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Abstract

The research activity has mainly dealt with supervised Machine Learning algorithms,
specifically within the context of kernel methods. A kernel function is a positive definite
function mapping data from the original input space into a higher dimensional Hilbert
space. Differently from classical linear methods, where problems are solved seeking for a
linear function separating points in the input space, kernel methods all have in common
the same basic focus: original input data is mapped onto a higher dimensional feature
set where new coordinates are not computed, but only the inner product of input
points. In this way, kernel methods make possible to deal with non-linearly separable
set of data, making use of linear models in the feature space: all the Machine Learning
methods using a linear function to determine the best fitting for a set of given data.
Instead of employing one single kernel function, Multiple Kernel Learning algorithms
tackle the problem of selecting kernel functions by using a combination of preset base
kernels. Infinite Kernel Learning further extends such idea by exploiting a combination
of possibly infinite base kernels. The research activity core idea is utilize a novel
complex combination of kernel functions in already existing or modified supervised
Machine Learning frameworks. Specifically, we considered two frameworks: Extreme
Learning Machine, having the structure of classical feedforward Neural Networks but
being characterized by hidden nodes variables randomly assigned at the beginning of
the algorithm; Support Vector Machine, a class of linear algorithms based on the idea
of separating data with a hyperplane having as wide a margin as possible. The first
proposed model extends the classical Extreme Learning Machine formulation using a
combination of possibly infinitely many base kernel, presenting a two-step algorithm.
The second result uses a preexisting multi-task kernel function in a novel Support
Vector Machine framework. Multi-task learning defines the Machine Learning problem
of solving more than one task at the same time, with the main goal of taking into
account the existing multi-task relationships. To be able to use the existing multi-task
kernel function, we had to construct a new framework based on the classical Support
Vector Machine one, taking care of every multi-task correlation factor.
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Introduction

The term Machine Learning was coined for the first time in 1959 by Arthur Samuel,
who defined it as a “Field of study that gives computers the ability to learn without
being explicitly programmed ”, [Samuel, 1959]. A more recent and detailed definition was
given by Tom Mitchell [Mitchell, 1997] stating that, “A computer program is said to
learn from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experience E.”

Broadly speaking, Machine Learning is a branch of Artificial Intelligence firstly
introduced in the last decades of the twentieth century, having as a core idea the goal
of ensuring a machine to learn based on a given set of data.

Machine Learning gained a huge success in the last decades, becoming one of the
most popular and studied branches of artificial intelligence. The process of learning is
defined by the ability of modifying any behavior or performance based on previous
experience and novel outside incentive. Hence, as a direct consequence the term
Machine Learning defines all kinds of computer-implemented algorithms that allow
machines to change their conducts in order to adapt to given stimulus and obtain
better results. Based on the considered received stimula, i.e., a set of training data,
and on the problem one aims to tackle, i.e., the decisions that need to be taken,
different Machine Learning fields occur corresponding to the appropriate mathematical
models. Nevertheless, every Machine Learning model is characterized by one main
goal: based on the given dataset, obtain a general working learning rule, namely a
prediction function, to be used for future predictions. Specifically the principal goal of
every Machine Learning algorithm is, once the considered model has been trained with
respect to a given set of data, i.e., the training set, to generate appropriate and highly
accurate outputs when dealing with new unknown samples.

Machine Learning is by definition a multi-disciplinary field, combining together
many research disciplines in order to generate operating models to be successfully
used in real word problems. Therefore, it requires the combination of more than one
academic researchers bringing together their specific expertise to achieve a common
goal [Mancini et al., 2020].

Linear learning methods are among the most used Machine Learning techniques
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due to their simple yet effective operational schemes. Anyway, nonlinear data not only
exist in practice but they represent the majority of real life data and are essential to
pattern realistic scenarios as well as to obtain successful results. Kernel methods are
often exploited to overcome this issue.

Kernel methods are specific Machine Learning algorithms characterized by the use of
particular functions, called kernel functions, as part of their training phase. Specifically,
the term positive definite kernel function, or simply kernel function, defines a specific
group of positive definite symmetric functions mapping inputs from the original space
to a usually higher dimensional feature space, with no actual need of computing such
new coordinates in the feature space but just requiring the calculation of the inner
products of every pair of data points in the feature space. Such technique is often
known under the name of kernel trick, since it allows to map non-linearly separable
data from the original input set to a higher dimensional feature set, where it can be
modelled in a linear way, without the actual computation of the novel coordinates.

