
management system, presented in [31], uses the blockchain, in this case,
Ethereum, to audit and store certificates for TLS connections that have still
security issues. Anyway, even if there are similarities between the exploited
blockchain technology and the possibility of making auditing on the stored
data, this latter solution has a quite different goal with respect to CHOR-
CHAIN: CertChain aims at managing TLS certificates while CHORCHAIN of-
fers full support to the choreography life-cycle, including the auditing phase.

What mainly differentiates CHORCHAIN’s auditing phase from the above
approaches is how the users of the framework are supported. Indeed, the
CHORCHAIN framework provides the audit functionalities without requiring
complicated actions by the users. As usual, all information exchanged by par-
ticipants is stored in the blockchain, but the novelty is in the audit interface.
Indeed, it is designed to retrieve automatically all the exchanged messages
from the blockchain, they are then elaborated, showing all the key points
useful to audit the process. This allows taking advantage of the framework
without the need for additional actions, exploiting all the built-in function-
alities in order to obtain evidence of the interactions between participants
and to analyse them.

CHAPTER 5

LFLEXCHAIN: SUPPORTING
RUN-TIME FLEXIBILITY

In this chapter, the thesis focuses on the flexibility challenge derived from
the immutability of the blockchain. Indeed, while the blockchain permits
achieving trustworthiness enforcing the interactions and providing transpar-
ent and secure proof of past events, at the same time it hinders the flexibility
of the business process execution [105]. In this thesis, the term flexibility
indicates the need for business processes that are not static, and that instead
embed mechanisms permitting to react to changes occurring at run-time.
In particular, this thesis refers to flexibility by change, which is the ability
to modify a business process definition at run-time and migrate the current
execution to the newly uploaded definition [33]. Flexibility is a relevant prop-
erty for aligning business processes [114, 34, 97]. Many solutions supporting
business process flexibility have been proposed for traditional (not based on
blockchain) implementations like those surveyed in [79]. However, flexibility
is still an open challenge when blockchain technology supports the process
execution [81].

To face this challenge, the thesis proposes FLEXCHAIN, a framework for
supporting run-time flexibility in blockchain-based business processes. To
overcome the immutability of blockchain code, the framework decouples the
business logic of the process from its execution state. In this way, it is possible
to guarantee run-time changes to the process execution without losing the
fundamental properties of trust provided by the blockchain.

In the following sections, the thesis introduces the FLEXCHAIN frame-
work, describing also the theoretical translation approach producing rules
starting from choreography diagrams. Then the FLEXCHAIN architecture
is presented together with the implemented tool and its validation. The

88 CHAPTER 5. FLEXCHAIN

Existing instances Smart contract Blockchain |} @\

S E ‘RoleA ! , o
SEESE 8 Roe| ! > @ > : = m
' 1, Contract Deploy ' Auditor
1Subscribe Ins(ancerlD:W 1" generation ' :
=t h) & Roeal Generation & ! Auditing |
= { ' o = 1 Deployment !
t D t&t D == = - ‘RoleE e O e SN EEEEE
FTEwE H Instance ID: 2 '
=1 publish —= Search S = H
cr i cl : |:> = 1 r 33
Modell hy—pt . N
Env[i)orenr:egn(repository model H =1 = ‘ Role A : ‘ = = ‘ =
| Create | =« - H @—@ Deployed Instance
| new - ﬁ RoleB| M« «—> @
Modelling yinstance | Instance ID: 3 il RoleA (7 Role B r 1
New instance 'L]
Instantiation ! Execution Update

Figure 5.1: FLEXCHAIN framework: supporting run-time flexibility.

concluding section provides a comparison with already existing approaches.

5.1 FLEXCHAIN Conceptual Framework

The FLEXCHAIN framework aims at guaranteeing the flexible execution of
smart contracts following a model-driven technique. The flexibility aspect is
indeed an attribute influencing in a direct way the perception of trust in a
collaborative scenario [83| as it permits a service to behave in an acceptable
way in anomalous or unexpected situations or when the context changes.

5.1.1 Framework phases

The framework is reported in Figure 5.1 and it revises some aspects of CHOR-
CHAIN for generating an infrastructure based on a public blockchain, starting
from BPMN Choreography diagrams, representing the business interactions
between parties. In particular, FLEXCHAIN focuses on the modelling, gener-
ation, deployment and execution of a choreography, introducing also a new
update phase.

The instantiation is the first phase and it starts with the user upload-
ing a choreography model using a dedicated interface. This model is then
automatically translated into an on-chain smart contract and into a set of
rules. The contract is deployed through the use of the factory contract and
represents the choreography instance state. The rules instead are stored in
the InterPlanetary File System (IPFS) and they represent the execution logic
of the process. In particular, they specify when a message can be sent, un-
der which conditions and which result the execution produces. The IPFS!

!The IPFS [19, 43, 112, 131] is a distributed system for storing different types of
data. It is based on a peer-to-peer network where each peer stores some information
accessible from anywhere. Through the hashing of the information, IPFS binds data with

CHAPTER 5. FLEXCHAIN 89

is used in FLEXCHAIN to store voluminous information avoiding reporting
them in the blockchain. In such a way it is possible to reduce the cost to
store information [131], especially those related to the messages exchanged
by the participants in a choreography.

Rules are automatically derived by a translation performed on the mes-
sages of the model and they are executed by an off-chain processor. To no-
tice, the decoupling of the state from its logic is an important aspect of the
proposed approach, it allows the use of blockchain immutability for storing
business information, while the logic and its constraints can be maintained
off-chain. Thanks to this solution, it is possible to mix the flexibility and the
immutability of the code in blockchain technology.

The update phase is similar to the previous one and it consists of the
willingness of a participant to perform changes to a running process instance.
In particular, in FLEXCHAIN, changes are isolated and affect only the run-
ning instance to which they are applied. Indeed, the motivation behind a
run-time change can not be assumed to be valid for all the current active
instances, as they may involve different participants with different needs and
contexts. It is worth noting that the update of the rules does not affect the
current instance state stored on-chain, permitting the new rules to continue
operating in the current state. The willingness for a change in the process
instance is expressed with the proposal of an updated model generating only
a new set of translated rules derived from it.Before being part of the effec-
tive execution, these rules are stored in a new IPFS location and the hash
is stored on-chain in the running smart contract instance. At this point, the
participants can use the instance contract for voting on the update. In case
the quorum? is reached, the smart contract automatically replaces the old
hash with the one just voted. In this way, the smart contract code contains
only the current state of the process avoiding the need to modify directly it.
The use of an on-chain quorum strategy comes from the need of preventing
malicious behaviours that could lead to an uncontrolled update of the model.
Indeed, all the participants need to vote and approve the proposal, giving
explicit feedback about it. In case a malicious update is proposed, the other
participants can protect themselves by voting against the update and the
smart contract will automatically stop the procedure. In this way, for an
attacker would not be possible to propagate faulty behaviours in the system.

a unique Content Identifier (CID) formed by the hash of the content itself. It uses the
Interplanetary Linked Data ecosystem for formatting and storing data across the network.
The data structure used corresponds to Merkle Directed Acyclic Graphs where each piece of
information stored through the IPFS is split inside blocks. This makes the data versioning
more efficient since it allows to update only part of the content, by uploading the new data
and receiving back the new CID.

2The quorum refers to the minimum number of choreography participants that need
to accept and commit an updated proposal.

90 CHAPTER 5. FLEXCHAIN

The last phase regards the execution of a message and the consequent
state update. In this case, to start the execution, the user needs to select
through the FLEXCHAIN interface the message to send to the counterpart
inserting also the required parameters. The interface invokes then the smart
contract instance passing this information. The contract will successively
emit an event that the off-chain processor will catch about the operation
to perform. This retrieves the corresponding rule from the IPFS and after
executing it will return the result to the smart contract.

5.1.2 Translation approach: BPMN to Drools

This Section described the conceptual approach to derive Drools rules start-
ing from a BPMN choreography diagram. Indeed, while the FLEXCHAIN
framework exploits the blockchain for regulating the interactions, the used
smart contracts rely on a fixed template that does not directly depends on
the initial model. Indeed, only rules are translated accordingly to the various
choreography elements compliant with the BPMN standard as reported in
Figure 2.2, which correspond to the most used elements in choreography di-
agrams [35]. Hence, no further additions to the input language are required
for dealing with common application scenarios. If a new element is needed,
the algorithm should be modified to include it.

In general, a rule is divided into two main constructs. In the first part, the
conditions to be evaluated are expressed. Conditions are internally verified
and they are used to regulate the activation and execution of message rules.
The second part of the rule manages instead the update of the state variables
inside the smart contract. As in CHORCHAIN, state variables are derived by
message inputs parsed from the message name.

The FLEXCHAIN translator generates rules from a BPMN choreography
diagram according to the following translation algorithm and to Table 5.1.
The algorithm iterates over the list of all choreography messages and, for each
of them, a new rule is created. For rule generation, the algorithm considers
the paths leading to the corresponding message. Indeed, for each element in
these paths, a condition is added inside the rule. If the element is an exclusive
gateway, the related conditions are extracted from the sequence flow of the
element, and added to the rule. If instead, the element is a message, a
check on the completion of this is added inside the rule and the exploration
of that path stops. Finally, after all the incoming paths connected to the
considered message are explored, the code for pushing state variables to the
smart contract state is added inside the second part of the rule.

The algorithm translates messages (case 1) as they require direct enforce-
ment and regulation since during the execution they actively modify the
current state due to the participants’ actions. Notice, as in CHORCHAIN,
the two-way task can be represented as two one-way tasks in sequence and

CHAPTER 5. FLEXCHAIN 91

each connected message is treated independently. Therefore, in FLEXCHAIN
the two-way task is translated as two separate rules, one for each message.
Similar to CHORCHAIN, an execution state is attached to each message and
its related rule so as to enforce the right execution sequence. A message
element also influences the condition to evaluate before execution. This hap-
pens with a double check both on each previously connected message (which
state has to be completed) and on the current translated one (which state

has to be enabled).

Control flow elements such as gateways and intermediate events are in-
stead translated only as conditions to be verified internally to message rules.
This makes it possible to check whenever a decision derived by a gateway
must be taken. Notice, the start and end events are not considered as they
only define the starting and ending points of the choreography without ac-
tively influencing the execution. For this reason, these behaviours are trans-
ferred to the initial and ending messages, without explicitly considering the
start and the end. In the case of the exclusive gateway, this produces a
condition based on a boolean expression (case 3, split) retrieved from the
outgoing sequence flow (case 2) or an exclusive check on the previously con-
nected elements (case 3, join). A parallel gateway (case 4) only produces
a check on the previously connected message while an event-based gateway
(case 5) only defines which message is the first to be executed, blocking the
others. The translation patterns and the exact translation for each element
are presented with the relative examples in Section 5.2.2.

To sum up, the translation of the choreography model encodes in the
generated rules the model’s control flow, thus providing the choreography ex-
ecution with an enforcing mechanism. In particular, to prevent unexpected
execution, each rule checks the status of the involved elements according
to the state variables stored in the smart contract. Moreover, the data ex-
changed during the execution is stored in the blockchain and can be audited
by all the participants.

5.2 FLEXCHAIN tool

In this section, the thesis describes the translation approach and the FLEX-
CHAIN tool by providing different examples of the generated rules and the
different phases of the tool?.

3The tool is available at virtualpros.unicam.it:3000 while its code, as well
as the smart contracts, is accessible at https://bitbucket.org/proslabteam/
flexchain_v2/src/master/.

virtualpros.unicam.it:3000
https://bitbucket.org/proslabteam/flexchain_v2/src/master/
https://bitbucket.org/proslabteam/flexchain_v2/src/master/

92 CHAPTER 5. FLEXCHAIN

Table 5.1: Translation approach from BPMN elements to a Drools rule.

BPMN element Drools code BPMN element Drools code
e Rule
1) E e Previous message condition 4) o Inclusive message state check
Message e Actual message condition Parallel
Gateway

. e Race condition
2) Sequence Fow e Guard expression 5)

g
Event.Based message state check
Gateway

3) @ e Expression condition

e Exclusive message state check

Exclusive
Gateway
<zcomponents= E “<component=> g
Blockchain Off-chain processor
<<component>> = <<component=> <<component>> H|
S Factory Contract I Event Listener
User interface | |
<<component=> E <<component>>
<<cor||1§||:n gem» @ Choreography Instance — Rules engine E'
Contract
L J

Figure 5.2: Component diagram of the FLEXCHAIN architecture.

5.2.1 Architecture

The FLEXCHAIN architecture is reported in Figure 5.2 and is divided into
four main components based on the patterns proposed in [126]: i) User in-
terface, ii) Blockchain, iii) Off-chain processor, and iv) IPFS.

The user interface provides all the functionalities used for creating
a choreography diagram and interacting with the blockchain. It exposes
the main operations like the instantiation, the update, and the execution.
Thanks to this component and the model-driven engineering methodol-
ogy adopted, the end user does not need any technical knowledge about
blockchain and its implementation.

The blockchain component is structured by two main smart contracts
used by FLEXCHAIN to regulate the on-chain behaviour. The first is the
Factory contract that is invoked by the FLEXCHAIN User Interface every time
a choreography model is uploaded and a new choreography instance must be
created. This acts also as a register since it maintains in memory the name of
the choreography instance and its related address. The second is the Instance
contract and it is used as a template for instantiating a model. The code is

CHAPTER 5. FLEXCHAIN 93

composed of a set of state variables, that are used to manage the process and
some utility functions for the different operations. In particular, FLEXCHAIN
relies on a single Factory contract that deploys an Instance contract for each
model instance generated by the user. This architecture provides a general
and reusable infrastructure dealing with flexibility requirements. The full
code of the factory and instance smart contracts is available here?.

In such architecture, flexibility is achieved by implementing the execu-
tion logic of the choreography, using Drools rules. The rules are generated
automatically by the FLEXCHAIN framework and they are then deployed on
the IPFS repository. The resulting hash is successively stored inside the
on-chain choreography instance smart contract ® to have a certified reference
of the rules during the execution. The benefit of using a rule-based technique
comes from the possibility of having a direct representation of a choreography
message as a rule. This allows having the execution logic of the choreography
implemented as a set of atomic rules that are executed independently from
the others. This, combined with the off-chain storage, allows overcoming the
restrictions of the blockchain since in this way it is possible to update at run-
time only the targeted rules, without dealing with the immutability of smart
contracts. The other advantage of storing rules inside the IPFS regards the
costs. Indeed, with this approach, for each update in the choreography, the
smart contract has to change only the reference to the final IPFS hash. This
reduces costs with respect to storing the whole set of rules inside the smart
contract on-chain.

The off-chain processor is used instead to execute rules. Its behaviour
is triggered directly by an event emitted by the choreography instance smart
contract and caught by the event listener component. This component ex-
ploits the Ethereum API and waits for every event emitted by the smart
contracts. In particular, its main role is to listen for message execution
events, invoking then the Rules engine component by forwarding the neces-
sary data. The event contains the necessary information regarding the rule
to execute on the rule engine and the relative parameters. Notice, the off-
chain processor at each execution always checks the latest version of the rule
present in the IPFS according to the registered id stored in the choreography
smart contract. The use of an off-chain practice is nowadays widely common
[58, 85], in particular when combined with the blockchain to address storage
and performance limitations. In these situations, the trust the blockchain
provides derives from the capability to run auditing sessions on the resulting
execution traces possibly. Indeed, in our case the smart contracts trigger
the execution of the off-chain rules, receiving back the final status. All this

‘nttps://bitbucket.org/proslabteam/flexchain_v2/src/master/
Smart%$20Contracts/

SFor this reason, in Figure 5.2 there is no direct connection between IPFS and
Blockchain.

https://bitbucket.org/proslabteam/flexchain_v2/src/master/Smart%20Contracts/
https://bitbucket.org/proslabteam/flexchain_v2/src/master/Smart%20Contracts/

94 CHAPTER 5. FLEXCHAIN

information is stored on the blockchain, thus making it visible and verifiable
by every participant providing a balanced approach in terms of performance
and trustworthiness. To facilitate user interactions, the FLEXCHAIN tool
also provides a graphical user interface that takes in input information from
the end user and forwards them to the smart contract. From there, the
smart contract and the off-chain processor automatically carry out all sub-
sequent steps connected to the message reception. This kind of interaction
is, indeed, the one considered in the case study in Section 2.2.2, where the
participants of the choreography are humans. However, the framework can
also support a fully-automatic form of interaction (via, e.g., REST services).
In this case, the FLEXCHAIN user interface can be bypassed, and messages
can be automatically executed by connecting an external application to the
smart contracts.

5.2.2 Translation

This part reports the details for the generation of the rules and the smart
contracts starting from a choreography as described in Section 5.1.2. Sim-
ilarly to CHORCHAIN, the state of a message can be enabled, disabled, or
completed and depending on it, only a certain action can be performed. For
example, if a message is completed it cannot be executed again, and its corre-
sponding rule will fail if invoked. Notice that, in case of a loop in the model,
the same message can be re-activated many times, in order to re-execute it.

Examples of Translation Results To clarify how the translation algo-
rithm operates, the following lines describe some examples resulting from
applying the algorithm to typical excerpts of BPMN choreography models.
For each element, the corresponding pseudo-code of the rule is shown and
discussed highlighting the main peculiarities.

The one-way task is shown in Figure 5.3 and its translation generates
the rule reported in Listing 5.1. The general formatting is composed of the
rule name (Line 104), corresponding to a unique message-id, the When part
(Line 105), containing the conditions to evaluate, and the Then part (Line
109), defining the actions to perform. Inside the When clause, different
types of conditions are verified. Firstly, the states of the previous connected
messages are checked (Line 106). Then, the rule checks the current element
state, which must be enabled (Line 107). Line 108 reports the constraints
derived from the guards of the exclusive gateways. Finally, in the Then
clause, the state variable var! is pushed to the smart contract (Line 110)
updating the contract state. This variable corresponds to the argument of
the message, whose value is set by the user when the message is sent.

CHAPTER 5. FLEXCHAIN 95

message1(var1)

M

0

/___7_;_____3
Participant 1

Activity
Participant 2

Figure 5.3: One-way Task.

104 Rule "messagel"

105 When

106 <conditions on previous messages> &&
107 messagel == enabled &&

108 <conditions from exclusive gateways>
109 Then

110 push varl

111 End

Listing 5.1: Rule of a one-way task.

It is worth noticing that, after the rule action (in the Then clause) is
executed, the message state is automatically set to completed in the smart
contract.