From a specific point of view, kernel functions are closely related to the notion of
Reproducing Kernel Hilbert Space: a function of space where the actual learning and
estimation processes are made. In this way, plenty of algorithms originally developed
for linear learning may be successfully and efficiently applied to non-linearly separable
set of data. Specifically, modelling nonlinear data using kernel methods has several
benefits. First, it allows to work in linear spaces, leading to computationally cost-
effective learning algorithms. Moreover, kernel methods allow the use of a huge number
of kernel functions, making a wide choice of feature space based on the corresponding
considered data. Furthermore, no actual computation of the new coordinates is
necessary, relaying on the inner products of the data in the feature space only. Finally,
no condition of the original input space is required, which can be Euclidean as well as
non-Euclidean.

The use of a single kernel function may in some cases limit the sake of the considered
learning algorithm. In fact, the success of the treated learning method may depend on
the choice of a specific kernel function as well as on the selection of the corresponding
kernel parameters. Hence, it may happen to pick a specific base kernel function not
really fit for the problem one aims to treat. A solution to this matter may be to employ
more than one kernel function rather than considering a single preset kernel. Specifically,
the term Multiple Kernel Learning refers to the Machine Learning technique of using a
finite set of base kernel functions, looking for the best possible combination coefficients
as well as the leading kernel parameters. Similarly, Infinite Kernel Learning defines
an extension of Multiple Kernel Learning based on the core idea of operating with
infinitely many base kernel functions, leaving a wide selection of possibilities.

Other that giving an in-depth description of the related theory, in this thesis work
we try to identify novel connections between the concept of using more than one kernel
function and existing supervised learning methods.
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The rest of the thesis is organized as follows. Initially, in Chapter 1 we summarize
the state of the art on Machine Learning, indicating the historical cornerstones that
strongly affected its development and applications, both from a theoretical point of
view as well as from a more practical perspective. Moreover, we describe the tree main
branches of Machine Learning, trying to outline its basic theory and the corresponding
learning rules. After that, we focus on Kernel Methods, starting from a formal definition
of Hilbert space, going through the notion of positive definite kernel function as well
as some popular examples, up to defining the concept of Reproducing Kernel Hilbert
Space. Then, in Chapter 2 we report the existing theory on Linear Methods, describing
the most known and employed algorithms with respect to supervised and unsupervised
learning. In Chapter 3 we analyse the state of the art research work on kernel based
models, still focusing on the general theory but also outlying some popular methods.
Moreover, we describe Multiple Kernel Learning and Infinite Kernel Learning, and in
both cases we report existing approaches based on Support Vector Machine framework.
In Chapter 4 we describe two of the most significant achieved results. Specifically,
we summarize two published papers dealing with the investigation of the use of more
than one base kernel function into existing supervised learning models adapted for our
problem. Finally, we draw conclusions.





Chapter 1

State of the Art

This chapter provides a general overview of modern Machine Learning (ML) tech-
niques: describing its development into time, taking into account several pivotal
moments with respect to both theoretical background and practical point of view; look-
ing at the main existing Machine Learning methods, describing its fundamental aspects
regarding supervised, unsupervised and reinforcement learning methods; explaining the
notional framework at the basis of kernel methods, analysing fundamental theoretical
matters together with practical knowledge concerning kernel function definition.

Machine Learning research field has the main goal of constructing computer pro-
grams with the capacity of self improving with respect to experience and time factors.
Especially in the last decades, Machine Learning has deeply broaden its theory back-
ground as well as practical applications, making the related area of research continuously
updated and characterized by novel factors.

Ensuring that a machine learns is not an easy task, making a machine learn as good
as a human is still to be done. Anyway, Machine Learning main purpose is to find
theoretically functioning and computationally feasible algorithms leading to always
improving results, approximating as good as possible the related human ones.

First, the most important stages of Machine Learning are mapped out, using
a sort of timeline as a bookmark. Starting from Bayes, passing through Legendre,
Gauss and Laplace, up to reaching the more contemporary theories of Markov and
Kolmogorov, the critical process steps at the basis of the theory of every developed
Machine Learning algorithm is proposed. In addiction, the best known cases of examples
of implementation of Machine Learning algorithms are presented, from the classical
Support Vector Machine, to the development of the first Neural Network structure.
On a more practical point of view, Machine Learning most famous goals are described:
from the first self-learning game of checkers in 1952, by way of TD-Gammon program
in 1992, to the most recent AlphaGo algorithm, able to beat one of the strongest Go
player alive.
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Moreover, this chapter provides an in detail description of the three existing
Machine Learning categories. First, supervised learning algorithm is considered, taking
into account general rules of both classification and regression models. After that,
unsupervised learning algorithm is treated, tackling the problem of cluster analysis and
dimensionality reduction as most famous and popular examples. Finally, the classical
reinforcement learning framework is schematized.

After that, a theoretical description of Kernel Methods is proposed. After describing
the notion of Hilbert space, a definition of kernel function is given and several examples
of well-known kernel maps are presented, together with their basic properties. Finally,
the classical formulation of Reproducing Kernel Hilbert Space is given, taking into
account significant existing results at the basis of the theory of Kernel Methods.

1.1 Machine Learning: a brief history

For a complete view of the main concepts behind Machine Learning, we are going to
describe the development of the foundations at the core of Machine Learning research
field using the passage of time as a marker. Specifically, we are going to present the
events that in our opinion have deeply shaken the study of methods or algorithms for
the automatic creation of models from data.

The precise outset may be placed in 1763 with the publication of Thomas Bayes’
“An essay towards solving a problem in the doctrine of chances” [Bayes, 1763]. Center of
reference of capital importance of the essay is the derivation of the posterior distribution
of a problem, also known as Bayes Theorem, where the probability of a specific event,
given the known occurrence of another one, is described through the use of a simple
one line formula. Specifically, Bayes Theorem provides an alternative prospective to
classical approaches in computing parameters: instead of choosing a fixed set of values,
Bayesian methods rely on the concept of randomness. Parameters are initially treated
as random variables, represented as prior distribution, and eventually learned as a
posterior distribution with respect to the specific set of observations.

In 1805 Adrien-Marie Legendre published the least squares method [Legendre, 1805],
to approximate a regression function with respect to a given set of observations. This
method is based on the minimization of the sum of the squared deviations subject to
the given model function, in order to find the parameters which better describe the
original data.

However, in 1809 Carl Friedrich Gauss stated to be aware of the least square method
since 1895 [Gauss, 1809], starting one of the most famous mathematical disputes, and
proved it using the idea of the maximum likelihood. Moreover, it should be emphasised
that in his famous “Theoria Motus” Gauss described for the first time the idea of the
normal (i.e., Gaussian) distribution of random variables in the context of the motion
of celestial bodies.
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As a direct consequence, Pierre-Simon Laplace in 1810 first proved the Central
Limit Theorem (CLT) [Laplace, 1810], outlining in a new way a connection between
the binomial distribution and the novel normal distribution, characterised by only
two parameters: the mean and the standard deviation. It is important to note that,
the Central Limit Theorem plays a key role in Machine Learning models by ensuring
that the sample mean, i.e., the average of a specific dataset, will act as a normal
distribution.

Expanding the results obtained almost a century before by Gauss, in 1860 James
Clerk Maxwell observed that the normal distribution is at the basis of a wide variety
of natural phenomena: starting from the movement of gas molecules, Maxwell proved
that the velocity components of particles clashing into each-other follow a normal
distribution [Maxwell, 1860].

An interesting concept that will be widely used in the following years was proposed
by Francis Galton in 1889 [Galton, 1889]. He discovered the concept of correlation
factor, dealing with the statistical relationship between variables. Galton dealt with the
problem in a purely anthropological context, focusing on biological aspects of related
people, stating that: “Two variable organs are said to be co-related when the variation
of the one is accompanied on the average by more or less variation of the other, and
in the same direction. Thus the length of the arm is said to be correlated with that of
the leg, because a person with a long arm has usually a long leg, and conversely. If
the co-relation be close, then a person with a very long arm would usually have a very
long leg; if it be moderately close, then the length of his leg would usually be only long,
not very long; and if there were no co-relation at all then the length of his leg would
on the average be mediocre. It is easy to see that co-relation must be the consequence
of the variations of the two organs being partly due to common causes. If they were
wholly due to common causes, the co-relation would be perfect, as is approximately
the case with the symmetrically disposed parts of the body. If they were in no respect
due to common causes, the co-relation would be nil. Between these two extremes are
an endless number of intermediate cases, and it will be shown how the closeness of
co-relation in any particular case admits of being expressed by a simple number.”

In 1913 the Russian mathematician Andrey Markov first presented the Markov
chain model [Markov, 1913]. Markov processes will be broadly used in later years for
solving tricky Machine Learning problems, specifically using hidden Markov models,
where the system takes on a Markov chain shape.

A novel and contemporary vision on the notion of probability was given by Andrej
Nikolaevič Kolmogorov in 1933 [Kolmogorov, 1933], with the publication of the so
called “Kolmogorov axioms”, through which he first established fixed basic concepts
which will be at the base of probability theory up to the present day.

On a more practical point of view, it is important to mention the 1935 book by
Ronald Fisher [Fisher, 1936] as the first real example of a series of experiments to test
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given hypothesis.

The year 1948 must be considered as the starting year of the Information Theory
due to the publication of the paper “A Mathematical Theory of Communication” by
Claude Shannon [Shannon, 1948]. Shannon is considered the father of digital age and
his work has given way to modern information as we know it today, by first defining,
among other things, the concept of entropy.