Sequence flow connectors are reported in Figure 5.4 and their translation
is shown in Listings 5.1 and 5.2. Sequence flows are used to specify the
execution order of activities in choreography and the reported case considers
two one-way tasks connected having a rule for message messagel and message
message2. In the When clause, the rule contains two conditions (Lines 114-
115), expressing that the state of the previous message message! must be
completed and the current state of message2 must be enabled. This check is
really important to enforce the execution of messages in the right sequence.
If both conditions are satisfied, the var2 variable is written in the blockchain

(Line 117).

112 Rule "message2"

113 When

114 messagel == completed &&
115 message?2 == enabled

116 Then

117 push var?2

118 End

Listing 5.2: Rule of a task following another one.

96 CHAPTER 5. FLEXCHAIN

messagei(var1) message2(var2)

M Particinanty)
P

Participant 1 articipant2
P Activity1 P Activity2 —m————»
Participant 2 Participant1

Figure 5.4: Sequence Flow.

Gateways affect the conditions of a rule when a message is directly
connected to them and the first case is reported in Figure 5.5a and translated
in Listing 5.3. The example refers to a split exclusive gateway in which
outgoing sequence flows contain a boolean expression on the varl variable
and are connected to message2. The rule contains an additional boolean
expression referring to the condition of the exclusive gateway (Line 123).
Depending on the type, the compare operator inside the expression can be
on integer, string or boolean values.

119 Rule "messagel2"

120 When

121 messagel == completed &&
122 message?2 == enabled &&

123 expression_on_varl == true
124 Then

125 push var2

126 End

Listing 5.3: Rule of a message after a split exclusive gateway.

Another case considering the exclusive gateway is the join one in Figure
5.5b. This time there is no expression to verify so the rule of message4,
reported in Listing 5.4, contains only the execution state to control before
the execution. Indeed message4 requires that only one between message?2
and message3 is completed (Lines 129-130).

127 Rule "message4d"

128 When

129 (message2 == completed ||
130 message3 == completed) &&
131 messaged4d == enabled

132

133 Then

134 push var4

135 End

Listing 5.4: Rule of a message after a join exclusive gateway.

CHAPTER 5. FLEXCHAIN 97

message2(varz) message2(var2)

Participant2

S S
Participant2

<expression1_on_var1>
messagei(var1)

Activity2

Y

Activity2

messaged{var4)

_Participant1 Participant1

S S
Participant1

Participant2
Activityl ———=(X var3)] var3) Activityd
Participantz 2 ™ _Paricipanti_
S ; -
Participant2 Participant2
. Activity3 Activity3
<expression2_on_var1>
Paricipant1 Paricipant1
(a) Split case (b) Join case

Figure 5.5: Exclusive gateway elements.

The next case regards the parallel gateway element that is divided again into
a split and a join. The split gateway in Figure 5.6a, enables the execution
of all successive messages without any restriction. This behaviour does not
affect directly any rule neither of the messages before the gateway nor the
ones after. All the messages on the right of the gateway are enabled after
the completion of the previous one as usual for the others. For this reason,
in Listing 5.5 the rule of message2 does not contain any particular condition
but it works as two directly connected simple messages.

136 Rule "message2"

137 When

138 messagel == completed && message2 == enabled
139 Then

140 push var?2

141 End

Listing 5.5: Rule of the message after the split parallel gateway:.

Different is the case for the parallel join reported in Figure 5.6b. In this
case, the message4 requires that all the previous elements are completed
before its execution. This semantics affects the initial check of the rule asso-
ciated with message4. Specifically, Listing 5.6 shows (Line 145) the parallel
check in the condition for the execution state of the previous messages mes-
sage2 and message3, that need to be both completed.

142 Rule "message4"

143 When

144 message4 == enabled &&

145 message?2 == completed && message3 == completed
146 Then

147 push var4

148 End

98 CHAPTER 5. FLEXCHAIN

message2(var2) message2(var2)
: ™
Participant2 m
message1(var1) B Activity2 Activity2 messaged(vard)
E _Participant1 Participant1 E
Activityl —(+4 message3(var3) message3(var3) Activityd
Participant2 E E Participant2
P Activity3 Activity3
Paricipant1 Paricipant1
(a) Split case (b) Join case

Figure 5.6: Parallel gateway elements.

Listing 5.6: Rule of a message after the join parallel gateway.

The last case reported in Figure 5.7 shows an event-based gateway. The

message2(var2)

Participant2

messagei(var1) - Activity2
M (Participant1)
—
Participant1
Activityl 2(®) message3(var3)
Participant2
B Activity3

Paricipant1

Figure 5.7: Event-based case.

gateway as shown in Listing 5.7 requires that both message2 and message3
are enabled but then, only one can be executed according to the first chosen.
This is reflected in the inclusion of an extra condition requiring that the state
of the other message connected to the gateway is enabled. Line 151 reports
the example for message2 in which the check is done also on the state of
messages.

CHAPTER 5. FLEXCHAIN 99

149 Rule "message2"

150 When

151 (messagel == completed && messagel3 == disabled) &&
152 message2 == enabled

153 Then

154 push var?2

155 End

Listing 5.7: Rule of a message after event-based gateway.

Retail Process Example (Translation) In Listing 5.8 the translation
for the Quotation message is reported. The rule is generated and evaluated
inside the FLEXCHAIN tool so it contains some utility code to communicate
with it. In lines 158 and 159, there is a check on the state of the current
and previous message while in Line 160 the isAvailable variable has to be
false. If those conditions are successfully evaluated, an array is created with
the names of the input variables (Lines 162-164). The last part of the rule
creates an array with the input values sent by the user (Lines 165-167) and
finally pushes it together with the names one to the contract (Line 168).

156 rule "Message_lh3ew61"

157 when

158 b : BlockchainUtils (b.getState ("Message_lh3ew61")==0,

159 b.getState ("Message_lxxdwx2")==2,

160 b.getVariableFromContract ("isAvailable")==false)

161 then

162 List names = new ArrayList();

163 names.add ("product") ;

164 names.add ("quantity");

165 List values = new ArrayList();

166 values.add (b.getSingleInput (0)) ;

167 values.add (b.getSingleInput (1)) ;

168 b.setVariablesToContract (names, values,
"Message_lh3ew61") ;

169 end

Listing 5.8: Rule of quotation message.

Smart contract In this part, the choreography instance and factory smart
contracts are described. The former is responsible for storing the current ex-
ecution state of the choreography and has a generic structure and is deployed
automatically by the factory contract, which instead facilitates the managing
of instances and acts as a monitor of each generated contract. Notably, the
translation examples previously shown do not produce smart contracts code,
since the Drools rules generated from the BPMN elements are stored inside
the IPFS and just referred to in the Instance contract.

100 CHAPTER 5. FLEXCHAIN

The Factory contract is reported in Listing 5.9 and it contains the main
functionalities for instantiating new contract instances. Line 171 contains the
mapping used to associate the instance name (in bytes) to its address. In this
way, it is possible to track the entire history of generated choreography con-
tract instances. The instantiateProcess function (Lines 172-178) generates a
new contract starting from the template one. The new contract requires two
inputs, (i) the creator, automatically taken from the sender of the invoca-
tion, and (ii) the quorum, required for an update. After this step, the newly
generated address is stored in the state mapping.

170 contract ProcessMonitor{
171 mapping (bytes32 => address) processes;
172 function instantiateProcess (

173 bytes32 processName,

174 uint _guorum) public{

175 processes[processName] =

176 address (new ProcessTemplate (
177 msg.sender, _quorum));
178 }

179

180 }

Listing 5.9: Factory Smart Contract.

Listing 5.10 reports the code for the Instance contract representing
the choreography instance. In particular, in Line 183 the enum variable for
managing the execution state of the rules is defined. Then, the hash location
of the rules inside the IPFS is stored in a separate bytes32 variable (Line
183). The next mappings are used instead to associate the messages to an
execution state (Line 184) and to store the input variables of the messages
with their name (Line 185). Finally, two structures are used to manage
the voting system for updating the process. The first (Line 186) represents
the participants that vote for an update, while the second (Lines 187-191)
handles the proposal. This contains indeed the new hash of the updated
rules, the required quorum, and the actual votes received for that proposal.
The next part of the contract defines the execution of the process instance. In
Line 192 the executeMessage function is used to emit the event corresponding
to the messageToFzxecute and its inputs. In the FLEXCHAIN approach, the
above event is used to trigger the execution of the message rule; after this
step, the result of the off-chain computation is pushed to the contract using
the setVariables function (Line 197). Here the names and the values of the
output variables are updated in the contract state and the message is set
to the COMPLETED state. The function defined in Line 203 manages the
creation of an update proposal, requiring the hash of the location of the new
rules and the IDs of the corresponding messages. The last function in Line
208 permits to vote for the update proposal and it requires only the wvote

CHAPTER 5. FLEXCHAIN 101

that will be associated automatically with the sender of the transaction (i.e.,
the choreography participant). The remaining part of the contract defines
all the getter functions for reading the contract state and other information.

181 contract ProcessTemplate(

182 enum State { ENABLED, DISABLED, COMPLETED }
183 bytes32 rules_ipfs;

184 mapping (bytes32 => State) elements;

185 mapping (bytes32 => bytes32) allValues;

186 struct Voter{bool voted; bool vote;}

187 struct Proposal/{

188 bytes32 proposedHash;
189 uint quorum;
190 uint actualVotes;

191 }
192 function executeMessage (

193 string memory messageToExecute,
194 string[] memory inputs
195) public{...}

196
197 function setVariables (

198 bytes32[] memory names,

199 bytes32[] memory values,
200 string memory messagelD

201) public{...}

202
203 function createProposal (

204 string memory _proposalHashRules,
205 string memory _proposalHashIds
206) public{...}

207

208 function voteProposal (
209 bool _vote

210) public{...}

211

212}

Listing 5.10: Choreography Instance Smart Contract.

5.2.3 Instantiation

The first operation in the proposed framework is the instantiation of a model.
This functionality can be triggered directly from the FLEXCHAIN interface
after the design of the model using the provided modeller based on the Chor-js
implementation [65]. The modeller indeed permits to create, upload, down-
load and deploy a choreography model. Using the deploy button on the
interface, the instantiation process starts as reported in Figure 5.8. The first
step consists of the automatic generation of the corresponding rules and their
storage inside the IPF'S. This generates the hash of the rules that is sent back

102 CHAPTER 5. FLEXCHAIN

User On-chain On-chain IPFS Off-chain
Interface Factory Instance Processor

U ser | l:on}ract con}ract I
| | | |
| Model upload i i i i
| ” - | : |
Generate rules | | |
! Upload rules l
| ’U
e E— Ruleshash___ | ________
|
Invoke Instance deploy |
i L Deploy Instance oontacth Wait for event
~
Return Contract address I
________________ |
Save Contract address Emit Event

Contract address T

Create
event listener

Return feedback

_____________,ﬁ_‘_'___t,_ﬂ

|
T |
| |
| |
| |

Figure 5.8: Sequence diagram of the instantiation phase.

to FLEXCHAIN. At this point, the factory smart contract is invoked passing
the generated IPFS hash and the number relative to the quorum that must
be reached in an eventual update phase. The factory contract will use a fixed
template to generate a new instance contract containing all the information
relative to the uploaded model such as the list of the choreography elements.
The address of the newly generated contract is then stored in the factory
that emits an event to notify the external process about the existence of a
new contract instance.

Retail Process Example (Instantiation) To show in practice this first
phase, Figure 5.9 reports the FLEXCHAIN modelling and deployment page
with the retail process. In order to allow a translation suitable to the rules
and contract generation, FLEXCHAIN requires the messages to be format-
ted as presented in the previous frameworks. However, since in this case
the messages are not translated directly into Solidity functions, the variables
inserted do not require a type. Indeed, the first message of the example re-
tail_quotation(good, amount) only specifies the names of the variables that
will be used later in the execution. To additionally support the modelling
phase, FLEXCHAIN integrates also the standard property panel for facilitat-
ing the insertion of the required information.

Once the model is created, it is possible to export it in .XML so as to
be available for the next interactions. At this point, before proceeding with
the deployment of the contract, the quorum parameter must be indicated in

CHAPTER 5. FLEXCHAIN 103

Flexchain Choreography Modeler Update Model Execute

> Properties

=1 «|[» | Choreography ~

=
et retail_quotation(ship_address(cus
— = good_amount) peymentt() tomerAddres)
£ &
O © Customer (Customer Customer
IsAvailable==true
O O—; Retail quotation X X Retail payment ——| Retail shipment —O
Retailer Retailer Retailer
— — —
H quotation(product ship_info(shipmen H
® & v _— e

(Retailer Refailer (Retaler)
Ask goods
quotation

—>| Paygoods »{ Ship goods

(_Producer (__Producer (__Producer

response(cost "’“e’%“e”o
Sl o :

Figure 5.9: Modelling page.

shipment(shipinfo)

BPMIN.i0

the dedicated form. This value will be used during the updating phase, in
which the involved participants will have to vote for changes. Finally, the
Deploy button allows the user to launch the procedure (described above and
in Figure 5.8) for the translation of the model into Drools rules, their upload
into the IPFS, and into the newly generated contract instance.

5.2.4 Update

In the update phase, it is possible to make run-time changes in order to re-
act to unexpected situations or to optimise the running process. The FLEX-
CHAIN tool provides a dedicated page visible in Figure 5.11 where the user
can design the updates. The first step consists to upload the .bpmn file cor-
responding to the original choreography to change, the model will be then
loaded inside the two panels of the page. The upper one is a viewer and it
only contains the imported choreography, the lower one instead is a modeller
and it can be used by the user to change the bpmn elements creating the
updated version of the model. After this, it is possible to click the View
Changes button to show the differences between the two models that will
be coloured in green (added elements) or in red (removed elements). To ef-
fectively upload the changes in the blockchain, first, the user has to select
the related smart contract using the drop-down list. This is possible thanks
to the factory contract that during the instantiation associates the process
names to their addresses (acting as a monitor) so as to be easily retrieved.
After selecting the contract, a first control comparing the imported choreog-
raphy elements (not the updated ones) with those stored inside the instance

104 CHAPTER 5. FLEXCHAIN

User On-chain IPFS
Interface Instance
Users User sl L

I
I
Propose updated model ."l

|
I
Generate rules :
D Ppluad new rules proposal
I
|
}

Vote update 1...N P Proposal event
P

Registrate vote 1...N > D

Check for guorum

”»

Quorum event

Update
new rules hash

] Update event
Update status I

L
|
|
|
|
i
Retumn feedback -IJ;_F: _____________ ﬁ

alt
[IsQuorum == true]

Figure 5.10: Sequence flow of the updating phase.

contract is made. In case they do not match, an error is shown to the user,
otherwise, the Update rules button is enabled and the update process as de-
scribed in Figure 5.10 starts. At this point, the FLEXCHAIN tool generates
the new rules for the updated elements and stores them inside the IPFS. After
that, the voting procedure starts for approving the new rules and adopting
them. Indeed, whenever a new update is made in the blockchain, it does not
immediately change the state of the contract but it comes as an update pro-
posal that must be approved by the other participants. When a proposal is
created, an event is emitted and it is captured by the other participants that
can vote using the interface for approving or not the proposal. When the
quorum is reached, the previously created IPFS hash is permanently written
in the blockchain and the participants are informed.

It is worth mentioning that the aforementioned update mechanism intro-
duces some security that should be discussed. Exploiting the FLEXCHAIN
functionalities, it is indeed possible for a participant to propose a malicious
update of the choreography without the consensus of the counterparts. Here,
thanks to the use of an on-chain voting mechanism, all the participants need
to vote on the proposal previously stored in the smart contract. Then, only
in case the quorum is reached the smart contract adopts the new rules. Oth-
erwise, the proposal can be rejected, thus interrupting the update. However,

CHAPTER 5. FLEXCHAIN 105

retail_quotation(payment1(amount ship_address(cus
good, amount) 1 omerAddres)
Gustomer Gustomer [Customer _
isAvailable == et
Retail quotation X X Retail payment ' Retall shipment
Retailer Retailer
quotation(product, payment0(amount ship_info(shipme
ng uanty)) ni_agdres) % m
rice, isAvailable) etail) merShipment)
Retailer Retaler [Retaller
oo | Pay gooss Ship,
isAvaiizble ==
false. Producer Producer
response(cost) (oo ;:“e”[’ shipment(shipinfo) BPMN.i0
> Properties
- Choreography .| A0 @
retail_quotation(paymentU{amount ship_address(cus retall_ship(custo
o|s gnu@um) 5 tomer_address) mershi?men()
Customer (Customer) Customer isAvailable == Retailer
true
= O_. Retail quotation |—p| Retall payment |—f Customer Detalls X New Activity X :O
Retatler Retailer Retaller Customer
AL \) pL e | Ll
quotation(product, payment1{amount z "
’ m i f shipment(shiplnfo)
O Retail-Tesponse(p retail_orderorder
fice, isAvailable) Detail)
o Retailer Retailer Producer
Ask goods Producer
quotaton [P Paygoods b1 oment
® isAvailable ==
false Producer__ __Producer Customer
¢ 4 &
& response(cost) B BPMNiD

Figure 5.11: Updating page.

the voting procedure can be exploited to introduce latency and noise in the
collaboration, forcing the other participants to vote and consequently pay
execution fees. To solve this, it is possible to set a limit to the proposal
that each participant can perform and that depends also on its correctness.
For instance, if a participant proposal is rejected two times consequently, a
further proposal is automatically blocked.

Retail Process Example (Update) Figure 5.11 shows the updating page
in which the retail process is updated according to the changes described and
motivated in Section 2.2.2. As described above, the page presented two main
views. In the upper one, the original version of the retail process is shown
while in the lower view, the updated version is available. In particular, the
updated model has three new tasks (Customer details, Retail shipment and
Producer shipment) with three related messages and two tasks removed (Ship
goods and Retail shipment). Also, the Retail payment task is moved. Once
the changes are modelled, with the Show Changes button it is possible to
have a graphical representation of the current changes. In particular, the
removed tasks are coloured in red and the new ones are coloured in green.
Differently, the moved task is not marked since this simple change has no
real impact on the underlying infrastructure.

At this point the user can trigger the propagation of changes through
the Update Rules button, notifying the other participants that the voting is

106 CHAPTER 5. FLEXCHAIN

available.

5.2.5 Execution

In the execution phase shown in Figure 5.12), participants can interact by
sending messages according to the flow prescribed by the model. Figure 5.13
shows the execution page, where the user can select the choreography to ex-
ecute from the list of available ones. At this point, the user can select one
message to execute from the list of available ones reported in the drop-down
menu (automatically retrieved from the blockchain). The required parame-
ters can be inserted in the dedicated form provided by the FLEXCHAIN user
interface. Finally, the button Execute message sends the request to the smart
contract that emits an event containing the message to execute, the IPFS
hash of the rules and the inserted inputs. The off-chain processor captures
this event, reads the rules from the IPFS and executes the one related to the
message. If the conditions are successfully evaluated, the inputs are written
in the smart contract producing an instance state update. This returns also
feedback to the user informing them about the status of the execution. To
notice, in the proposed scenario the off-chain processor is implemented as a
Spring Boot server while the user interface is a React application. However,
this is only one of the possible implementations since our approach fits also
other technological choices.