A couple of years later in 1950 another important event shocked the foundations
of Artificial Intelligence (AI): the English mathematician Alan Turing suggested the
use of a test to determine whether a machine may establish an intelligent behavior.
Such test known as the Turing test appeared on the magazine “Mind ” [Turing, 1950]
and had the main goal to try to determine if an Artificial Intelligence is as good as it
is supposed to be and, most importantly, whether or not it is distinguishable from a
human being.

A few months later in 1951, the first Artificial Neural Network (ANN), known as
Stochastic neural analog reinforcement calculator (SNARC), was built by Marvin Lee
Minsky. The proposed network was made of 40 neurons connected with each other and
with the characteristic of being equipped with both short-term and long-term memory.

While working for the International Business Machines Corporation (IBM), the
American computer pioneer Arthur Samuel was the first one to ever design a self-
learning algorithm. Specifically, in 1952 Samuel developed a checker program for the
IBM 701 that allowed the user to acquire skills in the game of checkers, playing with a
commercial computer that trains itself. Therefore, this may be considered a first step
on the idea of reinforcement learning.

Always at IBM, in 1957 Frank Rosenblatt simulated for the first time the behavior
of a Perceptron [Rosenblatt, 1957], a specific mechanism equipped with learning
skills and based on a biological physical structure. The algorithm proposed a novel
approach: at each iteration an input vector is presented to the Perceptron, which
calculates the output and compares it with the desired result, accordingly updating
the structure weights. The Perceptron algorithm was originally designed for binary
linear classification problems, i.e., problems where data points are linearly separable
and the output can take only two specific values.

From a theoretical point of view, in 1960 Bernard Widrow together with his PhD
student Marcian Hoff proposed the Least Mean Squares (LMS) algorithm, also known
as Widrow-Hoff learning or delta rule [Widrow and Hoff, 1960]. It is a gradient descent
algorithm which, at each iteration, aims to minimize the mean square error between the
given and the computed data. The Widrow-Hoff rule is at the basis of the renowned
backpropagation algorithm.

A shock to the foundations of Machine Learning was given by Alexey Ivakhnenko
and his research group in 1965, with the creation of the first Deep Learning network
[Ivakhnenko and Lapa, 1965]. The proposed networks were trained with the use of the
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so called Group Method of Data Handling (GMDH) algorithms, based on a completely
automatic optimization of the structure and parameters.

The book “Perceptrons: an introduction to computational geometry” by Marvin
Minsky and Seymour Papert written in 1969 [Minsky and Papert, 1969] may be both
considered a summary and a turning point on the field of Machine Learning. The book,
in fact, besides describing the robustness and qualities of the Perceptron structure
introduced by Rosenblatt, discusses its limitations as well, such as pointing out the
difficulty of the Perceptron to solve simple logic predicates, e.g., XOR function.

The publication of this book coincides and is partly the cause of the crisis of the
Artificial Intelligence research field, also known as “AI winter”. Back then, Artificial
Intelligence was thought to be able to find the best fitting solution to any kind of
natural problem, but Minsky and Papert showed how the Perceptron algorithm was
not able to succeed when dealing with basic examples of non-linear separable problems.
All this provoked a sense of despair in the scientists, who started to question and doubt
Machine Learning research field.

The release in 1977 of the Expectation-Maximization (EM) algorithm by Arthur
Dempster, Nan Laird, and Donald Rubin [Dempster et al., 1977] marks a very important
moment in the history of Machine Learning, somehow closing the gap created in the
previous decade. The Expectation-Maximization algorithm is an iterative method
usually used for computing maximum likelihood estimates in the event of the absence
of some data. It represents a novel approach still in use, particularly in Bayes models.

In 1980 the Japanese computer scientist Kunihiko Fukushima proposed the neocog-
nitron: a hierarchical, multi layer, convolutional neural network [Fukushima, 1980]
primarly used for classification of handwritten numbers.

One of the most important discovery in the area of Neural Networks was published
by John Hopfield in 1982 and is now named after him: the Hopfield network, the
first example of recurrent Neural Network [Hopfield, 1982]. It is a single layer, fully
connected Neural Network for unsupervised learning, i.e., inputs are provided to the
network which learns only on the basis of these, defined by the presence of loops that
allow information to extend over time.

The first probabilistic graphical model was presented by Judea Pearl in 1985 [Pearl,
1985] with the development of the Bayesian networks. In a Bayesian network the
variables and their conditional dependencies are represented through the use of a
directed acyclic graph (DAG), i.e., a graph where vertices are connected with each
other through the use of edges, defined by specific directions and characterized by the
absence of directed cycles.

Always developed while working for IBM upon the lines of Samuel’s checkers game,
in 1992 Gerald Tesauro developed the TD-Gammon program [Tesauro, 1992], a learning
program for the game of backgammon. It is based on temporal difference learning, i.e.,
a reinforcement learning algorithm, where the learning phase is built on the disparity
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of subsequent predictions with respect to the time variable.