Retail Process Example (Execution) The last phase of the FLEX-
CHAIN approach permits the participants of an instance to collaborate at
run-time exchanging messages. In Figure 5.13 the execution page is reported
with the updated version of the retail process. On this page, after selecting
the contract from the list of deployed contract instances, the BPMN model
is shown. In addition, two forms allowing the execution are available. The
first one (Message ID) selects the message to execute from the list of ones
available in the model. On the right instead, the message Parameters form
requires the input to be passed to the function that will be evaluated in the
smart contract. Finally, the Fxecute Message button triggers the concrete
execution of the message function in the smart contract. From this, the
procedure invokes the off-chain processor and the IPFS, following the steps
described in Figure 5.12.

CHAPTER 5. FLEXCHAIN 107

User On-chain Off-chain IPFS
Interface Instance Processor
User : {:onlll act I I
Select message & inputs J'_ I i I
> Execute message | Dw.ait for event |
|
Emit event I
|
|
|
|
|
|
| Get rules
|
I
Rules
| <
|
I |] Evaluate rule I
I Update state I
- _ _Execution state __ |
Return information T I
iy | | |
| | |
| | |
| | |
| | |
| | |
| | |
T | | |
| | | |
| | | |
L | [| |

Figure 5.12: Sequence flow of the execution phase.

Flexchain

retailProcess.bpmn Events Panel <

Message Parameters

Message_0b317rc - good, 10

EledieIiesroe _

retail_quotation(paymentO{amount ship_address(ous retail_ship(custa
good, amount} 0 tomesAddress) mE(Ehl?'nEnl]
‘Customer Customer Customer iséuaisble == Retailer
e
O_. Retail quatation |4l Reteil pzyment | gl Customer details x et shipment x
Ratmier Relaier Retziler Customer
— — — i
Rexalm_res:wse[p retsi g @e-pmer
rioe, isAvaiable) Deta)
quotaboniproduct, payment 1(amount shiomani(shipinfo)
Retiler Rataller (" Progucer
sk goods Proguper
o quetsion [| e shipment
wailable ==
faise Producar Progucer) (__Customer
PR omer@_um orde]

Figure 5.13: Execution page.

108 CHAPTER 5. FLEXCHAIN

Table 5.2: Cost Analysis for the X-rays process.

Transaction Name Gas Used
Factory contract deploy 1,879,525
Template contract instantiation 1,936,369
IPFS hash upload 158,776
Update proposal 212,114
Vote for proposal 77,758
Average message execution 62,183

5.3 Experiments and Validation

Table 5.2 reports the cost analysis made on the execution of the proposed
case study®. In particular, the main costs are related to the deployment of
the factory contract (around 1.8 million units of gas) and to the instanti-
ation of the template for a new choreography (around 1.9 million units of
gas). However, the factory is deployed only once since it is responsible for
deploying other processes. The template contract instead, is deployed every
time a new choreography is uploaded and it will store the id of the IPFS lo-
cation of the rules. This step requires a transaction consuming a significantly
lower amount of gas (around 158,000 units of gas). Once the choreography is
deployed, it can be changed by making an updated proposal to the contract
(around 212,000 units of gas) that must be approved by the other partici-
pants (around 77,000 units of gas). Compared to the deployment operations,
the update one comes with lower gas consumption. Indeed, thanks to our
approach, instead of deploying new contracts every time a change is done,
it is only necessary to complete the voting mechanism storing the new IPFS
referrals. Finally, users can participate in the execution phase by sending
messages. This is the less consuming action since it requires only around
62,000 units of gas. Indeed, it is important to maintain low consumption
due to the high frequency of exchanged messages regarding the deployment
operations. In general, the overall approach can be considered gas efficient
since only one-time operations have a major consumption of gas, in favour
of the most efficient execution.

6The execution traces of the factory and instance contracts are
available respectively at https://sepolia.etherscan.io/address/
0x48fb86c35c0Ec23D671139A5Befb5a01dled43c4f and https://sepolia.
etherscan.io/address/0xb6eeff070e0a199587¢c34022325633bel68c645¢cC.

https://sepolia.etherscan.io/address/0x48fb86c35c0Ec23D671139A5Befb5a01d1e43c4f
https://sepolia.etherscan.io/address/0x48fb86c35c0Ec23D671139A5Befb5a01d1e43c4f
https://sepolia.etherscan.io/address/0xb6eeff070e0a199587c34022325633be168c645c
https://sepolia.etherscan.io/address/0xb6eeff070e0a199587c34022325633be168c645c

CHAPTER 5. FLEXCHAIN 109

5.4 Comparison with Existing Approaches

The challenge of providing flexibility during the execution of process-aware
information systems is largely discussed in the literature and many process
management systems supporting flexibility are currently developed [103, 79].
Also, different approaches are provided in many contexts, for example, in
[50] the authors proposed a real-time system for dealing with the flexibility
of cloud service workflows. In particular, they combine BPMN and UML
which are used to represent the functional and behavioural views of the
cloud workflows. Then, during the execution phase, the proposed system uses
defined QoS (Quality of Service) attributes to control whenever an anomaly
occurs correcting it.

Differently, support for flexibility in business process modelling and ex-
ecution can be achieved in different ways. In [78] the authors proposed an
extension for BPMN named CF4BPMN in which the main objective was to
obtain controlled flexibility. Indeed, thanks to this extension, process design-
ers can model which business process element can change and under which
conditions by using specific expressions.

In [60] instead, the versioning is faced. Here an approach supporting
dynamic changes in business processes is proposed and issues on version
management for process changes are discussed. The proposed solution is
based on change patterns that are concretely supported by a process designer
extending BPEL (Business Process Execution Language).

Finally, in [116] dynamic business processes are executed using rules that
are selected dynamically based on the surrounding context. In this way, it is
possible to support changes at run-time by executing new actions and rules
coming from the updated context.

All the approaches described above show how it is possible to obtain flex-
ibility in different kinds of business processes. However, all of them signifi-
cantly differ FLEXCHAIN since its focus concerns the execution of blockchain-
based processes guaranteeing trust while achieving flexibility. This topic is
still almost unexplored, only a few approaches are available.

In [73] the authors propose a dynamic role binder for run-time choice of
sub-processes. They provide functionalities for the binding and unbinding
of actors to a role in a dynamic way, supported by consistency verification
and based on agreements. However, the proposal is mainly a run-time se-
lection of already designed situations, with a focus on dynamic role-binding.
FLEXCHAIN, instead, wants to provide flexibility during the execution of the
business process, without the need of specifying in the modelling phase the
elements of the model that could be modified at execution time.

In [2], the work focuses on reaching flexibility on the technologies ex-
ecuting business processes. The resulting system is indeed developed with

110 CHAPTER 5. FLEXCHAIN

on-chain and off-chain components based on federated blockchains. However,
here the focus is on the flexible interactions between different technologies.
FLEXCHAIN instead, wants to achieve flexibility in the execution of the busi-
ness process itself and not on the underlying technologies.

Finally, in [62] the issue of upgradeability is faced. The authors inves-
tigate how starting from a collaboration diagram, it is possible to upgrade
the smart contracts representing the business process, its state and its par-
ticipants. In particular, each participant involved in the collaboration is
translated into a separate smart contract. Then, different patterns are used
to permit an upgrade of the collaboration. Contracts version are indeed as-
sociated with their names in a dedicated structure, such as storage which
is separated from the business logic. Also, to invoke a contract function, a
proxy forwards the request to the logic contract. In this way, whenever an
upgrade occurs (after voting), the proxy contract updates the logic contract’s
address reference to the latest. In this case, the differences with FLEXCHAIN
consist of different aspects. First of all, FLEXCHAIN aims at providing a
flexible execution at run-time of active instances of business processes, here
instead the authors focused on the dynamic versioning of inactive instances.
Then, the works represent the integration between parties with a BPMN
collaboration diagram, later translated into blockchain code. Finally, the
proposed infrastructure of different smart contracts introduce an elevated
level of complexity and high deployment costs.

Table 5.3: Table of identified related works and their characteristics.

Source BPMN Blockchain Flexibility
[50] v X Scaling deployed services during the workflow
[78] v X Modelling and executing controlled flexibility
[60] X X Dynamic process version selection
[116] v X Rule- and context-based modelling and simulation
[73] v v Run-time selection of predesigned elements
2] v v Dynamic blockchain selection
[62] v v Upgradeability and versioning approach

Table 5.3 summarises the analysed works concerning flexibility and con-
sidering three main characteristics: (i) if the work explicitly uses BPMN
diagrams for modelling, (ii) if the work relies on blockchain, and (iii) which
flexibility aspects the work supports, and how it implements them. The ta-
ble shows that in most cases flexibility is achieved in a setting that does
not rely on blockchain technology, hence without facing all issues raised by
the immutability of the blockchain. In the approaches that, instead, adopt
blockchain for a trusted environment, the concept of flexibility they consider
differs from work to work. In [2], the authors consider flexibility as the pos-
sibility to select different blockchains, while in [73| the authors provide the

CHAPTER 5. FLEXCHAIN 111

possibility to bind actors and control-flow decisions at run-time. In [62], the
work focuses on the smart contract upgrading mechanism, thus proposing a
versioning approach. Differently, FLEXCHAIN focused on a richer flexibility
mechanism for business processes, whose business logic and execution state
is stored in the blockchain, supporting a voting mechanism that permits
arbitrary changes in the model at run-time.

CHAPTER 0

MICHAIN: SUPPORTING
MULTIPLICITY

In this chapter, the thesis faces the multiplicity challenge of executing inter-
organisational business processes on blockchain. Indeed, the proposed CHOR-
CHAIN framework and the derived versions focus on inter-organisational sys-
tems that involve single components for each participant willing to collabo-
rate. However, such a single-instance modelling approach seriously hinders
the applicability of these model-driven solutions to those systems where the
number of instances covering a particular role can change arbitrarily. In
particular, when multiplicity is represented using single-instance elements,
the modelling complexity drastically increases, due to the high number of
elements and conditions leading to error-prone implementations. For this
reason, using multi-instance representations can reduce the modelling com-
plexity and enable more compact models.

Typical examples of such kinds of systems are represented by the de-
scribed retail process (see Section 2.2.2), auctions and the Internet of Things
(IoT). In those cases, there is a strong need to represent multiple actors such
as producers, sensors or bidders. However, when considering choreographies,
the main issue is related to the semantic definition of multi-instance elements
due to the absence of clear formalisation in the BPMN standard [21]. For this
reason, the thesis introduces the MICHAIN framework, a revised version of
CHORCHAIN for supporting the modelling and execution of choreographies
with multiple instance elements. In particular, MICHAIN adopts a novel so-
lution for including multiplicity in both participants and their operations,
enabling new kinds of scenarios to be created.

The following sections introduce the revised framework with the concep-
tual description of the supported multi-instance elements and the introduced

114 CHAPTER 6. MICHAIN

attributes. Then the implemented tool is presented with a particular focus
on the proposed support for multiplicity aspects. Then, the experiments on
the running example are presented with a final overview of already existing
approaches.

6.1 MICHAIN: Supporting Multiplicity

This section illustrates the novel strategies adopted inside the pro-
posed model-driven approach for dealing with multiple instances in inter-
organisational business processes. MICHAIN permits indeed to enable a
richer set of executable scenarios while inheriting the fundamentals of the
CHORCHAIN framework to address trust concerns.

6.1.1 Framework phases

Figure 6.1 reports the various phases based on the CHORCHAIN frame-
work extended to support multiplicity aspects. The resulting MICHAIN
framework encompasses novel strategies, focusing on the modelling of a chore-
ography diagram and on its execution on the blockchain. In particular, a
novel mechanism is adopted for automatically translating the choreography
into Solidity code and deploying it on the blockchain.

ing i H Smart contract Blockchain NG
¥ Multiple 1 E
E&4 54 ‘ RoleA [{ @ ' |:> [)
: i a RoleB| Contract ﬁ EE H Auditor 1
! Subscribe| nstance ID: 1 1igeneration JAVA !
H } Multiple | i .
- Pel Generation & Auditing
Role A
! Deployment
! Role B : ZsIzzzzszzzzzoos
== ¥ H Instance ID: 2 i
Publish —> Search ' | =4
Multi-instance “ it del E [sS4z mulipll | : '
i repository model H RoleA| | !
modelling | Create oleAl = @—@ = & | Deployed Instance
environment t 1 new ‘ RoleB| 1 <> > 1
Modelling + instance | Instance ID: 3 1" RoleA @—@ RoleB |! I—) 1
N ' '
New nstance L1

Instantiation Execution

Figure 6.1: MICHAIN framework: supporting multiplicity.

The first phase foresees the modelling of a process using the choreogra-
phy modelling environment. In this phase, the integrated environment was
extended to fully support the creation of multiple-instance elements, and the
connected attributes specification. Indeed, at design time, MICHAIN requires
the developer to mark roles dependently if they are single- or multi-instance.
This will result in a different binding procedure between participants and
roles, without having an explicit subscription functionality. More details

CHAPTER 6. MICHAIN 115

on how participants are defined in choreography are provided in the next
sections.

In the generation phase, the completed model is processed by a trans-
lator that automatically creates a smart contract which is then deployed on
the blockchain. The smart contract implements the different activities that
participants have to perform as defined in the corresponding choreography
model. For each activity in the model, a function enforces the specified mul-
tiplicity of invocations, the cardinality of participants, and the exchanged
data. Notice, in the current state of MICHAIN there is no support for ex-
plicit multiple instantiations of the model since this aspect is concealed in
favour of a direct instantiation for each created model. Indeed, the definition
of multi-instance roles can differ for each instance thus requiring additional
technicalities for their management.

After the generated contract is deployed on the blockchain, the final fore-
seen phase refers to the execution, in which the parties of a system com-
municate by exchanging messages. This is done by invoking the deployed
smart contract functions that then coordinate the overall execution, keeping
an immutable track of all the exchanged messages and their data. The con-
tract contains also a set of controls based on the state of the messages and of
the multi-instance elements. These mechanisms enforce the right execution
flow and ensure that all the steps are performed accordingly to the initial
choreography.

6.1.2 Modelling multi-instance elements

This section describes how the modelling of multiple instances is supported
by the proposed approach and the resulting choices addressing the lack of the
BPMN standard. First, a definition of the multi-instance concept is given,
and then the cases supported by MICHAIN are shown.

In BPMN, the multiple instance behaviours can be identified on partic-
ipants or tasks, marking them with a three-vertical dashes symbol. This
kind of behaviour is very useful to avoid the creation of loops and addi-
tional elements improving the understandability of the model. Furthermore,
multiple instances allow the expression of complex behaviours in a compact
way. This marker expresses the parallel behaviour where participants can
interact simultaneously in the same task. Table 6.1 reports all the possible
supported cases of multiple instances. In the first case on the left column
(case 1), the initiator is marked as multi-instance so multiple participants
can cover the Role A sending a single message each to the receiver Role
B. In the second example (case 2), both the initiator and the receiver are
marked as multi-instance. This time, Role A will have many participants
sending a single message to all receivers covering Role B. This means that
each sender will send a broadcast message to all the receivers. The third

116 CHAPTER 6. MICHAIN

example (case 3) considers only the receiver Role B as multiple. This case
is rather simple since at run-time there is a single sender associated with
Role A that sends the message in broadcasts to all the receivers. The next
case considers multi-instance tasks. In particular, the behaviour of tasks is
translated as a repetition of the defined action (i.e., sending a message). In-
deed, in MICHAIN, during the translation, multi-instance attributes affect
directly the messages that will include the handlers for multiple participants
and tasks. In the most simple case, a multi-instance task is surrounded by
single-instance roles (case 4). This means that a single sender delivers many
times the same type of message to the same receiver, but with a different
payload. The other cases are related to the combination of a multi-instance
task with multi-instance roles. Indeed, in the case of multiple senders Role A
and multiple tasks (case 5), each participant delivers many times a message
to a single receiver. When both task and the two roles are multi-instance,
multiple messages are sent in broadcast to all the receivers (case 6). Finally,
in the last case, the same sender will deliver a message multiple times in
broadcast to all the receivers (case 7).

6.1.3 Multi-instance attributes

Despite the choreography model permits the representation of multi-instance
elements, additional information supporting their execution is necessary. In
particular, those are referred to as attributes and depending on the case,
specify information about the run-time execution of an element following the
logic reported in Table 6.2.

The case of a single-instance role is the most simple one and it only
requires the address attribute for representing the blockchain account of a
fixed participant. Indeed, due to the different structure of the smart contract,
this data is used for managing the reception of messages, so a single receiver
must be explicitly specified in the model. In the case of multi-instance par-
ticipants instead, they can directly join at run-time without any restriction
on their identity (i.e., address). During the design, only the cardinality of
senders/receivers must be specified, setting the Minimum and the Maxi-
mum attributes for each specific role. Finally, in a multi-instance task the
loopCardinality attribute indicates the maximum number of times that a
task can be executed. It is worth noting that during the generation phase,
the attributes and behaviours of tasks and participants are inherited by the
messages. Indeed, all the smart contract functions derived from messages
will contain information related to multiple instances.

CHAPTER 6. MICHAIN 117

Table 6.1: Modelling cases of multi-instance participants and tasks.

Multi-instance case Behaviour Multi-instance case Behaviour
Message Name Message Name
Role A —®—> Role A . l
1) m :..‘ X [] 5) [...‘ % []
Task Name (] _E_> Task Name m
m
Role B Role B
Message Name Message Name
2) e o208) e 00— o0
a2, Sen pon— R, Sen
Task Name - _8_» - Task Name - _8_> -
"
Role B Role B
mn 111}
Message Name Message Name
3) Role A) X :..‘ 7) Role A () X :..‘
Task Name (] Task Name (]
m
Role B Role B
[1T} 11}
Message Name
4) Role A o X []
[[|

Task Name

n
Role B

6.1.4 Translation approach: BPMN to Solidity

The last aspect introduced in MICHAIN concerns the automatic generation
of a smart contract implementing the multiplicity aspects above mentioned.
In general, the translation lays its foundations on the one proposed in CHOR-
CHAIN which considers choreography messages and control flow elements as
shown in Table 3.1. For each of them, a function inside the smart contract
is created. In particular, messages represent the operations that each par-
ticipant can perform and they are translated as a public function. On the
contrary, gateways and events are automatically completed internally to the
contract since they define the overall execution flow.

The main novelty introduced in the MICHAIN translation consists of the
additional logic generated to manage multi-instance participants and mes-
sages. Indeed, each element contains not only the execution state but also
the inherited multi-instance attributes defined in the modelling phase (if

118 CHAPTER 6. MICHAIN

Table 6.2: Supported multi-instance attributes.

Case Attribute Name Behaviour

Single instance participant Address Defines participant account

Minimum num. of
Multi-instance participant Minimum participants executing
the message

Maximum num. of
Multi-instance participant Maximum participants executing
the message

Multi-instance task Loop cardinality Num. of executable times

present). These are then used inside the functions for enforcing the cardinal-
ity of each execution with a double check both on the participants and on
the message.

To handle the interaction between parties, after the invocation, each mes-
sage function emits an event containing the input value of the message and
a receiver address. This event is handled by the target receiver outside the
blockchain, who takes appropriate actions accordingly to the received in-
formation and proceeds to the next step. In the case of a single-instance
message, the function additionally stores the input data in the smart con-
tract state, this information is used on-chain for verifying the conditions of
exclusive gateways.

6.2 MICHAIN Tool

This section presents the MICHAIN implemented framework focusing in par-
ticular on the solution conceived to integrate relevant multiplicity aspects
in the model, having a clear decoupling between the behaviour and the at-
tributes of the multiple instances. To do this, a new architecture is provided
including new smart contracts dynamically managing multiple participants
and messages, enabling complex scenarios with role binding at run-time.
All these aspects are combined in a new implementation covering all the
multiple-instance phases starting from the design until their execution.

6.2.1 Modelling

This section shows how implemented MICHAIN tool supports the creation
of choreography diagrams and, in particular, of multi-instance elements and
attributes. Also, this section provides an example using the retail process

CHAPTER 6. MICHAIN 119

i X ;
REG SEHEsRanEl Properties Panel X i
Properties Panel X

Participant_ID2 .
Participant_1mrxs2t

ChoreographyTask_ID

General

General General

General

Participant Id General
Participant Id

Participant_ID2 x d
Participant_1mrxs2t X

Participant Name ChoreographyTask_ID
Participant Name

“ Name
New Participant 1

Role B
Documentation New Activity
Multi-Instance
Address Multi-Instance

OX7A224367EBI9EB4IACEOF3THIFACOEDSFeBBE0 Mensmum ¢ s
Z loopCardinality

3

! “

- “
Maximum

2

. (¢) A multi-instance
task.

(b) A multi-instance

(a) A single-instance o
participant.

participant.

Figure 6.2: Multi-instance attributes modelling.

scenario in the implemented tool. In MICHAIN, the creation of a choreogra-
phy diagram is supported in the provided modelling environment based on
chor-js. This makes it possible also to create multi-instance participants and
tasks already defined in the BPMN without any particular addition.

Retail Process Example (Modelling Elements) The proposed run-
ning example including multi-instance elements is described in Section 2.2.2.
Here the model includes new behaviours such as the possibility for a cus-
tomer of asking for more goods and for a retailer for asking a quotation from
multiple producers, selecting then the most proper one.

Multi-instance attributes A novel implementation was instead provided
for the specification of multi-instance attributes. Indeed, this step can be
performed using an extended properties panel in the proposed modelling
environment as visible in Figure 6.2.

As described in Section 6.1.3, for single-instance roles, the panel only re-
quires the address representing the blockchain account of the participant as
visible in Figure 6.2a. In particular, this information is used for managing
the reception of messages. While the address of the sender is automatically
associated with the party executing the message, the receiver must be ex-
plicitly specified in the model. The panel of a multi-instance participant

120 CHAPTER 6. MICHAIN

is reported in Figure 6.2b, where this time there is no need of setting the
specific participant address. Indeed, this case requires the definition of the
Minimum and the Maximum attributes. Finally, Figure 6.2c shows the
property panel of a multi-instance task. Here only the loopCardinality
attribute has to be set, indicating the number of times that the task (so the
attached message) can be executed.

Retail Process Example (Modelling Attributes) Considering the pro-
posed running example, Figure 6.3 shows the property panels for modelling
the above-mentioned attributes. In particular, Figure 6.3a reports the Re-
tailer single participant with the related address. Figure 6.3b and Figure
6.3c shows instead the definition of multi-instance Producer participant and
Retail quotation task. For demonstration purposes, in the first case, the
prouder has a minimum and a maximum of 1 and 2. The task instead, has
a cardinality of 3.

Participant_176t6hr

Genera! ChoreographyTask_148248i

Participant_11ylvw7

General

Participant Id General

General Participant_176t6hr
Id

Participant Id Participant Name ChoreographyTask_148248i

Participant_11yhw7 x Producer
Name

Participant Home Multi-Instance Retail quotation

Retailer
Mini -
inimum Documentation
Documentation 1
loopCardinality

Address Maximum 3

Ox7A224d367EB99eB49dCSOF3d7b9FAC9E03FeSBeOﬁ 2 7’

(c) Retail quotation

(a) Retailer participant. (b) Producer task

participant.

Figure 6.3: Retail process multi-instance attributes modelling.

Messages The last aspect of the modelling phase is the definition of chore-
ography messages. In this case, the syntax is derived by CHORCHAIN. A
special case relates to the address parameter as used in message2 and shown
in Figure 6.4. In this case, the address parameter will identify a single re-
ceiver being part of a previous multi-instance interaction. For example, the
participant playing Role B, after receiving messages from the participants
playing Role A, will respond to one of them, only.

Retail Process Example (Modelling Messages) In the retail process,
the new case introduced using the address parameter is visible in Figure 6.5
with the payment0 message which also includes the parameter producer
to identify the single participant receiving the payment and the additional
information.

CHAPTER 6. MICHAIN 121

eography Modeller

> Properties
-::: ..H. ‘Chcreography v| A~ 0

=

message1(uint

e
0 ™M

m——————
Role A
1l

Task Name

®

@00 B O

Role B

messageZ(addres
s roleA)
BPMN.i0
m u - ki
> Properties
retail_quotation(s . N
ai ! paymenti(string ship_address(stri
tring good, uint st 1) i dd)
H H H
Customer Customer ‘Customer
Retail tati isAvailable==true
O—> S Q‘;D”" ‘§<X\ »{ X Retail payment |——»| Retail shipment —O
Retailer Retailer Retailer
o > e -
: S payment0{address : :
i _producer, string : i

= product, “)'"' recejptl, siring = -
Retail Ihse(u m Shu@df) o retails tring
e, bool retail_order(string

int

3 : customerShipmen
isAvailable) " ordereta) Y
Retailer Retailer
ol Askgoods > Pay goods
isAvailable==Talzs quotation Froducer
Producer I} J
il

BPMILi0

Figure 6.5: MICHAIN modelling page.

122 CHAPTER 6. MICHAIN

6.2.2 Generation

This part provides the implementation details of the smart contract generated
by the translation passing in input the BPMN choreography diagram as
described in Section 6.1.4.

Contract state The first part of the contract is reported in Listing 6.1
and it defines the core data infrastructure supporting the execution of multi-
instance elements. In particular, the first ‘struct’ in Lines 214-221 defines
how an Flement is represented inside the smart contract and maintains in-
formation related to multi-instance attributes. The first variable in the struct
represents the enabling state of the element (Line 215). Indeed, after the ex-
ecution of each contract function, the corresponding element is disabled to
prevent unexpected behaviours. Then, the loopCardinality variable (Line
216) contains the maximum number of times that a participant can interact
with that element (e.g., sending a message). The uniqueParticipants array
(Line 217) contains instead the unique addresses of participants that have
interacted with that element. This will be used to check if the number of par-
ticipants has reached the maximum allowed one as specified by the modelled
attribute. This check will use the participantMaz variable (Line 219) that,
along with the participantMin one (Line 218) defines, the number of partic-
ipants that have to invoke a function before it can be considered complete.
Finally, the cardinalities mapping (Line 220) associates each invoking partic-
ipant with the number of invocations, and it is used to cover multi-instance
message cases. The overall list of elements is then stored in the elements
mapping that associates each Id to the respective struct (Line 222). In Lines
223-225, the events representing the message exchange of the smart thermo-
stat are defined. In particular, for each message in the model, an event is
automatically generated. This event contains the actual sender, the receiver
address and the input variables. Notice, in the case of a single-instance re-
ceiver, its address is identified by the specific one defined in the element
attribute during the modelling phase. In multi-instance cases instead, the
broadcast reception uses a receiver address in the form of all zeros.

Lines 226-230 show the global state of the contract that is represented
by the set of variables exchanged only by single instance participants. As
previously mentioned, these kinds of variables are unique, and they are used
as enforcing mechanisms when an exclusive gateway is met. Finally, the
constructor of the contract in Lines 232-235 creates the start event element
and starts its execution. In particular, in line 233 the related element is
created with a loop cardinality, minimum and maximum participants of 1.

CHAPTER 6. MICHAIN 123

This is due to the fact that events, such as gateways, are executed only
internally and only one time. In this way, if on the one hand, this information
can be unnecessary, on the other hand, it permits to have a flexible structure
that can easily be extended or modified in case of new needs. Notice, to
optimise and divide the overall costs, there is not a single initialisation for
all the elements, but each of them is created in the previous function and, in

case it is not a message, it is also executed.

213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237

contract RetailProcess{
struct Element{
bool isEnabled;
uint8 loopCardinality ;
address [| uniqueParticipants;
uint8 participantMin;
uint8 participantMax
mapping(address => uint8) cardinalities;
}
mapping(string => Element) elements;
event retail quotation(address from, address to, string good,
uint amount);

event order info(address from, address to, string orderID);
struct GlobalState{
string good;

string customerShipment;

GlobalState global;

constructor () {
createNextElement ("StartEvent_102vawy", 1, 1, 1, true);
StartEvent 102vawy () ;

Listing 6.1: Contract state variables definition.

Execution functions The next part of the smart contract is reported in
Listing 6.2 and it contains the function representing the payment() message.
The first step retrieves the element from the related mapping (Line 239) later
used for checks and data updates. Then, two require statements check the
initial conditions. The first in Line 240 needs the message to be enabled. The
second one in Line 241 has instead two parts, and it checks if the user has
reached the maximum number of invocations (given by the loopCardinality
variable) and if the message has reached the maximum number of invoking
participants. If those conditions are successfully evaluated, the next step in
Lines 242-244 checks if this is the first invocation of the user and, in such
a case, it includes the participant to the uniqueParticipants array. Succes-
sively, the number of executions for the user is increased (Line 245), and the
payment is made to the indicated participant (Line 246). Then, receipt(and
shipment_address state variables are updated (Lines 247-248). After this,
the event containing the input variable to send to the receiver is emitted

124 CHAPTER 6. MICHAIN

(Line 249). This event contains the input variables and it uses the address of
the sender as from field, while the receiver is indicated with the producer
address since it targets a single instance among the multiple ones. After this,
Line 250 checks if the cardinality for that user and element unique partic-
ipants have both reached the maximum. In that case, this means that the
invoker participant was the last admissible one and that the last possible
execution was performed. This kind of check covers the possible presence of
both multi-instance messages and participants. After the last execution is
reached, the state of the current message element is set to false (Line 251)
and the next one is created (Line 252). To deal with the possible loops that
can require a function to be executed again, the step in Line 253 resets the
cardinalities, and the addresses inside the executed element, so as to be exe-
cutable again if necessary. Finally, since the next element is a gateway, it is
also executed (Line 254).

238 function Message 1lv7cacO(string memory receiptO, string memory
shipment address, address _producer) public payable{

239 Element storage e = elements|["Message_lvicac0"];

240 require (elements|"Message_lv7cac0"].isEnabled true);

241 require (e.cardinalities [msg.sender]| < e.loopCardinality &&
e.uniqueParticipants.length <= e.participantMax);

242 if(e.cardinalities [msg.sender| — 0){

243 e.uniqueParticipants.push(msg.sender);

244 }

245 e.cardinalities [msg.sender|++;

246 payable(producer).transfer (msg. value);

247 global.receipt0 = receiptO;

248 global.shipment address = shipment address;

249 emit payment0(msg.sender, producer, receiptO, shipment address);

250 if ((e.cardinalities [msg.sender| = e.loopCardinality) &&
(e.uniqueParticipants.length — e.participantMax)){

251 setState ("Message_lv7cacO", false);

252 createNextElement ("ExclusiveGateway_ljohog7", 1, 1, 1, true);

253 resetCardinalities ("Message_lv7cac0");

254 ExclusiveGateway 1ljohog7 () ;

255 }

256}

Listing 6.2: retail quotation message function.

In addition to messages, also gateways are translated as functions and
they are automatically executed internally by the smart contract. Listing
6.3 reports the exclusive gateway after the Retail quotation task verifying the
isAvailable variable. As for the messages, the state of the current element
is checked and then disabled, resetting also the cardinalities for a possible
other execution (Lines 258-260). Then, the condition on the isAvailable state
variable is evaluated. Asreported in the model, if the variable is true it means
that the good is available and the process can continue with the shipment
(Lines 261-264). In the other case, the good is not available and the retailers
have to be involved (Lines 265-267).

257 function ExclusiveGateway 042aut8() private {
258 require (elements ["ExclusiveGateway_042aut8"].isEnabled =— true);

CHAPTER 6. MICHAIN 125

259 setState ("ExclusiveGateway_042aut8", false);

260 resetCardinalities ("ExclusiveGateway_042aut8");

261 if (global.isAvailable = true){

262 createNexElement ("ExclusiveGateway_ljohog7", 1, 1, 1, true);
263 ExclusiveGateway 1johog7();

264

265 else if(global.stopThermostat =— false){

266 createNextElement ("Message_1h3ew61", 1, 1, 1, true);

267 }

268 }

Listing 6.3: Exclsuvie gateway function.

6.2.3 Execution

The last phase of the presented framework concerns the execution of the
generated smart contract!. To clarify this aspect, Figure 6.6 reports the se-
quence flow describing a simple interaction between a sender and a receiver
in a two-way task. The first step is made by the sender that invokes the func-
tion in the generated smart contract corresponding to the request message
to send. The contract emits then an event in the blockchain containing the
message data that is captured by the receiver through an event listener. At
this point, the receiver invokes the contract for delivering the response mes-
sage that will be finally captured by the initial sender. In the implemented
smart thermostat scenario, the participants correspond to the presented de-
vices, interacting accordingly with the steps described in the sequence flow.
The event listener instead, is a custom piece of software that captures events
from the blockchain forwarding information.

Sender Blockchain Receiver
Event Event
Sender Listener Llstf:-ner Receiver

T
|
Send request | |

message Emit request :

I

|

|

l

i » event Capture request
I event

| >
|

|

|

|

Send response
message

Emit response
event R

|
I
|
|
I
Capture response I
event T :
|
I |
| I
' 1

Figure 6.6: Two-way task execution sequence flow.

!Tool, smart contract and choreography code available at https://bitbucket.
org/proslabteam/michain/src/master/

https://bitbucket.org/proslabteam/michain/src/master/
https://bitbucket.org/proslabteam/michain/src/master/

126 CHAPTER 6. MICHAIN

Table 6.3: Cost analysis for retail process scenario.

Executed message Gas Used

Deploy 3,324,906
retail quotationl 143,991
retail quotation2 50,319
retail quotation3 95,284

retail responsel 121,841
retail response2 45,257
retail response3 140,511
quotation 156,649
responsel 97,710
response2 114,289
payment(206,711
payment1 143,952
retail order 138,428

6.3 Experiments and Validation

To assess the feasibility of the MICHAIN approach, this section reports the ex-
periments made on the retail process scenario, generating the corresponding
smart contract and executing it simulating the reading and writing from/to
the different parties®. In particular, the choreography was executed entirely,
following the longest path until reaching the end event, analysing the result-
ing performances in terms of gas costs. The experiments were based on the
Mumbai testnet of the Polygon blockchain, one of the most prominent scaling
solutions of Ethereum. This choice was made as a first attempt to scale the
MICHAIN approach due to the potentially high number of involved parties.
However, since Polygon is EVM based, the gas consumed by the contract
can be considered independent from the underlying blockchain. Indeed, the
chosen implementation mainly affects the execution times (depending on the
consensus) and the final fee (depending on the currency exchange value).
Table 6.3 reports the execution cost for each message considering the
possibility of having multiple executions and multiple participants. Indeed,
some messages are executed more than once since they can be part of a
multi-instance task or a multi-instance participant. Analysing the results of
the experiment, the higher cost is related to the deployment of the generated
smart contract, with a total of 3,324,906 gas used. The message executions
instead are rather cheap, as they consume a minimum of 50,319 units of
gas for the second execution of retail quotation message to a maximum of

2The executed smart contract is available at https://mumbai.polygonscan.com/
address/0xF053e29fd2D82ABAf84f4583A039Chb746¢cfE6038

https://mumbai.polygonscan.com/address/0xF053e29fd2D82ABAf84f4583A039Cb746cfE6038
https://mumbai.polygonscan.com/address/0xF053e29fd2D82ABAf84f4583A039Cb746cfE6038

CHAPTER 6. MICHAIN 127

206,711 units of gas for the payment0 message. This variation is given by the
activation of gateways that can follow a certain message. In this case, indeed,
a transaction will also include the execution of the gateway, thus increasing
the cost. However, the proposed approach can be considered feasible in terms
of costs, since also the aggregate measures are quite affordable. Indeed, the
total amount for the deployment and message execution is 5,058,052 units
of gas. Furthermore, the total cost has to be divided among the involved
participants depending on the executed function.

6.4 Comparison with Existing Approaches

The support of multiple instances in BPMN is a topic that has encountered
many proposals and tools [41, 39, 40]. However, most of them target Collab-
oration diagrams without considering Choreographies. Moreover, this is still
unexplored when blockchain is used for trusted execution.