In 1995 Corinna Cortes and Vladimir N. Vapnik expanded the research work done
by Vapnik in the previous years and proposed the soft-margin version of the well-known
Support Vector Machine (SVM) [Cortes and Vladimir Vapnik, 1995]. Specifically,
the paper proposes one of the most robust supervised Machine Learning algorithm
for classification problems based on a specific notion: finding the maximum-margin
hyperplanes dividing the two classes of data. As widely described later, with the use of
kernel functions the Support Vector Machine method may be also used for non-linear
classification dataset.

In the same year, Tin Kam Ho proposed the Random Forest algorithm [Ho, 1995], a
supervised Machine Learning algorithm for both regression and classification problems,
based on the construction of a series of decision trees. It is an ensemble method, i.e., a
technique that combines predictions from multiple Machine Learning algorithms to
make more accurate predictions than any single model, which combines many decision
trees into one model.

The Long Short-Term Memory (LSTM) architecture was first proposed by Sepp
Hochreiter and Jürgen Schmidhuber in 1997 [Hochreiter and Schmidhuber, 1997]. It
represents a peculiar recurrent Artificial Neural Network, endowed with the capacity
of learning long-term associations through the use of a novel Neural Network structure
that repeats itself.

Again in 1997 an important event shocked the community: for the first time a
computer, specifically an IBM computer known as “Deep Blue”, beat the world chess
champion of that time after competing in a six game match [IBM, 1997]. The chess
playing machine was capable of go beyond the limits imagined until then and solve
continuous intricate calculations necessary to beat the human world champion.

After the Deep Blue match, suddenly Artificial Intelligence regained fame and
became an in-style topic again. Moreover, this historical moment also coincides with
the birth of a new awareness in scientists: bigger and bigger sets of data were needed
to power the algorithms, in order to correctly learn in a more precise manner how the
essential process of reality occurs and to be able to reproduce them in a digital way.

Based on this line of thought, in 1999 Professor Yann LeCun together with Corinna
Cortes from Google and Christopher J.C. Burges from Microsoft made avaiable to
the public the world famous “MNIST” dataset [LeCun et al., 1999]: a huge set of
handwritten digits containing 60 000 examples in the training set and 10 000 test set
images. Even after 20 years it still represents a commonly used dataset for many image
processing problems.

Still in the area of big dataset, in 2009 the famous company operating in the internet
distribution of films, television series and other paid entertainment contents, Netflix,
started a public race to obtain the best algorithm for predicting users’ appreciation to
video contents based on their past views. To do that, all the Netflix data were made
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available for anyone who wanted to compete [Netflix, 2009].

Also in 2009 the largest image dataset to that date was released for public use: the
“ImageNet” [Deng et al., 2009]. Even today, it represents one of the largest dataset of
images containing a total of 14 million images.

In terms of development and editing of algorithms, in January 2010 the first
public version of the open source software Machine Learning library “scikit-learn” was
published, making a braking point regarding the free use of the most popular existing
Machine Learning algorithms [Pedregosa et al., 2010]. This event marks a turning
point, because since then almost all the Machine Learning libraries were made open
and free to every scientist willing to use them.

In the same year, the online platform “Kaggle” was released [Kaggle, 2010]. Kaggle
is an online community for competitions of predictive and analytical models where
Machine Learning scholars and data scientists may exchange opinions and materials as
well as develop new skills.

The Watson computer was launched on 2011 [IBM, 2011], an artificial intelligence
system capable of answering queries expressed in a natural language fine-tuned by
IBM. The virtual assistant Watson uses data available from external sources, as official
guidelines or reliable website, and was also recently used to answer citizen questions
on the recent Covid-19 pandemic.

In 2012, Google scientist Jeff Dean and Professor Andren Ng created a Neural
Network made of 16 000 computers [Times, 2012]. It was originally built to act in a
human way but ended up training itself to being able to recognize cats on YouTube
videos.

Developed in 2014 and launched for public in 2015, the “DeepFace” is a robust
algorithm for facial recognition [Taigman et al., 2014]. It is a Facebook system able to
recognise human faces with an accuracy of 97.35%.

On a strictly theoretical point of view, it is impossible not to mention the advent
of the Generative Adversarial Networks (GANs) created by the American computer
scientist Ian Goodfellow and his research group in 2014 [Goodfellow et al., 2014]. A
Generative Adversarial Network is a Machine Learning architecture formed by two
neural networks set against each-other with the goal of creating new digital images
that can be mistaken for real by the human eye.