In [47] the authors propose an approach to model complex distributed sys-
tems dealing with the multiplicity of role instances and service sessions. To
this purpose, the choreographed behaviour is represented using UML activity
diagrams. To support the multiplicity aspects, multiple roles are indicated in-
side the activity diagram while multiple activities are identified by a separate
model. Finally, to specify the overall sequence of actions, a flow-global chore-
ography relying on UML is used. For what concerns the modelling aspect,
MICHAIN aims at supporting the modelling and execution of choreographies
using BPMN standards. Indeed, BPMN allows defining in a single model
the distributed coordination between components and their multi-instance
attributes. For this reason, the focus is on supporting multiplicity by ex-
tending the BPMN standard, without the need for additional elements or
models. In [70] the authors propose the automatic detection of synchronisa-
tion points of choreographed models. In this case, the overall choreography
is derived by (i) the process model, (i) the data objects, and (iii) their
conceptual model. To manage multi-instance activities, loop and parallel
activities are supported and implemented by extending Activity™™ . Also in
this case MICHAIN differs from the modelling aspect as it considers a sin-
gle BPMN choreography containing all the information needed to represent
multi-instance concepts. Moreover, MICHAIN also considers blockchain as a
trusted execution environment. Support for multiple instances elements on
blockchain-based settings was proposed in the Caterpillar engine [75] already
described in Section 3.4. In this work, the authors include sequential and
parallel multiple-instance activities such as call activities and sub-processes.
In those cases, Caterpillar generates a separate Solidity contract to encode
the multi-instance sub-process. This contract is also instantiated once for
each specified instance. The main difference with this thesis is the types

128 CHAPTER 6. MICHAIN

of treated BPMN elements and their translated blockchain behaviour. In-
deed, the authors consider BPMN process model multi-instance elements as
separate sub-processes that are reusable many times. MICHAIN instead, con-
siders BPMN choreography elements and, in particular, multi-instance tasks
and participants which permit the expression of different behaviours. This
affects also the smart contract generation which encodes the multi-instance
behaviour directly in the main smart contract. The resulting code regulates
the users’ invocations and the execution of messages.

CHAPTER 7

LMULTICHAIN: SUPPORTING
PRIVACY AND
CONFIDENTIALITY

In this chapter, the thesis faces the privacy and confidentiality issues of
blockchain technology. There are scenarios where an inter-organisational
business process execution best fits with the demand for having pre-defined
participants and restricted access to data so as to avoid, for instance, the
disclosure of sensitive information. This results in a need for a permissioned
environment, in which communications are isolated and only the interested
parties have access to their data.

For this purpose, CHORCHAIN was extended to fit different requirements
and multiple blockchain technologies. This results in a more abstract engi-
neering methodology, supported by a practical framework, named MULTI-
CHAIN that starting from the same high-level specification permits generat-
ing the low-level code specific for different blockchain platforms (Ethereum
and Hyperledger Fabric). MULTICHAIN was practically integrated into
CHORCHAIN making the overall approach reusable in a broader range of
application scenarios. Notice, MULTICHAIN does not aim at combining the
different technologies in cross-chain communication, but it provides an iso-
lated and alternative environment for executing business agreements with
different requirements.

The following section introduces the MULTICHAIN approach highlighting
the differences and the extensions starting from CHORCHAIN. In particu-
lar, the conceptual description of the translation mechanism that produces
network artefacts and chaincode from a choreography is provided. Similarly,
the resulting tool and the novel functionalities are introduced. Then, the

Existing instances Smart contract Blockchain ! @\
r = = Multiple
EE454 ‘RoleA { @ : |:>)
i ﬁ Role B Contract | ﬂ Dep'l:loy ' Auditor
Subscribe| nstance ID: 1 generation JAVA '
1 Multiple : .
- ‘ ultie Generation & Auditing
Deployment
Role B SIzzzzzzzzzzzzzs
. Instance ID: 2
Publish —= Search S .
Y — c " c ore I:> -7l Multiple - %4
ulti-i repository model H) !
modelling Create Role A g @—@ g ‘ 1 Deployed Instance |
environment t new a Role B <> <« M
Modelling instance Instance ID: 3 Role A @—@ RoleB |} I—) 1
New instance 1 'L]

Instantiation

Execution

Update

Figure 7.1: MULTICHAIN framework: supporting privacy and
confidentiality.

experiment results on the running example are reported and a final overview
of related works is given.

7.1 MULTICHAIN Conceptual Framework

This section presents the MULTICHAIN framework and the introduced exten-
sions for supporting privacy and confidentiality during the execution of inter-
organisational business processes. Thanks to the proposed infrastructure,
MULTICHAIN targets trust concerns related to the underside discoloured of
business data. This aspect is a strong contributor to the trustworthiness of
the system [83].

7.1.1 Framework phases

The MULTICHAIN framework is depicted in Figure 7.1 and it extends
some CHORCHAIN principles deriving the main phases, involved actors and
components. To achieve privacy and confidentiality, MULTICHAIN includes
a different kind of blockchain setting, thus affecting mainly the generation
phase and the successive execution.

The initial modelling phase foresees the creation of a choreography dia-
gram representing the business process. This model is later used for generat-
ing the low-level code that is different according to the selected blockchain.
In this context, the first benefit of MULTICHAIN is the possibility of starting
from a single model without requiring any extra information. This makes
it possible to clearly separate the conceptual modelling from the code gen-
eration, simplifying the operation for creating the software infrastructure.
Also in the instantiation phase, there are no significant operations that
the developer has to perform. At this stage, only a simple selection of the

CHAPTER 7. MULTICHAIN 131

final setting is needed. The blockchain selection phase instead, allows the
developer to choose the desired blockchain infrastructure to be generated,
depending on the requirements of the starting process described in section
2.1.3. At this point, the translator generates blockchain-specific artefacts.
In the case of a permissionless setting, a smart contract is generated. When
instead, a permissioned setting is chosen, MULTICHAIN generates a differ-
ent smart contract and also a network infrastructure including channels and
private data repositories. In this way, in the execution phase, the interact-
ing parties can benefit from private data and confidential communications.
The exchanged data is indeed not exposed to external auditors that have no
knowledge about the happening interactions.

7.1.2 Hyperledegr Fabric artefacts generation

In Ethereum, the instantiation of a choreography diagram leads to the gen-
eration of a single smart contract to be deployed on the public network. This
contract explicitly includes the users’ addresses that subscribed to the roles
in the previous phase. In such a way once deployed the smart contract can
be used only by the subscribed users, and every functionality is then enforced
both considering the order of the operations and the roles, as specified in the
choreography model.

In Fabric, the situation is rather different since there is no global net-
work and so, for each deployment, it is necessary to create not only the
smart contract (also called chaincode) but also the network infrastructure.
In particular, in MULTICHAIN, any choreography instance is represented by
a Fabric channel, and each role is associated with a unique Fabric organ-
isation. Each channel is composed of organisations, representing instance
participants that interact with the chaincode representing the choreography
instance behaviour.

When creating a channel, any user subscribed to a specific role becomes a
member of the organisation representing that role in a specific choreography.
Technically, the user is associated with the organisation through an identity
released by exploiting cryptographic artefacts. To identify specific users, an
attribute-based access control strategy is adopted. This encodes an attribute
representing each user member’s identity in the organisation, used to restrict
the visibility of data on the deployed chaincode. This mechanism guarantees
the privacy of exchanged information between different users covering the
same role on two different instances that are both included in the same
organisation. Indeed, in this way, each user can see only data related to the
contracts in which is directly involved.

In addition to identities, each couple of interacting participants (i.e., the
sender and the receiver of a task) also generates private data collection. This
permits a subset of organisations to share in a private manner the exchanged

132 CHAPTER 7. MULTICHAIN

data without exposing it to the other involved parties. On the contrary, a
public collection (i.e., the world state) keeps in memory all the information
shared by all the choreography participants.

To generate all of these artefacts, in MULTICHAIN, an automatic proce-
dure instantiates, following the model specification, the consortium and the
organisations involved in the Fabric network. Then, every time a participant
user subscribes to a role, the corresponding identity is created and added to
the private network. When all the roles of the instance are fully covered, the
deployment phase can start. Here the translator, according to the instance
type (Ethereum or Fabric), generates the specific smart contract and deploys
it in the respective network.

7.1.3 Translation approach: from BPMN to Javascript

The smart contract generation is an automatic phase where the choreography
instance is translated into code. The resulting smart contract permits the
participants to interact according to the corresponding choreography proto-
col. In MULTICHAIN, the generated code for the Fabric technology is based
on Javascript and is reported in Table 7.1. The logic behind the code gen-
eration for the control flow and message elements is similar to CHORCHAIN
since it is directly derived by it. However, the generation foresees the in-
troduction of novel and specific methods for each message exchanged and
the introduction of mechanisms to support confidentiality and privacy. This
asks to derive a complex transformation procedure for the definition of spe-
cific users’ rights and their control, and the introduction of a private state
for storing transaction data.

In general, the contract contains a common part with information on
participants and elements. Additionally, this header contains the referrals to
the previously created private collections.

The smart contracts generation continues by appending the functions
corresponding to the translation of the elements included in the choreography
model. Also, in this case, the concept of choreography task is concealed in
favour of the connected messages. In particular, a one-way choreography task
is represented by its message, and similarly, the two-way task is represented
by its two messages. Control flow elements represent instead the sequence
of execution.

In MULTICHAIN, all the mentioned elements are represented with a
JavaScript asynchronous function which logic remains similar to CHOR-
CHAIN, with the inclusion of checks on the execution states. The novel
aspects regard the access control mechanism and the storage of data. In-
deed, in a Fabric chaincode, a double check is done on participants’ rights.
The first is based on the caller participant whose identity has to correspond

CHAPTER 7. MULTICHAIN 133

Table 7.1: Translation approach from BPMN elements to Javascript.

BPMN element Javascript code BPMN element Javascript code
e Private function e Private function
1) Q e Check on its state 5) e Check on its state
Start Event o Activates next element Exclusive o Activates next element
Gateway
e Asynchronous message function e Asynchronous function
2) E e Check on its state 6) e Check on its state
Message e Activate next element Parallel e Activates next elements
Gateway
Participant e Private Data Collection @ ° Asynchrogous function
3) . 7) e Check on its state
e Identity Access Control .
Partidipant E"Ge:f;a,aas;d o Activates next elements
) o e Asynchronous function
4 seenceron e Guard expression 8) O o Check on its state

End Event

to a member of the organisation having the rights for executing the function.
The second one examines the user’s encoded attribute inside the identity cer-
tificate. This step allows to verify not only if the organisation corresponds
to the right one but also if the specific user covers the right role. The second
aspect is the introduction of private data collections, which are previously
created and involve only subsets of subscribed participants. In this state, the
information sent and received by a sender and a receiver is kept in memory.
On the contrary, the public data state contains all the data shared by all
such as a decision of a gateway and the standard execution flow. Control
flow elements indeed follow the same logic of CHORCHAIN and their main
role is to enable the successive functions evaluating conditions.

7.2 MULTICHAIN Tool

This section describes the implementation of the MULTICHAIN tool and the
main introduced functionalities for supporting a permissioned blockchain set-
ting relying on Hyperledger Fabric. The tool is integrated into the CHOR-
CHAIN implementation, thus this section resumes the main concepts and
focuses on the new technicalities!.

!The reader can practically experiment with the framework deployed at http://
virtualpros.unicam.it:8080/MultiChain/.

http://virtualpros.unicam.it:8080/MultiChain/
http://virtualpros.unicam.it:8080/MultiChain/

134 CHAPTER 7. MULTICHAIN

7.2.1 Modelling

The modelling phase is the starting point of the choreography creation. Be-
fore accessing it, it is necessary to register and login into the platform. These
operations require a name and a password to create the user’s identity inside
the platform. These are only preliminary high-level credentials; for identify-
ing the user inside the blockchain processes, an Ethereum address or a Fabric
identity is later assigned. At this point, the user can access the modelling
environment integrated into the framework as shown in Figure 7.2. This of-
fers several functionalities, such as the creation, the import, the export and
the saving of a model in the MULTICHAIN repository.

Due to its intended abstraction level, a choreography model does not
include enough details to enable an automatic generation of code directly.
For this reason, the modelling environment asks the developer for additional
data about (i) messages and (i) guards as described in Section 3.2. This
data is needed to permit the deployment of blockchain infrastructure and
it is valid also in the case of Fabric, without requiring any differentiation.
Notice, in the case of Fabric, the absence of a native cryptocurrency does not
allow the modelling of financial transactions.

Retail Process Example (Modelling) Considering the proposed run-
ning example, Figure 7.2 reports the panel in the MULTICHAIN modelling
environment for the definition of the Retail quotation task using a dedicated
panel. In this case, the information inside the Retail quotation task is pro-
vided in Ethereum-like format but it is translated according to the run-time
user decision. The created choreography can be indeed exploited also for gen-
erating a Fabric infrastructure, without requiring additional specifications.

7.2.2 Instantiation

This part describes the multiple blockchains support for instantiating a chore-
ography specification. In particular, after the instantiation phase, the dis-
tinction between the two resulting artefacts to be deployed on a specific
blockchain is evident, while till the publishing phase, the model is unique.
Once a choreography is published into the MULTICHAIN repository, it is
visible in the homepage depicted in Figure 7.3, which shows the uploaded
and instantiated retail process example. Here it is possible to create a new
instance by clicking the dedicated button. In addition to the selection of
mandatory and optional roles, MULTICHAIN requires selecting if the instance
to generate targets Ethereum or Fabric.

The resulting instance is then created and, independently from the cho-
sen technology, it shows common information such as the model owner, the
maximum number of involved participants and the required roles. Also, the

CHAPTER 7. MULTICHAIN

Multi-chain

RetailProcess.bpmn
Uploaded by: UserA

All roles: Retailer - Producer - Customer

Message top

retail_guotation
string + | good

uint + | amount

Add param

Check this box if the message is a payment function
Participant top

Customer

Task name

Retail Quotation

Participant bottom

Retailer

Message bottom

retail_repsponse

uint + | price

135

boolean = l availability|

Add param

Check this box if the message is a payment function

Figure 7.2: Multi-Chain modeller.

HomePage Modeler Ethereum Page Fabric Page

Create instance

See model preview

n° 5fc4cd5cd8f46d196c2 1bd49

Free roles in the instance: Customer, Retailer, Producer,

Invia

Hyperledger Subscribe

Hyperledger deploy

Figure 7.3: MULTICHAIN homepage with a focus on Fabric instances.

136 CHAPTER 7. MULTICHAIN

preview of the graphical representation and the possibility of creating a new
choreography contract is available.

Before deploying one of the two possible instances, the choreography par-
ticipants must be filled by the users during the subscription phase. For
Ethereum, when the user subscribes to a role, it’s necessary to associate the
Ethereum address through the Metamask browser plugin. For Fabric, the
procedure is quite different since the user’s identity is directly created after
the subscription. Indeed, roles are associated with Fabric organisations so
MULTICHAIN automatically generates the artefacts for the user’s identity
that become a member of the organisation covering a certain role in a spe-
cific instance. Thus, the interface is necessary only to select the desired role,
without the need for additional operations.

When one of the two choreography instances has no more vacant manda-
tory roles, the partnership is complete, and the smart contracts generation
phase can start, deploying it on the chosen blockchain. If the contract has
some optional roles, the subscription form remains enabled on the homepage
with only the optional roles, also after its deployment.

Retail Process Example (Instantiation) Considering the retail process
example, during the instance creation, depicted in Figure 7.3 the Customer
and Retailer are mandatory roles. The Producer, instead, is set as optional,
since its participation is not always required.

7.2.3 MuLTiICHAIN Translator

Another peculiarity of the MULTICHAIN framework is the blockchain infras-
tructures that are derived by means of the model-driven approach. This is
the generation phase that takes place after all the mandatory users subscribe
to an instance. In this section, a particular focus is on the translation from
model to code, i.e., the contracts and network creation. Indeed, Ethereum
and Hyperledger Fabric have been conceived with rather different objectives
and usage scenarios. Therefore, the transformation from a choreography
diagram to the blockchain infrastructure to be deployed over the specific
technology is different.

The rest of the section describes the technical differences between the
translation of an Ethereum contract described in Section 3.2.3 and a Fab-
ric one by providing the relative examples using the retail process scenario
described in Section 2.2.2.

Smart contract generation The generation of the code starts after the
parsing of the choreography model performed using the Camunda library,

CHAPTER 7. MULTICHAIN 137

properly extended to deal with the choreography diagrams syntax as defined
in the standard.

Listing 7.1 shows the template for the header of the chaincode for Hyper-
ledger Fabric (ChoreographyPrivateDataContract). In this case, it can be
noted the introduction of two utility classes: (i) ChorographyState and (ii)
ChoreographyPrivateState.

269 const chorID = ’"68e81c58-2ca9-4a92-b438-76£06£358fa3”’

270 const contractName = ’contracte3158a2b-40b7-43b0-%9ae2-d19dacb39839’

271 const Status = { DISABLED: ’disabled’, ENABLED: ’enabled’ , DONE: ’done’
5

272 const chorElements = ["StartEvent_l102vawy", "ExclusiveGateway_042aut8",

"Message_0b917rc",

273 const roles = { Customer: ’OrglMSP5felcdac280183175ccbl52e’, Retailer:
"Org2MSP5felcdac280183175ccbl52e’ , Producer:
’Org3MsSP5felcdac280183175ccbl52e’ }

274 const collectionsPrivate = {CustomerRetailer: ’collection’ +
roles .Customer + roles.Retailer, ...}

275 const subscriptions = { Customer: ’5fe0b72a2801833b2c91a2d3’, Retailer:
" 5£e0b82£2801833b2c91a2el’ , Producer: ’5felce56280183175ccbl53a’ }

276

277 class ChoreographyPrivateDataContract extends Contract {

278 constructor () {

279 super (contractName)
280 }

281

282}

Listing 7.1: Hyperledger: ChoreographyPrivateDataContract class

In Fabric, the contract is defined through the ChoreographyPrivate—
DataContract class. Like Ethereum, the class keeps tracking each element
of the choreography within an associative object. Also, in this case, the ele-
ment life-cycle is composed of three states, listed in the Status object (Line
271). The chorElements (Line 272) object maps choreography elements
to their individual state, and it is included in the ledger state. Additional in-
formation like the contract name and the id of the choreography are reported
in Lines 269-270. The roles declared in Line 273 map choreography roles to
the Fabric Membership Service Providers belonging to the related organisa-
tions to guarantee confidentiality. In Line 274, the definition of the private
collections is done by coupling all the different roles of the model inside the
collectionsPrivate object. Also, in Line 275 the roles are associated
with the subscribed users, which identities were previously created inside the
organisations.

Just after the header, in the contract an access control function is intro-
duced to define the participants in a message exchange. In fabric, this is
done by using an identity check.

283 roles.Customer ctx.stub.getCreator (). mspid &&
ctx.clientIdentity . assertAttributeValue (’role’,
subscriptions . Customer)

Listing 7.2: Hyperledger: Enforcing controls

138 CHAPTER 7. MULTICHAIN

This check is reported in Listing 7.2 and it consists of two main controls
before executing a message. This is done by checking the MSP of the trans-
action creator, with respect to the roles list defined in the contract header.
In the second check, the identity certificate of the caller is exploited. In this
way, the caller attribute is first retrieved and then compared to the id of the
right role inside the subscriptions object.