Finally, a recent news to point out happened in 2016 and concerns once again a
computer beating a human mind [CNN, 2016]. Specifically, “AlphaGo”, i.e., a software
for playing the famous Chinese board game Go, defeated one of the strongest players
in a five game match.
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1.2 Process of Learning

The process of learning is defined as “the relatively permanent change in a person’s
knowledge or behavior due to experience”. Hence, the act of learning is closely related
to the basic idea of personal experience: new skills and knowledge are acquired through
study or by the use of external instructions, triggering a permanent modification of
a person’s beliefs and performance. Discovering how the process of learning happens
has generally involved both animals and humans, leading to the creation of specific
research fields.

Ever since the first computers were created, we asked ourselves whether it is possible
or not to make them independently learn simply with the use of experience. Machine
Learning studies possible approaches and algorithms relating the problem of learning in
machines, powered by a simple in theory, yet tricky in practice explanatory statement:
make computers solve everyday problems with no solution given, namely without being
explicitly programmed to do so.

In this context, in broad terms we talk about learning when a machine changes its
layout in accordance with new received information or different inputs, such that its
future execution will be improved by such structural modifications. As described in the
previous section, Machine Learning was firstly associated with two kind of problems.
On the one hand concerning computer games, namely PC games where the user
could initially play against the computer itself and later on broaden to multi-players
approaches, and on the other tackling Artificial Intelligence problems. The latter
notion studies the issue of the development of “intelligent agents”, i.e., machine devices
that, based on sensory signals, could modify their actions and goals. Over time, these
two fields, i.e., Artificial Intelligence and Machine Learning, started to distance from
each other, with the result of Machine Learning focusing more and more on solving
practical problems over Artificial Intelligence ones. As a direct consequence, today
Machine Learning is considered to be a branch of Artificial Intelligence, in other words,
ML ⊂ AI.

As described later on this thesis, Machine Learning approaches often look at and
try to replicate human and animal learning methods, linking these three research fields
and therefore stressing out their connections. Machine Learning usually concerns tasks
such as predictions, medical diagnosis, robots control, timetables planning and physical
recognition and, based on the given issue, different methods are utilized.

Since until now machines are still not able to learn as fast, good and precisely as
humans, one may ask why all of this interest over focusing on the use of Machine
Learning. A variety of motivations exist underlying the importance of Machine Learning.
First of all, many tackled approaches arising from human or animal environments may
solve and explain purely biological questions and, therefore, help solving problems in
the original research fields, i.e., finding out how humans and animals learn in reality.
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Secondly, external frameworks change quickly and human brains are not always capable
to adapt to these changes. On the contrary, machines can easily adapt to environmental
changes with no use of constant redesign. In addition, the number of data available is
increasing more and more over the last decade, making the human brain poorly feasible
when working with them and observing the fundamental aspects and connections
among them. Furthermore, such problems arise in different fields and change rapidly
as time passes. Human learning is not always prepared to immediately solve such
new and complex problems, while Machines Learning approaches may be capable of
monitoring such changes and quickly adapt based on them.

Machine Learning approaches are usually defined by a typical structure which
describes its fundamental core. When raw data is to be analysed, namely data which
enter the computer system directly after being collected, which can be either through
a tool or through a direct experimental observation of the analyst, the following
process takes place. Data is analysed and investigated in order to extract fundamental
information with the aim of extrapolating characteristics which will provide information
to be used in the learning phase. Such sub-process is known as Feature Extraction.
Hence, once data is analysed and features are extracted, we obtain a dataset ready to
be used in the actual learning phase. Let

{xi}ni=1

be a collection of data obtained after the feature extraction phase, with

xi = (xi1, x
i
2, · · · , xim)T ∈ Rm,

∀i = 1, · · · , n. Namely xi is an m dimensional feature vector. As a result, the dataset
used in the learning phase is an n×m matrix with elements

x1
1 x1

2 · · · x1
m

x2
1 x2

2 · · · x2
m

...
...

. . .
...

xn1 xn2 · · · xnm

 =


x1T

x2T

...
xnT

 ,

with xi the m-dimensional feature vector corresponding to the i-th component. Once
useful features are obtained from the original input data, the learning phase may begin.
Features are combined and analysed so that a learning function is discovered and
deployed to compute output values. When the corresponding output for each element
in the dataset

{yi}ni=1

is given, we talk about supervised learning; otherwise, namely when the output vector
is not known in advance, one speaks of unsupervised learning. Such distinction and
the corresponding learning strategies are described in more detail below. Figure 1.1
shows a basic diagram representing the described Machine Learning structure.
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Input
Feature

Extraction
Learning
Phase

Output

Figure 1.1: A basic Machine Learning structure. Raw data is given as input to
the Feature Extraction phase, from which features are extracted to provide useful
information. After that, the Learning Phase begins, leading to a computed output
vector.

1.2.1 Types of learning

Broadly speaking, from a practical point of view, Machine Learning methods are
usually designed to engineer a vector-valued function in order to learn specific outputs
based on the data they input. Of course, the data they output ought to be connected
to the problem they aim to solve, and Machine Learning algorithms try to determine
the best fitting functions with respect to the considered inputs and tasks.

Based on the available data and the addressed problem to be solved, Machine
Learning methods are commonly split into three different categories: supervised
learning, unsupervised learning and reinforcement learning.

1.2.1.1 Supervised learning

When a dataset of labeled inputs is available, we talk about supervised learning
approach. Specifically, the term labeled inputs means that example inputs together
with their desired outputs are at the user’s disposal, whom has the ability to use such
supplementary information to build the model. Namely, in supervised learning the
goal is to fit these points with a function which represents the given data in the best
possible way.

In detail, let us consider a set

{(x1, y1), (x2, y2), . . . , (xn, yn)}

of n labeled data, where input value xi ∈ Rm is paired with its corresponding label
yi ∈ R, ∀i = 1, · · · , n. A supervised learning algorithm looks for a function

f : X −→ Y,

where X ⊆ Rm is the input set and Y ⊆ R is the output space, such that f better
represents the given labels. Specifically, using a scoring function

g : X × Y −→ R,

a supervised learning algorithm seeks for the function f such that

f(x) = arg max
y

g(x, y),
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namely, such as the vector value y gives the best score.
In practice, there exist two approaches for finding the best f : the empirical risk

minimization and the structural risk minimization. Both methods use the key concept
of loss function. A loss function is a function

L : Y × Y −→ R+,

analyzing how well a function f fits the given labeled data {(xi, yi)}ni=1. Given a
generic example (xj , yj) and let f(xj) = ŷj , the quantity L(yj , ŷj) measures how well
the chosen function f works with respect to the specific dataset. The empirical risk
Remp [Vladimir Vapnik, 2013] is defined as the average error in the training set, namely

Remp(f) =
1

n

n∑
i=1

L(yi, f(xi)).

The empirical risk minimization strategy looks for the function f minimizing the
empirical risk

min
f

Remp(f).

However, the use of the empirical risk model often turns out to have problems of
overfitting, namely to obtain a model f too complex, which almost exactly fits the
training data but that fails in modelling new inputs.

On the contrary, structural risk minimization approach has proven to be particularly
suitable for a wide number of practical problems [Vapnik and A. Chervonenkis, 1979].
Structural risk minimization method may be considered an extension of the empirical
risk based approach. However, in contrast to the empirical risk technique, which looks
for the best predictor f over a preset family of functions, structural risk minimization
method aims to balance the problem of finding a fitting predictor together with the
model complexity. Specifically, let w define the model parameters. Then, structural
risk model aims to solve the following minimization problem

min
w

1

n

n∑
i=1

L(yi, fw(xi)) + λr(w),

with λ ≥ 0 and r(w) regularization parameter.
So, in summary, classical empirical risk approach gives importance only on finding

a predictor f fitting the given training data. In order to prevent overfitting problems,
empirical risk minimization approach tries to find the best predictor fw, still aiming to
restrict its complexity.

In addiction, based on the type of labels, i.e., outputs, different supervised Machine
Learning approaches must be employed.

Classification
In the event of discrete valued outputs, namely a finite number of numerical values, or
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(a) Binary classification. (b) Multi-class classification.

Figure 1.2: Two straightforward classification problems. Figure 1.2a shows a dataset
featured with two labels, represented in blue and deep pink colors. Figure 1.2b describes
data featured with three possible categories, i.e., blue, deep pink and orange.

categorical labels, i.e., outputs which may only lie in a set of categories specifying some
qualitative properties, we talk about classification problems. Specifically, when the
output can only take a fixed number of possible choices, no matter whether they are
numerical or categorical, this requires the use of classification algorithms to correctly
separate the given data into such specific categories. When only two possible choices
are possible, such Machine Learning problem is referred as binary classification. On
the contrary, in the case of a selection of several possibilities, we talk about multi-class
classification problems. Figure 1.2a shows an example of binary classification problem,
with input data taking only two possible label values. Figure 1.2b represents a multi-
class classification problem, specifically with inputs belonging to three possible groups
instead.