Listing 7.3 shows the implementation of a message in Fabric. In Line
285 the actual public state of the choreography is retrieved from the external
utility class ChoreographyState and it is used for the next operations.
Line 286 reports the controls performed before allowing the execution of the
message. In the condition of the conditional statement, there is the check of
the status of the actual message, identified by its Message_id. This permits
the enforcement of the execution of the right sequence of functions. The other
two expressions in the condition are related to the check of the right user
and organisation as described in listing 7.2. If the user is the right one, the
private state associated with him is recovered (Line 287), calling the external
class ChoreographyPrivateState. This state concerns the participants’
interaction in which only the information changed between them is stored.
In particular, to get the private state some information must be passed: (i)
the Fabric ctx, (ii) the private collection between the sender and the receiver
of the message and (iii) the id of the choreography, automatically set by the
translator in the generation phase. The actual message is then set as Done
and the next one is enabled (Lines 288-289). Finally, the public and the
private state of the choreography are updated (Lines 290-291). In particular,
these operations are done without passing directly the information inserted
by the user but exploiting information stored in the context object (ctx).
Indeed, the ctx encapsulates the transient data that are then extracted in the
invoked functions, in this way, are not explicitly visible in these operations.

284 async Message 0b917rc(ctx) {
285 const choreography = await ChoreographyState. getState (ctx, chorID)
286 if (choreography.elements.Message 0b917rc Status .ENABLED &&
roles . Customer ctx.stub.getCreator (). mspid &&
ctx.clientIdentity . assertAttributeValue (’role’,
subscriptions.Customer)) {
287 const choreographyPrivate = await
ChoreographyPrivateState. getPrivateState (ctx,
collectionsPrivate . CustomerRetailer , chorID)

288 choreography .setDone(’Message_0b917rc’)

289 choreography .setEnable (' Message_lxxdwx2’)

290 await choreographyPrivate.updatePrivateState (ctx,
collectionsPrivate.CustomerRetailer)

291 await choreography.updateState(ctx)

292 return { choreography, choreographyPrivate }

293 } else {

294 throw new Error(’Element Message_0b917rc is not ENABLED or

submitter not allowed, only the Customer can send this
transaction’)

295 }

206}

CHAPTER 7. MULTICHAIN 139

Listing 7.3: Hyperledger: Message Function

Also in the case of gateways, there is a similar implementation. Here
below, only the exclusive gateway implementation is shown since there is a
similar structure also for all the other gateways.

Listing 7.4 shows the code used inside the Fabric contract. Firstly the
status of the actually invoked gateway identified by Gateway_id is checked
(Line 298). Then its status is set to done (Line 299), and the evaluation of
the variable is performed. Depending on its value, the function enables the
next element to be a message or a gateway, identified by its id. At this point,
if the next element is a message, the public state is updated by calling the
external function updateState that inserts the new status of the elements
(Line 302); otherwise, it is directly called (Line 305), and the public state is
updated in the next functions.

207 async ExclusiveGateway 042aut8(ctx, choreography, choreographyPrivate)

{
298 if (choreography.elements.ExclusiveGateway 042aut8 ——
Status .ENABLED) {
299 choreography .setDone (’ExclusiveGateway_042aut8’)
300 if (choreographyPrivate.av—~false) {
301 choreography .setEnable (/Message_1h3ew61’)
302 await choreography.updateState (ctx)
303 } else if(choreographyPrivate.av=—true) {
304 choreography .setEnable (' ExclusiveGateway_1johog7’)
305 await this.ExclusiveGateway 1johog7(ctx, choreography,
choreographyPrivate)
306
307 } else {
308 throw new Error (’/ExclusiveGateway_042aut8 not ENABLED')
309 }

310 }

Listing 7.4: Hyperledger: Exclusive gateway implementation

7.2.4 Deployment

Once the contract has been generated, the framework automatically deploys
it into the selected blockchain. Depending on the chosen technology, the
deployment operation is different. For Ethereum, the server generates a
transaction that deploys the generated Solidity contract on the blockchain.
For Fabric, the procedure is more complicated since, for each new instance, a
new channel must be created. This happens in the back-end, where the sys-
tem automatically generates the artefacts related to organisations, orderers,
channels and chaincodes. In particular, organisations’ artefacts are produced
after the model publishing, users’ identities in the subscription phase, chain-
code and the channels in the deployment.

140 CHAPTER 7. MULTICHAIN

retail_quotation(s ship_address(str
‘ing good, uint payment1() ng
™ M B
; H H
Customer) (Customer) (Customer)
av==true
O_ ~p| Retai quotation X Retai payment [~ Retail shipment _O
Retaller o (__ Retaler) (__ Rewler)
—_— ship_info(string - .
H payment0() shipment_addre H H
! < re@@ﬂi
el ™M s g

nse
(uint price, bool
a

L g
v orderDetai) customerShipme:
nt)

(Retailer) Retaier)

»| Paygoods Ship goods

Producer

;
resmm m m

(= order TSting ShipETTSting
a"a“aé‘u'";;’; il orderD) shiplnfo} q

ol
&
£
H

Start

YYou are subscribed as Retailer

Retail_response(uint price, bool av) vObject
chorID: "2313fel4-70cf-4c3a-%elc-aae29ab8e057"
good: "productl™
amount : 100

Figure 7.4: Fabric execution page.

7.2.5 Execution

Once a new contract is deployed into the blockchain, the execution phase
takes place, and the participants can collaborate using the functions exposed
by the contract. To facilitate these interactions, there are two execution
pages accessible to each participant. These pages enable interaction with
Ethereum contracts or with Fabric ones.

Figure 7.4 shows the Fabric page concerning the deployed retail process
example. However, this execution page has some common characteristics
with the Ethereum one. On the left-hand side, the interface reports a list
of all contracts to which the participant is subscribed. On the right-hand
side, a preview of the model is shown: in green, the messages completed are
indicated, and the ones actually active. For these, the window also includes
the forms that are dynamically constructed by the tool. Each form contains
many information, like the name of the message, the role of the participant,
the space for inserting all the required parameters, and the submit button.
Notably, the submission form is visible only to the participant in charge of
sending the enabled message.

By double-clicking on a completed message, a little panel with the ex-
changed values is shown. However, for Ethereum, the data will be visible
to all the participants of the process. In Fabric instead, since privacy is one
of the main requirements, the exchanged information will be directly visible
only to the sender and receiver participants. When an Ethereum message
is sent, the transaction has to be confirmed using the Metamask pop-up.

CHAPTER 7. MULTICHAIN 141

It contains the gas price plus the total amount of Ether to spend for the
transaction. As soon as the transaction is included in a block, the related
event is emitted. The front-end uses this event to update the interfaces of all
participants involved in the choreography with the new contract status, thus
enabling the next admitted message(s). In Fabric instead, a function execu-
tion does not require the payment of any fee, and in general, the transaction
process is faster. It is worth noticing that the choreography is executed in a
distributed manner, since the participants interact via the front-end directly
with the blockchain, without referring anymore to the back-end component.

Retail Process Example (Execution) The example in Figure 7.4 de-
picts the execution page for the Retailer participant involved in the Fabric
network. The retail response message in green on the model represents the
enabled activity that can be executed by the Retailer. On the right side
of the page instead, the data panel reports the previously sent message. In
particular, the panel lists the good and the amount parameters sent by the
customer. The Retailer at this point answers using the dedicated form, in-
serting the availability as a boolean value and its cost. It is important to
notice that in the Fabric case, the quotation information is visible only to the
Retailer and only inside this process. This means that the Producer since it
only interacts with the Retailer, has no vision of the data exchanged between
the Customer and the Retailer. In the same way, external observers have no
views about the current state of the process.

7.3 Experiments and Validation

This section reports the results of the experiments made on MULTICHAIN.
In particular, the permissionless infrastructure is the same as CHORCHAIN,
evaluated in Section 3.3. For this reason, this section focuses on assessing the
performances of Fabric translation, deployment, transaction execution and
network creation.

The first experiment is reported in Figure 7.5 and shows the times the
translator needs to generate 10 smart contracts for the Fabric blockchain,
derived from the running example model. The average time for the transla-
tion is 24 ms with a minimum of 18 ms and a maximum of 31 ms. These
measures can be considered efficient since they depend on the MULTICHAIN
translator and the target code does not have a real impact on the generation’s
performance.

142 CHAPTER 7. MULTICHAIN

35.00
30.00

25.00

20.00

15.00

10.00

Translation time (ms)

5.00

0.00

Vv > L 2 ©

N A >) Q
(e (e (< (< & & & & < RS

S SO S P SO SO P
P < < P P P P P P
Contracts

e Single translation =~ — — Average

Figure 7.5: Translation time of 10 running example choreography instances.

The next experiment is reported in Figure 7.6 and represents the de-
ployment time of the contracts previously created. In this case, the average
measured time is 79 s with a minimum of 75 s and a maximum of 87 s. Cer-
tainly, the deployment of a Fabric smart contract is less efficient if compared
to an Ethereum one, but this mainly depends on the different blockchain de-
ployment procedures. Indeed, Ethereum relies on consensus protocols that
make transactions included in certain slots. In Fabric instead, each peer of
the network has to approve and verify the contract following a sequence of
stages. This procedure can depend on different variables such as the number
of network peers, channels, and the used hardware, making the deployment
process slower on average.

CHAPTER 7. MULTICHAIN 143

> ~ o © A > &

S S & S & S
N4 ° N4 ° <L ° N4 © N4
& & & & & & & & &

Contracts

e Single deployment = — Average

Figure 7.6: Deploy time of 10 running example choreography instances.

Figure 7.7 compares the average time required for executing a specific
transaction of the running example. Each transaction was executed 10 times
using the smart contracts previously created and deployed. Here the impact
of using Fabric is more evident.

3
2
D
g2
c
Ee]
31
2
i
1
0
X X X N .
& & F & & &06 S
S S R) X SN) N S &
& & e @ 4 * S] 2 Q Q@
» @ SN
Qg'} B
Transaction number
mmmmm Single function — — Average

Figure 7.7: Average transactions execution time for the running example.

144 CHAPTER 7. MULTICHAIN

Indeed, the execution time is much more regular and there are no signif-
icant differences between separate transactions. In general, the average time
necessary corresponds to 2 s with a standard deviation that is not relevant.
This behaviour depends on the different consensus needed to approve a state
change. In Ethereum, as for the deployment, each smart contract execution
has to pass through the blockchain consensus, while in Fabric, the execution
of a function has a much lighter process.

The last experiment in Figure 7.8 reports the performance of the net-
work creation process. This concept is valid only for Fabric since Ethereum
is based on a public network that is already available and is maintained
from the various nodes. On the contrary, Fabric is based on a private net-
work; therefore, for each new choreography, it is necessary to create a new
preconfigured network considering the involved organisations and successive
participants’ identities. In the experiments, 10 different network instantia-
tions were isolated and observed, with an average generation time of 20 s
with a minimum of 17 s and a maximum of 22 s. This additional time should
be considered one-time only during the first upload of the choreography so
it does not significantly affect the usage of MULTICHAIN.

25

20

Network creation (s)

Contracts

Single creation === <Average

Figure 7.8: Time required for creating a Fabric network.

To resume the above-described experiments, it is possible to notice that
having a private permissioned infrastructure like Fabric, requires an addi-
tional set-up phase including the creation of the network, channels and iden-
tities that influence the overall MULTICHAIN performance. In a public per-

CHAPTER 7. MULTICHAIN 145

missionless context like Ethereum instead, the use of a public network avoids
the mentioned steps. However, the trend is different during the smart con-
tract execution, in which the use of the Ethereum consensus protocol highly
impacts the performance. Differently, the Fabric execution phase exploits
a lighter peers agreement which makes it possible to create more scalable
applications thanks to the faster function execution.

7.4 Comparison with Existing Approaches

Considering the model-driven engineering of systems with a focus on con-
fidentiality, this is still an open topic in the literature. In [95] the authors
analyse the implementation of BPMN collaboration processes focusing on the
privacy of the information exchanged. In particular, Fabric Composer is used
to create a network with the involved participants, while the information is
regulated by the native access control of Fabric. However, starting from the
model, there is no automatic generation of components, and, actually, Com-
poser is deprecated in favour of a new version of Fabric. A permissionless
solution is instead considered in [29, 28|, where BPEL processes are trans-
lated into smart contracts with a particular focus on solutions to ensure data
confidentiality in the presence of an untrusted oracle. The proposed solution
presents the use of confidential smart contacts that encrypt sensible data,
enabling only allowed participants to use it. In [129] the authors propose the
ShadowEth system prototype. It focuses on privacy during the execution
of smart contracts, which they assume is more important than the privacy
of the entire blockchain. For this purpose, they separate public chain and
private smart contracts and define a protocol between them. In particular,
they take advantage of the public blockchain to ensure the availability and
integrity of the data, while the hardware enclave is used to guarantee privacy.
In addition, requirements for building security around information exchanged
are highlighted in [98] NASA Ames Research Center: i) Participants must be
identified /identifiable; ii) Networks are required to be permissioned; ii) High
transaction throughput performance; iii) Low latency of transaction confir-
mation; iv) Authentication, privacy, and confidentiality of tracking and com-
munication between clients and providers are consistently supported. These
requirements emerged from the adoption of the Hyperledger Fabric permis-
sioned blockchain that is exploited to preserve the privacy of radar-based
air traffic service for military and corporate operations. Another important
aspect highlighted by the author is the private channels service that Hyper-
ledger Fabric provides as a means to communicate private information at a
comparatively high bandwidth.

PART III

L CONCLUSIONS & FUTURE WORKS

CHAPTER 8

LCONCLUSIONS & FUTURE
WORKS

8.1 Conclusions

The thesis tackled different challenges concerning inter-organisational busi-
ness processes. In particular, the first challenge is related to the trust re-
quired to execute the interactions defined as a process between unknown
parties in a distributed manner. Trust is indeed a fundamental aspect in a
collaborative scenario which is perceived differently by organisations. This
perception is mainly influenced by all those attributes concerning the used
systems and interactions among participants. To this purpose, blockchain
was used as enabling technology, thanks to its property of security, distribu-
tion, transparency, immutability and enforcement. From this, other relevant
challenges were derived and they are related to auditing, flexibility, multi-
plicity, confidentiality and privacy. To face those aspects, the thesis defines
some relevant research objectives, proposing different solutions relying on a
common model-driven engineering methodology.

The first objective encounters the requirement of trust, the thesis first
introduced CHORCHAIN, a novel model-driven methodology which relies on
a blockchain infrastructure to enable the execution of inter-organisational
business processes. The methodology’s starting point is the BPMN stan-
dard and in particular choreography diagrams, which make it possible to
represent inter-organisational business processes from a high-level perspec-
tive. The methodology is concretely supported by an implemented frame-
work integrating mechanisms for the management of choreographies from
their modelling to their execution. Once a choreography representing a sys-

150 CHAPTER 8. CONCLUSIONS & FUTURE WORKS

tem is created, it is executed over the blockchain, taking advantage of its
characteristics for providing trust. A relevant aspect of the proposed frame-
work is the translation of a choreography specification into a smart contract,
once the participating partners have been identified. The smart contract is
then deployed on the blockchain infrastructure and drives the choreography
execution. Interactions are enabled according to the choreography specifica-
tion, and when performed the details related to their occurrence are stored
in the blockchain.

The capability to observe the data stored in the blockchain enables the
possibility of auditing the actual execution of choreography instances, thus
further reducing trust-related issues. Indeed, the second research objective
refers to auditing, which is an important aspect of the business process since
it ensures that exchanged information is represented fairly and accurately.
To support this aspect, the CHORCHAIN framework was extended with a
complex query mechanism defined on the premises of the conceptual model
related to main actors and components. These queries were integrated into
the tool enabling internal and external auditors to have a complete view of
the executed processes.

Another objective concerns the flexibility of processes that have to react
to unexpected changes and situations while dealing with the immutability
of the blockchain. With FLEXCHAIN the thesis aims at providing a frame-
work for dealing with run-time flexibility while maintaining the fundamental
properties of trust and transparency. FLEXCHAIN revises the main CHOR-
CHAIN concepts, introducing a new update functionality. To deal with the
immutability of the blockchain, the proposed solution decouples the state
of the process (stored on-chain) from the execution logic (stored off-chain).
Indeed, while the first is a set of data stored in a smart contract, the second
one is expressed as rules and they are stored in the IPFS. This infrastruc-
ture allows changing rules at run-time without having to modify the on-chain
code that, in other cases, results infeasible.

Considering instead the proposed model-driven methodology, some limi-
tations arise when assessing scenarios with multiple actors performing multi-
ple actions. Indeed, multiplicity is a crucial aspect that enables the creation
of complex behaviours while reducing the complexity of the modelling. How-
ever, the definition of multi-instance elements in choreographies suffers from
a lack in the BPMN standard. Furthermore, the use of blockchain infrastruc-
ture for a trustworthy execution requires novel solutions for such aspects. In
this context, the thesis proposes MICHAIN a revised version of CHORCHAIN
for the modelling and execution on the blockchain of multiple instance ele-
ments and attributes in a choreography. To this purpose, MICHAIN permits
the definition of elements and attributes for handling multiplicity, with their
related translation in a blockchain setting.

CHAPTER 8. CONCLUSIONS & FUTURE WORKS 151

All of the above-mentioned frameworks aim at facing the related chal-
lenges of relying on a public blockchain infrastructure, having transparency
and auditability as fundamental characteristics. However, there are situa-
tions in which privacy and confidentiality become challenges due to the need
of protecting business interactions. For this reason, the thesis introduces the
MULTICHAIN framework for supporting use cases from different contexts,
thanks to the use of both permissionless and permissioned blockchains, al-
lowing users to have complete coverage of their needs. Depending on the
requirements, the proposed implementation supports an Ethereum or Hy-
perledger Fabric smart contract. Moreover, in Fabric case, the framework
automatically constructs the appropriate network according to the organisa-
tion’s specifications.

To show the current implementations of the frameworks, the thesis pro-
vided a Retail process running example, on which several experiments were
conducted in order to assess the overall feasibility and performances. In
general, the obtained results are encouraging, as they demonstrate that the
various frameworks are sustainable in terms of consumed gas. Indeed, the
related fees highly depend on the chosen blockchain implementation without
limiting the overall validity.

8.2 Future Works

In future works, the first objective is to continue the development of the
approaches and frameworks described in the thesis. In particular, this can
be done both in terms of single extensions and integration. For this last
aspect, in the future, the plan is to implement a single general framework
and resulting implementation integrating all the presented frameworks. In-
deed, each proposed framework faces a challenge in an isolated way, starting
from the CHORCHAIN methodology, but with different implementations and
technical choices. For this reason, after having a complete evaluation of the
solutions, the next step can be recognised in an overall integration into a
single framework.

The second aspect to consider is the optimisation of the performance both
in terms of execution time and fee cost. Indeed, while some optimisation was
already considered for what concerns the smart contract translation, there
is still a need to explore additional technologies. Layer 2 is one of the most
prominent filed working for the scaling of blockchain technology. Different
solutions are already available for reducing transaction inclusion times and
fees. In addition, new blockchain implementations are gaining interest and
popularity (e.g., Algorand) thanks to their new algorithms permitting better
performances. However, both solutions should be first analysed since in
some cases, layer 2 technologies use off-chain storage and computation thus,

152 CHAPTER 8. CONCLUSIONS & FUTURE WORKS

affecting the overall perceived trust. New blockchains instead are still young
and they may lack concrete and efficient support for writing and executing

smart contracts.

CHAPTER 8. CONCLUSIONS & FUTURE WORKS 153

Appendix A - Questionnaire

Here is reported the System Usability Scale questionnaires administered to
students: one concerns the ‘Publishing, Subscription, instantiation and exe-
cution phases’, while the other one the ‘Auditing phase’. The results of the
validation are discussed in Section 4.3.2.

Question 1 - I think that I would like to use CHORCHAIN frequently.

Strongly Strongly
disagree agree
‘ Publishing, Subscription, instantiation and execution phases H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘
‘ Auditing phase H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘

Question 2 - I found CHORCHAIN unnecessarily complex.

Strongly Strongly
disagree agree
‘ Publishing, Subscription, instantiation and execution phases H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘
‘ Auditing phase H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘

Question 3 - [thought CHORCHAIN was easy to use.

Strongly Strongly
disagree agree
‘ Publishing, Subscription, instantiation and execution phases H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘
‘ Auditing phase H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘

Question 4 - I think that I would need assistance to be able to use CHOR-
CHAIN.

Strongly Strongly
disagree agree
‘ Publishing, Subscription, instantiation and execution phases H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘
‘ Auditing phase H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘

Question 5 - I found the various functions in CHORCHAIN were well inte-
grated.

Strongly Strongly
disagree agree
‘ Publishing, Subscription, instantiation and execution phases H 1 5

[2]3]4]
‘ Auditing phase H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5

154 CHAPTER 8. CONCLUSIONS & FUTURE WORKS

Question 6 - I thought there was too much inconsistency in CHORCHAIN.

Strongly Strongly
disagree agree
‘ Publishing, Subscription, instantiation and execution phases | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘
‘ Auditing phase | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘

Question 7 - [would imagine that most people would learn to use CHOR-
CHAIN very quickly.

Strongly Strongly
disagree agree
‘ Publishing, Subscription, instantiation and execution phases | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘
‘ Auditing phase | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘

Question 8 - I found CHORCHAIN very cumbersome/awkward to use.

Strongly Strongly
disagree agree

‘ Publishing, Subscription, instantiation and execution phases | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5

‘ Auditing phase | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘

Question 9 - [felt very confident using CHORCHAIN.

Strongly Strongly
disagree agree
‘ Publishing, Subscription, instantiation and execution phases | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘
\ Auditing phase | 1 J2]3]4] 5 |

Question 10 - [needed to learn many things before I could get going with
CHORCHAIN.

Strongly Strongly
disagree agree
‘ Publishing, Subscription, instantiation and execution phases | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘

‘ Auditing phase | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘

BIBLIOGRAPHYI

[1] Pedro W Abreu, Manuela Aparicio, and Carlos J Costa. Blockchain
technology in the auditing environment. In 2018 13th Iberian Con-

ference on Information Systems and Technologies (CISTI), pages 1-6.
IEEE, 2018.

[2] Michael Adams, Suriadi Suriadi, Akhil Kumar, and Arthur HM ter
Hofstede. Flexible integration of blockchain with business process au-
tomation: A federated architecture. In Int. Conference on Advanced
Information Systems Engineering, volume 386 of LNBIP, pages 1-13.
Springer, 2020.

[3] Ashar Ahmad, Muhammad Saad, Mostafa Bassiouni, and Aziz Mo-
haisen. Towards blockchain-driven, secure and transparent audit logs.
In Proceedings of the 15th EAI International Conference on Mobile

and Ubiquitous Systems: Computing, Networking and Services, pages
443-448. ACM, 2018.

[4] Ashar Ahmad, Muhammad Saad, Laurent Njilla, Charles Kamhoua,
Mostafa Bassiouni, and Aziz Mohaisen. Blocktrail: A scalable mul-
tichain solution for blockchain-based audit trails. In ICC 2019-2019

IEEE International Conference on Communications (ICC), pages 1-6.
IEEE, 2019.

[5] Aitor Aldazabal, Terry Baily, Felix Nanclares, Andrey Sadovykh,
Christian Hein, and Tom Ritter. Automated model driven develop-
ment processes. In Model Driven Tool and Process Integration, pages

361 — 375. Fraunhofer IRB Verlag, 2008.

[6] Saiqa Aleem, Sanja Lazarova-Molnar, and Nader Mohamed. Collab-
orative business process modeling approaches: a review. In Proc. of
the 2012 IEEFE 21st International workshop on Enabling Technologies:

156

8]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

Infrastructure for Collaborative Enterprises, pages 274-279. Citeseer,
2012.

Midhat Ali, Guglielmo De Angelis, and Andrea Polini. Servicepot—an
extensible registry for choreography governance. In 7th International
Symposium on Service-Oriented System Engineering, pages 113-124.
[EEE, 2013.

Samantha Almeida, Adriano Albuquerque, and Andreia Silva. An ap-
proach to develop software that uses blockchain. In Software Engineer-
ing and Algorithms in Intelligent Systems, volume 763 of AISC| pages
346-355. Springer, 2018.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Fer-
ris, Gennady Laventman, Yacov Manevich, et al. Hyperledger fabric:
a distributed operating system for permissioned blockchains. In Pro-
ceedings of the thirteenth FuroSys conference, pages 1-15. ACM, 2018.

Elli Androulaki, Angelo De Caro, Matthias Neugschwandtner, and
Alessandro Sorniotti. Endorsement in hyperledger fabric. In IEEE In-
ternational Conference on Blockchain, Blockchain 2019, Atlanta, GA,
USA, July 14-17, 2019, pages 510-519. IEEE, 2019.

Deniz Appelbaum and R Nehmer. Designing and auditing accounting
systems based on blockchain and distributed ledger principles. Feli-
ciano School of Business, pages 1-19, 2017.

Alvin A Arens, Randal J Elder, and Beasley Mark. Auditing and as-
surance services: an integrated approach. Boston: Prentice Hall, 2012.

M. Autili, P. Inverardi, and M. Tivoli. Choreos: Large scale choreogra-
phies for the future internet. In 2014 Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering, and Reverse En-
gineering, pages 391-394, 2014.

Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio, and
Massimo Tivoli. Model-driven adaptation of service choreographies.
In 33rd Annual ACM Symposium on Applied Computing, pages 1441—
1450. ACM, 2018.

Marco Autili, Francesco Gallo, Paola Inverardi, Claudio Pompilio, and
Massimo Tivoli. Introducing trust in service-oriented distributed sys-
tems through blockchain. In International Workshop on Governing
Adaptive and Unplanned Systems of Systems, 2019.

BIBLIOGRAPHY 157

[16]

[17]

18]

[19]

20]

21]

[22]

23]

[24]

[25]

Sidechains Adam Back, Matt Corallo, Luke Dashjr, Mark Frieden-
bach, Gregory Maxwell, Andrew K. Miller, Andrew Poelstra, and Jorge
Timén. Enabling blockchain innovations with pegged. 2014.

Hillol Bala and Viswanath Venkatesh. Assimilation of interorgani-

zational business process standards. Information Systems Research,
18(3):340 — 362, 2007.

Aaron Bangor, Philip T Kortum, and James T Miller. An empiri-
cal evaluation of the system usability scale. Intl. Journal of Human—
Computer Interaction, 24(6):574-594, 2008.

Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561, 2014.

Sarah Benyagoub, Meriem Ouederni, Yamine Ait-Ameur, and Atif
Mashkoor. Incremental construction of realizable choreographies. In
NASA Formal Methods Symposium, volume 10811 of LNCS, pages 1—
19. Springer, 2018.

Egon Borger. Approaches to modeling business processes: a critical
analysis of bpmn, workflow patterns and YAWL. Softw. Syst. Model.,
11(3):305-318, 2012.

Khoutir Bouchbout and Zaia Alimazighi. Inter-organizational business
processes modelling framework. In ADBIS 2011, Research Communi-
cations, Proceedings II of the 15th FEast-European Conference on Ad-
vances in Databases and Information Systems, volume 789 of CEUR
Workshop Proceedings, pages 45-54. CEUR-WS.org, 2011.

Abdelaziz Bouras, Houssem Gasmi, Abdelhak Belhi, Assam Hammi,
and Belald Aouni. Enterprise information systems enhancement: A
hyperledger fabric based application. In Asaf Varol, Murat Karabatak,
and Than Varol, editors, 9th International Symposium on Digital Foren-
sics and Security, ISDFS 2021, FElazig, Turkey, June 28-29, 2021, pages
1-5. IEEE, 2021.

John Brooke et al. Sus-a quick and dirty usability scale. Usability
evaluation in industry, 189(194):4-7, 1996.

Giorgio Bruno, Giulia Bruno, and Marcello La Rosa. On collaborations
and choreographies. In Technologies for Collaborative Business Process
Management, Proceedings of the 1st International Workshop on Tech-
nologies for Collaborative Business Process Management, pages 3—12.

INSTICC Press, 2006.

158

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

BIBLIOGRAPHY

Vitalik Buterin et al. A next-generation smart contract and decentral-
ized application platform. white paper, 3(37):2-1, 2014.

Christian Cachin et al. Architecture of the hyperledger blockchain fab-
ric. In Workshop on distributed cryptocurrencies and consensus ledgers,
volume 310, pages 1-4. Chicago, 1L, 2016.

Barbara Carminati, FElena Ferrari, and Christian Rondanini.
Blockchain as a platform for secure inter-organizational business pro-
cesses. In Collaboration and Internet Computing, pages 122-129. IEEE,
2018.

Barbara Carminati, Christian Rondanini, and Elena Ferrari. Confiden-
tial business process execution on blockchain. In Web Services, pages
58-65. IEEE, 2018.

Fran Casino, Thomas K Dasaklis, and Constantinos Patsakis. A sys-
tematic literature review of blockchain-based applications: current sta-

tus, classification and open issues. Telematics and Informatics, 36:55—
81, 2019.

Jing Chen, Shixiong Yao, Quan Yuan, Kun He, Shouling Ji, and Ruiy-
ing Du. Certchain: Public and efficient certificate audit based on
blockchain for tls connections. In IEFEE INFOCOM 2018-IEEE Con-
ference on Computer Communications, pages 2060-2068. IEEE, 2018.

Michele Chinosi and Alberto Trombetta. Bpmn: An introduction to
the standard. Computer Standards € Interfaces, 34(1):124-134, 2012.

Riccardo Cognini, Flavio Corradini, Stefania Gnesi, Andrea Polini, and
Barbara Re. Research challenges in business process adaptability. In
Proceedings of the 29th Annual ACM Symposium on Applied Comput-
ing, SAC 14, page 1049-1054, 2014.

Riccardo Cognini, Flavio Corradini, Stefania Gnesi, Andrea Polini, and
Barbara Re. Business process flexibility-a systematic literature review
with a software systems perspective. Inf. Systems Frontiers, 20(2):343—
371, 2018.

Ivan Compagnucci, Flavio Corradini, Fabrizio Fornari, and Barbara Re.
Trends on the usage of bpmn 2.0 from publicly available repositories. In
Perspectives in Business Informatics Research, pages 84-99. Springer
International Publishing, 2021.

BIBLIOGRAPHY 159

[36]

137]

38

[39]

[40]

[41]

[42]

[43]

[44]

Mario Cortes Cornax, Sophie Dupuy-Chessa, Dominique Rieu, and
Marlon Dumas. Evaluating choreographies in BPMN 2.0 using an ex-
tended quality framework. In Business Process Model and Notation -
Third International Workshop, BPMN, volume 95 of Lecture Notes in
Business Information Processing, pages 103-117. Springer, 2011.

Flavio Corradini, Fausto Marcantoni, Andrea Morichetta, Andrea
Polini, Barbara Re, and Massimiliano Sampaolo. Enabling auditing of
smart contracts through process mining. In From Software Engineering
to Formal Methods and Tools, and Back, volume 11865 of LNCS, pages
467-480. Springer, 2019.

Flavio Corradini, Andrea Morichetta, Andrea Polini, Barbara Re,
and Francesco Tiezzi. Collaboration vs. choreography conformance in
BPMN 2.0: From theory to practice. In EDOC, pages 95-104. IEEE
Computer Society, 2018.

Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi, and
Francesco Tiezzi. Animating multiple instances in BPMN collabora-
tions: From formal semantics to tool support. In Business Process
Management - 16th International Conference, BPM, volume 11080 of
LNCS, pages 83-101. Springer, 2018.

Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi, and
Francesco Tiezzi. MIDA: multiple instances and data animator. In
Proceedings of the Dissertation Award, Demonstration, and Industrial
Track at BPM 2018 co-located with 16th International Conference on
Business Process Management, volume 2196 of CEUR Workshop Pro-
ceedings, pages 86-90. CEUR-WS.org, 2018.

Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi, and
Francesco Tiezzi. Formalising and animating multiple instances in
BPMN collaborations. Inf. Syst., 103:101459, 2022.

Jun Dai and Miklos A Vasarhelyi. Toward blockchain-based accounting
and assurance. Journal of Information Systems, 31(3):5-21, 2017.

Erik Daniel and Florian Tschorsch. IPFS and friends: A qualitative
comparison of next generation peer-to-peer data networks. IEEE Com-
mun. Surv. Tutorials, 24(1):31-52, 2022.

José Eduardo de Azevedo Sousa, Vinicius C. Oliveira, Jualia Val-
adares, Glauber Dias Gongalves, Saulo Moraes Villela, Heder Soares
Bernardino, and Alex Borges Vieira. An analysis of the fees and pend-
ing time correlation in ethereum. Int. J. Netw. Manag., 31(3), 2021.

160

[45]

[46]

[47]

[49]

[50]

[51]

[52]

[53]

BIBLIOGRAPHY

Claudio Di Ciccio, Alessio Cecconi, Jan Mendling, Dominik Felix, Do-
minik Haas, Daniel Lilek, Florian Riel, Andreas Rumpl, and Philipp
Uhlig. Blockchain-based traceability of inter-organisational business
processes. In International Symposium on Business Modeling and Soft-
ware Design, volume 319 of LNBIP, pages 56—68. Springer, 2018.

Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Rei-
jers. Fundamentals of Business Process Management, Second Edition.
Springer, 2018.

Urooj Fatima and Rolv Braek. Modelling multiplicity in choreog-
raphy models. In Ana Moreira, Gunter Mussbacher, Joao Araijo,
Nelly Bencomo, and Pablo Sanchez, editors, International Workshop
on Model-Driven Requirements Engineering, MoDRE 2013, Rio de
Janeiro, Brasil, July 15, 2013, pages 74-78. IEEE Computer Society,
2013.

Walid Fdhila, Stefanie Rinderle-Ma, David Knuplesch, and Manfred
Reichert. Change and compliance in collaborative processes. In 2015

IEFEE International Conference on Services Computing, pages 162-169.
[EEE, 2015.

Hans-Georg Fill and Felix Harer. Knowledge blockchains: Applying
blockchain technologies to enterprise modeling. In Tung Bui, edi-
tor, 51st Hawait International Conference on System Sciences, HICSS,
pages 1-10. ScholarSpace / AIS Electronic Library (AISeL), 2018.

Imen Ben Fraj, Yousra Bendaly Hlaoui, and Leila Ben Ayed. A control
system for managing the flexibility in BPMN models of cloud service
workflows. In 13th IEEE International Conference on Cloud Comput-
ing, pages 537-543. IEEE, 2020.

Gilbert Fridgen, Sven Radszuwill, Nils Urbach, and Lena Utz. Cross-
organizational workflow management using blockchain technology - to-
wards applicability, auditability, and automation. In Hawaii Inter-

national Conference on System Sciences, pages 1-10. AIS Electronic
Library, 2018.

Luciano Garcia-Banuelos, Alexander Ponomarev, Marlon Dumas, and
Ingo Weber. Optimized execution of business processes on blockchain.
In Business Process Management, volume 10445 of LNCS, pages 130—
146. Springer, 2017.

Andrew Gemino and Yair Wand. Complexity and clarity in conceptual
modeling: comparison of mandatory and optional properties. Data &
Knowledge Engineering, 55(3):301-326, 2005.

BIBLIOGRAPHY 161

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

63]

Yuichi Hanada, Luke Hsiao, and Philip Levis. Smart contracts for
machine-to-machine communication: Possibilities and limitations. In
Internet of Things and Intelligence System, pages 130-136. IEEE, 2018.

Felix Harer and Hans-Georg Fill. A comparison of approaches for visu-
alising blockchains and smart contract. In IRIS, pages 133-140, 2019.

Felix Harer and Hans-Georg Fill. Decentralized attestation of con-
ceptual models using the ethereum blockchain. In Jorg Becker and
Dmitry A. Novikov, editors, 21st IEEE Conference on Business Infor-
matics, CBI, pages 104-113. IEEE, 2019.

Archana Prashanth Joshi, Meng Han, and Yan Wang. A survey on
security and privacy issues of blockchain technology. Mathematical
foundations of computing, 1:121, 2018.

Dodo Khan, Low Tang Jung, and Manzoor Ahmed Hashmani. System-
atic literature review of challenges in blockchain scalability. Applied
Sciences, 11(20), 2021.

Shafaq Naheed Khan, Faiza Loukil, Chirine Ghedira Guegan, Elhad]j
Benkhelifa, and Anoud Bani-Hani. Blockchain smart contracts: Ap-
plications, challenges, and future trends. Peer-to-Peer Netw. Appl.,
14(5):2901-2925, 2021.

Dongsoo Kim, Minsoo Kim, and Hoontae Kim. Dynamic business pro-
cess management based on process change patterns. In International
Conference on Convergence Information Technology, pages 1154-1161.
IEEE, 2007.

Philipp Klinger and Freimut Bodendorf. Blockchain-based cross-
organizational execution framework for dynamic integration of pro-
cess collaborations. In Entwicklungen, Chancen und Herausforderun-
gen der Digitalisierung: Proceedings der 15. Internationalen Tagung
Wirtschaftsinformatik, WI, pages 893-908. GITO Verlag, 2020.

Philipp Klinger, Long Nguyen, and Freimut Bodendorf. Upgradeability
concept for collaborative blockchain-based business process execution
framework. In Conference on Blockchain, volume 12404 of LNCS, pages
127-141. Springer, 2020.

Christopher Klinkmiiller, Alexander Ponomarev, An Binh Tran, Ingo
Weber, and Wil van der Aalst. Mining blockchain processes: Extracting
process mining data from blockchain applications. In International
Conference on Business Process Management, volume 361 of LNBIP,
pages 71-86. Springer, 2019.

162

[64]

[65]

|66]

67]

[68]

[69]

[70]

[72]

BIBLIOGRAPHY

Stephen Kozlowski. An audit ecosystem to support blockchain-based
accounting and assurance. In Continuous Auditing: Theory and Appli-
cation, pages 299-313. Emerald Publishing Limited UK, 2018.

Jan Ladleif, Anton von Weltzien, and Mathias Weske. chor-js: A mod-
eling framework for BPMN 2.0 choreography diagrams. In Proceedings
of the ER Forum and Poster € Demos Session, volume 2469 of CEUR
Workshop Proceedings, pages 113-117. CEUR-WS.org, 2019.

Jan Ladleif, Mathias Weske, and Ingo Weber. Modeling and enforc-
ing blockchain-based choreographies. In International Conference on
Business Process Management, volume 11675 of LNCS, pages 69-85.
Springer, 2019.

Christine Legner and Kristin Wende. The challenges of inter-
organizational business process design - A research agenda. In Pro-

ceedings of the Fifteenth Furopean Conference on Information Systems
ECIS, pages 106-118. University of St. Gallen, 2007.

Dongcheng Li, W. Eric Wong, and Jincui Guo. A survey on blockchain
for enterprise using hyperledger fabric and composer. In 6th Interna-
tional Conference on Dependable Systems and Their Applications, DSA
2019, Harbin, China, January 3-6, 2020, pages 71-80. IEEE, 2019.

Thomas Locher, Sebastian Obermeier, and Yvonne-Anne Pignolet.
When can a distributed ledger replace a trusted third party? In IEEE
International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cy-
ber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 1069-1077. IEEE, 2018.

Marfa Teresa Gomez Lopez, José Miguel Pérez-Alvarez, Angel Jests
Varela-Vaca, and Rafael M. Gasca. Guiding the creation of chore-
ographed processes with multiple instances based on data models. In
Business Process Management Workshops - BPM 2016 International
Workshops, Rio de Janeiro, Brazil, September 19, 2016, Reuvised Pa-
pers, volume 281 of LNBIP, pages 239-251. Springer Verlag, 2016.

Orlenys Lopez-Pintado, Marlon Dumas, Luciano Garcia-Banuelos, and
Ingo Weber. Dynamic role binding in blockchain-based collaborative
business processes. In Advanced Information Systems Engineering, vol-
ume 11483 of LNCS, pages 399-414. Springer, 2019.

Orlenys Lopez-Pintado, Marlon Dumas, Luciano Garcia-Banuelos, and
Ingo Weber. Interpreted execution of business process models on

BIBLIOGRAPHY 163

73]

[74]

[75]

[76]

7]

78]

[79]

[80]

[81]

[82]

blockchain. In 23rd IEEE International Enterprise Distributed Object
Computing Conference, EDOC, pages 206-215. IEEE, 2019.

Orlenys Lopez-Pintado, Marlon Dumas, Luciano Garcia-Banuelos, and
Ingo Weber. Controlled flexibility in blockchain-based collaborative
business processes. Information Systems, 104:101622, 2022.

Orlenys Lopez-Pintado, Marlon Dumas, and Ingo Weber. Caterpil-
lar: A blockchain-based business process management system. In
BPM Demo Track and BPM Dissertation Award, volume 1920. CEUR-
WS.org, 2017.

Orlenys Lopez-Pintado, Luciano Garcia-Banuelos, Marlon Dumas,
Ingo Weber, and Alexander Ponomarev. Caterpillar: A business pro-
cess execution engine on the ethereum blockchain. Softw. Pract. FExp.,
49(7):1162-1193, 2019.

Mads Frederik Madsen, Mikkel Gaub, Trondur Hggnason, Malthe Et-
trup Kirkbro, Tijs Slaats, and Sgren Debois. Collaboration among
adversaries: distributed workflow execution on a blockchain. In Sym-
posium on Foundations and Applications of Blockchain, page 8, 2018.

Luana Marrocco, Eduardo Castell6 Ferrer, Antonio Bucchiarone, Ar-
naud Grignard, Luis Alonso, Kent Larson, et al. Basic: Towards a
blockchained agent-based simulator for cities. In Massively Multiagent
Systems, volume 11422 of LNCS, pages 144-162. Springer, 2018.

Ricardo Martinho, Dulce Domingos, and Joao Varajao. Cf4bpmn: a

bpmn extension for controlled flexibility in business processes. Procedia
Computer Science, 64:1232-1239, 2015.

Asma Mejri, Sonia Ayachi Ghanouchi, and Ricardo Martinho. Eval-
uation of process modeling paradigms enabling flexibility. Procedia
Computer Science, 64:1043-1050, 2015.

Jan Mendling, Hajo A Reijers, and Jan Recker. Activity labeling in
process modeling: Empirical insights and recommendations. Informa-
tion Systems, 35(4):467-482, 2010.

Jan Mendling, Ingo Weber, and et al. Blockchains for business process
management - challenges and opportunities. ACM Transactions on
Management Information Systems, 9(1):1-16, 2018.

Nazila Gol Mohammadi and Maritta Heisel. Enhancing business pro-
cess models with trustworthiness requirements. In Trust Management

X - 10th IFIP WG 11.11 International Conference, IFIPTM 2016,

164

[83]

[84]

[85]

[36]

[87]

33
[89]
[90]

BIBLIOGRAPHY

Darmstadt, Germany, July 18-22, 2016, Proceedings, volume 473 of
IFIP Advances in Information and Communication Technology, pages
33-51. Springer, 2016.

Nazila Gol Mohammadi, Sachar Paulus, Mohamed Bishr, Andreas
Metzger, Holger Kénnecke, Sandro Hartenstein, Thorsten Weyer, and
Klaus Pohl. Trustworthiness attributes and metrics for engineering
trusted internet-based software systems. In Cloud Computing and
Services Science - Third International Conference, CLOSER 2013,
Aachen, Germany, May 8-10, 2013, Revised Selected Papers, volume
453 of Communications in Computer and Information Science, pages
19-35. Springer, 2013.

Roman Miihlberger, Stefan Bachhofner, Claudio Di Ciccio, Luciano
Garcia-Banuelos, and Orlenys Lopez-Pintado. Extracting event logs
for process mining from data stored on the blockchain. In International
Conference on Business Process Management, volume 362 of LNBIP,
pages 690-703. Springer, 2019.

Roman Miihlberger, Stefan Bachhofner, Eduardo Castell6 Ferrer, Clau-
dio Di Ciccio, Ingo Weber, Maximilian Woéhrer, and Uwe Zdun. Foun-
dational oracle patterns: Connecting blockchain to the off-chain world.
In Business Process Management: Blockchain and Robotic Process Au-
tomation Forum - BPM 2020 Blockchain and RPA Forum, volume
393 of Lecture Notes in Business Information Processing, pages 35-51.
Springer, 2020.

Marcel Miiller, Nadine Ostern, and Michael Rosemann. Silver bullet
for all trust issues? blockchain-based trust patterns for collaborative
business processes. In Business Process Management: Blockchain and
Robotic Process Automation Forum - BPM 2020 Blockchain and RPA
Forum,, volume 393 of LNBIP, pages 3—18. Springer, 2020.

Adriatik Nikaj, Mathias Weske, and Jan Mendling. Semi-automatic
derivation of restful choreographies from business process choreogra-
phies. Softw. Syst. Model., 18(2):1195-1208, 2019.

OMG. BPMN by Example, 2011.
OMG. Business Process Model and Notation, 2011.

Thomas Osterland, Thomas Rose, and Clemens Putschli. On the im-
plementation of business process logic in dlt nodes. In Proceedings of
the 2020 Asia Service Sciences and Software Engineering Conference,

pages 91-99. ACM, 2020.

BIBLIOGRAPHY 165

[91]

192]

193]

[94]

195]

196]

197]

98]

[99]

[100]

[101]

Oscar Pastor. Model-driven development in practice: From require-
ments. In Theory and Practice of Computer Science, volume 10139 of
LNCS, pages 405-410. Springer, 2017.

Isabel Pedrosa and Carlos J Costa. New trends on caatts: what are the
chartered accountants’ new challenges? In Proceedings of the Interna-
tional Conference on Information Systems and Design of Communica-
tion, pages 138-142. ACM, 2014.

Julien Polge, Jérémy Robert, and Yves Le Traon. Permissioned
blockchain frameworks in the industry: A comparison. ICT FExpress,
2020.

Simone Porru, Andrea Pinna, Michele Marchesi, and Roberto Tonelli.
Blockchain-oriented software engineering: challenges and new di-

rections. In Software Engineering Companion, pages 169-171.
IEEE/ACM, 2017.

Vahid Pourheidari, Sara Rouhani, and Ralph Deters. A case study of
execution of untrusted business process on permissioned blockchain. In
2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pages 1588-1594. IEEE, 2018.

Sandro Psaila. Blockchain: A game changer for audit processes. De-
loitte Malta Article, pages 1-4, 2017.

Manfred Reichert and Barbara Weber. Enabling Flexibility in Process-
Aware Information Systems - Challenges, Methods, Technologies.
Springer, 2012.

Ronald J Reisman. Air traffic management blockchain infrastructure
for security, authentication, and privacy. 2019.

Zabihollah Rezaee, Ahmad Sharbatoghlie, Rick Elam, and Peter L
McMickle. Continuous auditing: Building automated auditing capa-
bility. Auditing: A Journal of Practice & Theory, 21(1):147-163, 2002.

Henrique Rocha and Stéphane Ducasse. Preliminary steps towards
modeling blockchain oriented software. In Emerging Trends in Software
Engineering for Blockchain, pages 52-57. ACM, 2018.

Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui
Zhang, Gang Chen, Qian Lin, and Beng Chin Ooi. Blockchains vs.

166

[102]

103

104]

[105]

[106]

107]

108

[109)]

[110]

[111]

BIBLIOGRAPHY

distributed databases: Dichotomy and fusion. In SIGMOD ’21: Inter-
national Conference on Management of Data, Virtual Event, China,
June 20-25, 2021, pages 1504-1517. ACM, 2021.

P Sajana, M Sindhu, and M Sethumadhavan. On blockchain applica-
tions: Hyperledger fabric and ethereum. International Journal of Pure
and Applied Mathematics, 118(18):2965-2970, 2018.

Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and
Wil M. P. van der Aalst. Process flexibility: A survey of contemporary
approaches. In Advances in Enterprise Engineering I, volume 10 of Lec-
ture Notes in Business Information Processing, pages 16-30. Springer,
2008.

Paul H Schurr and Julie L. Ozanne. Influences on exchange processes:
Buyers’ preconceptions of a seller’s trustworthiness and bargaining
toughness. Journal of consumer research, 11(4):939-953, 1985.

Fabian Stiehle and Ingo Weber. Blockchain for business process
enactment: A taxonomy and systematic literature review. CoRR,

abs,/2206.03237, 2022.

Christian Sturm, Jonas Scalanczi, Stefan Schonig, and Stefan Jablon-
ski. A blockchain-based and resource-aware process execution engine.
Future Generation Computer Systems, 100:19-34, 2019.

Christian Sturm, Jonas Szalanczi, Stefan Schonig, and Stefan Jablon-
ski. A lean architecture for blockchain based decentralized process
execution. In Business Process Management Workshops, volume 342

of LNBIP, pages 361-373. Springer, 2018.

Andrew Sutton and Reza Samavi. Blockchain enabled privacy au-
dit logs. In International Semantic Web Conference, volume 10587
of LNCS, pages 645-660. Springer, 2017.

Shigeya Suzuki and Jun Murai. Blockchain as an audit-able communi-
cation channel. In 2017 IEEE 41st Annual Computer Software and Ap-
plications Conference (COMPSAC), volume 2, pages 516-522. IEEE,
2017.

Pinyaphat Tasatanattakool and Chian Techapanupreeda. Blockchain:
Challenges and applications. In 2018 International Conference on In-
formation Networking (ICOIN), pages 473-475, 2018.

An Binh Tran, Qinghua Lu, and Ingo Weber. Lorikeet: A model-driven
engineering tool for blockchain-based business process execution and

BIBLIOGRAPHY 167

[112]

[113]

114)

[115]

[116]

[117]

[118]

[119]

[120]

[121]

122]

asset management. In BPM Dissertation Award, Demonstration, and
Industrial Track, volume 2196, pages 56-60. CEUR-WS.org, 2018.

Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro,
Will Scott, Moritz Schubotz, Bela Gipp, and Yiannis Psaras. Design
and evaluation of IPFS: a storage layer for the decentralized web. In
Fernando Kuipers and Ariel Orda, editors, SIGCOMM ’22: ACM SIG-
COMM 2022 Conference, Amsterdam, The Netherlands, August 22 -
26, 2022, pages 739-752. ACM, 2022.

Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian
Stahl, and Karsten Wolf. Multiparty contracts: Agreeing and imple-
menting interorganizational processes. Comput. J., 53(1):90-106, 2010.

Wil MP Van der Aalst. Business process management: a comprehensive
survey. International Scholarly Research Notices, pages 1-37, 2013.

Miklos A Vasarhelyi and Fern B Halper. The continuous audit of online
systems. In Auditing: A Journal of Practice and Theory, pages 110—
125. Citeseer, 1991.

Olegas Vasilecas, Diana Kalibatiene, and Dejan Lavbi¢. Rule-and
context-based dynamic business process modelling and simulation.
Journal of Systems and Software, 122:1-15, 2016.

Viswanath Venkatesh and Hillol Bala. Adoption and impacts of interor-
ganizational business process standards: Role of partnering synergy.
Inf. Syst. Res., 23(4):1131-1157, 2012.

Wattana Viriyasitavat and Danupol Hoonsopon. Blockchain character-
istics and consensus in modern business processes. Journal of Industrial
Information Integration, 13:32-39, 2019.

Marko Vukoli¢. Hyperledger fabric: towards scalable blockchain for
business. Trust in Digital Life, 2016.

Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander
Ponomarev, and Jan Mendling. Untrusted business process monitor-
ing and execution using blockchain. In Business Process Management,
volume 9850 of LNCS, pages 329-347. Springer, 2016.

Mathias Weske. Business Process Management: Concepts, Languages,
Architectures. Springer, 2007.

Florian Wessling and Volker Gruhn. Engineering software architectures

of blockchain-oriented applications. In Software Architecture Compan-
1on, pages 45-46. IEEE, 2018.

168

[123]

124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

BIBLIOGRAPHY

Stephen A White. Introduction to bpmn. Ibm Cooperation, 2(0):0,
2004.

Karl Wiist and Arthur Gervais. Do you need a blockchain? ITACR
Cryptol. ePrint Arch., page 375, 2017.

Xiwei Xu, Qinghua Lu, Yue Liu, Liming Zhu, Haonan Yao, and
Athanasios V Vasilakos. Designing blockchain-based applications a case
study for imported product traceability. Future Generation Computer
Systems, 92:399-406, 2019.

Xiwei Xu, Cesare Pautasso, Liming Zhu, Qinghua Lu, and Ingo Weber.
A pattern collection for blockchain-based applications. In Proceedings
of the 23rd Furopean Conference on Pattern Languages of Programs,
EuroPLoP 18, pages 3:1-3:20. ACM, 2018.

Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len
Bass, Cesare Pautasso, and Paul Rimb. A taxonomy of blockchain-
based systems for architecture design. In International Conference on

Software Architecture, pages 243-252. IEEE, 2017.

Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. Blockchain
technology overview. CoRR, abs/1906.11078, 2019.

Rui Yuan, Yu-Bin Xia, Hai-Bo Chen, Bin-Yu Zang, and Jan Xie. Shad-
oweth: Private smart contract on public blockchain. Journal of Com-
puter Science and Technology, 33(3):542-556, 2018.

Rui Zhang, Rui Xue, and Ling Liu. Security and privacy on blockchain.
ACM Comput. Surv., 52(3):51:1-51:34, 2019.

Qiuhong Zheng, Yi Li, Ping Chen, and Xinghua Dong. An innovative
ipfs-based storage model for blockchain. In 2018 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence, WI 2018, Santiago, Chile,
December 3-6, 2018, pages 704-708. IEEE Computer Society, 2018.

	Abstract of the Dissertation
	List of Publications
	List of Figures
	List of Tables
	I Introduction & Background
	Introduction
	Motivation
	Research Objectives
	Thesis Structure

	Background
	Blockchain
	Ethereum
	Hyperledger Fabric
	Blockchain Comparison

	Business Process Management
	BPMN Choreography Diagram
	Running Example

	II Blockchain for Inter-Organisational Business Processes
	ChorChain: Trusted Execution of Inter-Organisational Business Processes
	ChorChain Conceptual Framework
	Framework phases
	BPMN meta-model extension
	Translation approach: BPMN to Solidity

	ChorChain Tool
	Modelling
	Publishing, Searching and Instantiation
	Smart Contract Generation
	Deployment
	Execution

	Experiments and Validation
	Running Example Cost Analysis
	Choreography Elements Analysis
	Real-world Use Cases

	Comparison with Existing Approaches

	ChorChain: Auditing Inter-Organisational business process execution
	ChorChain Extended Framework for Auditing
	Conceptual Model
	Auditing Strategies

	ChorChain Extended Tool for Auditing
	Experiments and Validation
	Running Example Performance Analysis
	Assessment with the Involvement of Practitioners

	Comparison with Existing Approaches

	FlexChain: Supporting Run-time Flexibility
	FlexChain Conceptual Framework
	Framework phases
	Translation approach: BPMN to Drools

	FlexChain tool
	Architecture
	Translation
	Instantiation
	Update
	Execution

	Experiments and Validation
	Comparison with Existing Approaches

	MIChain: Supporting Multiplicity
	MIChain: Supporting Multiplicity
	Framework phases
	Modelling multi-instance elements
	Multi-instance attributes
	Translation approach: BPMN to Solidity

	MIChain Tool
	Modelling
	Generation
	Execution

	Experiments and Validation
	Comparison with Existing Approaches

	MultiChain: Supporting Privacy and Confidentiality
	MultiChain Conceptual Framework
	Framework phases
	Hyperledegr Fabric artefacts generation
	Translation approach: from BPMN to Javascript

	MultiChain Tool
	Modelling
	Instantiation
	MultiChain Translator
	Deployment
	Execution

	Experiments and Validation
	Comparison with Existing Approaches

	III Conclusions & Future Works
	Conclusions & Future Works
	Conclusions
	Future Works

	Bibliography