Regression
When dealing with dataset

D = {xi, yi}ni=1

characterised by real valued dependent variables yi, ∀i = 1, · · · , n, we talk of regression
analysis. Specifically, regression methods main goal is finding a connection between
independent variables xi and dependent variables yi, such that cause and effect re-
lationships in the given dataset may be estimated and the best prediction can be
obtained. In particular, regression analysis tackles the problem by using a prediction
function f depending on variables xi and on a regression coefficients w such that

yi = f(xi, w) + εi,

where εi is the error term specifying the difference between the actual output yi and
the computed value f(xi, w). Of course, the function f is chosen to better fit the given
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data, describing the existing bond between dependent and independent variables.
When function f is selected as a linear function, we speak of linear regression;

specifically, f is a linear combination of inputs xi, i = 1, · · · , n and parameter w

f(xi) =

m∑
p=0

wpx
i
p

⇒ yi =

m∑
p=0

wpx
i
p + εi, (1.1)

with w = (w0, w1, · · · , wm)T and xi0 = 1, for every i = 1, . . . ,m.
Generally, when the prediction function f is not modelled as a linear function,

we have a non-linear regression. In such circumstances, for the sake of simplicity, let
us consider scalar input values xi ∈ R, ∀i = 1, . . . , n, that is m = 1. In such a case,
the function f is a combination of non linear parameters and factors depending on
the independent variables xi. The easiest example of non-linear regression analysis is
given by the polynomial case. The function f is shaped as the q-th degree polynomial
function with respect to variables xi and parameter w. Specifically, starting from the
linear definition given by Equation (1.1), the general polynomial regression method is
defined by

yi = w0 + w1xi + w2(xi)
2 + w3(xi)

3 + · · ·+ wq(xi)
q + εi

where wi = (w0, w1, · · · , wq) is the regression coefficient vector and εi is the error term
with respect to input xi. Overall, considering the set of independent variables X and
the set of dependent variables Y , non-linear regression tackles the problem of assessing
the relationship between inputs X and labels Y , looking for the function f such that

Y ∼ f(X,w),

hence, looking for a function f that comes closest to the given outputs vector Y . To
do so, several methods are used, all sharing one thing in common: trying to minimize
the error vector ε = (ε1, ε2, · · · , εn), with εi = yi − f(xi) the residual with respect to
the i-th input xi.

Figure 1.3 shows both linear and non linear regression functions applied to the
same dataset.

1.2.1.2 Unsupervised learning

When we deal with a dataset devoid of labels, we are addressing an unsupervised
learning problem. As for the supervised learning methods, we are still dealing with
a training set, but with the essential difference given from the absence of labels.
An unsupervised learning model operates with inputs that have not been already
categorized and, therefore, it has to find some intrinsic information to extract data
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(a) Linear regression.

(b) Non linear regression.

Figure 1.3: Given a generic dataset, data is fitted using a linear prediction function
in Figure 1.3a and a non-linear prediction function in Figure 1.3b. In this particular
case, one can easily see that the non-linear function better represents the given data
compared to the linear prediction function because of the intrinsic properties of the
given dataset.
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connections. From learning inner data properties and analyzing such properties in each
data, unsupervised learning algorithms have two main purposes: learn to divide the
given dataset into specific groups (cluster analysis) based on the presence or absence of
such properties; determine which feature better represent the given data (dimensionality
reduction problem). Despite being characterized by lower data information with respect
to supervised learning algorithms, unsupervised learning methods are investigated and
commonly operated by the scientific community. The reason for this interest can easily
be found simply looking at the available dataset: the vast majority of the accessible
data are unlabeled, making the development and use of unsupervised learning algorithm
extremely important to better understand everyday occurrences.

Clustering
Cluster analysis term describes an unsupervised learning task used for finding simi-
larities or resemblances between unlabeled data. Dealing with data where no output
or relationship between inputs is given, clustering method automatically organizes
data into groups based on the likeness of data points. To do so, clustering needs some
specific and predefined notions. In particular, it is necessary to specify the following
concepts:

- a proximity measure, defining how similar or different two specific data points
are with each other. Note that, for this purpose are commonly used two classical
distance measures: the Euclidean distance, defined as

d(x, x̃) =

√√√√ m∑
i=1

(xi − x̃i)2

or the Manhattan distance, given by

d(x, x̃) =

m∑
i=1

|xi − x̃i|

for x = (x1, x2, · · · , xm) and x̃ = (x̃1, x̃2, · · · , x̃m) two generic m-dimensional
input vectors;

- an evaluation criteria to analyse the quality of clusters. Two known methods
are commonly used to evaluate a clustering division: internal evaluation and
external evaluation. Using internal evaluation criteria, the level of accuracy of
a cluster method is tackled on the clusters themselves, computing how similar
data is into the produced clusters. To do so, several internal indices exist in
literature: the silhouette index, computing how similar a data is with respect
to the belonging cluster when compared with the other groups; the Calinski-
Harabasz index; the Davies–Bouldin index. An external evaluation criteria,
in contrast, analyses the behavior of a clustering algorithm comparing it with
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existing reference parameters, usually computed in advance by human minds.
Hence, such external criteria estimate how good a clustering division is, based on
previously computed feature values having the characteristic of being accurate.
Among the best known examples of external criteria there are:

· F-measure, based on the notions of precision, i.e., the proportion of relevant
data, that is data that is correctly measured;

· sensitivity, namely how many relevant data were actually obtained;

· general confusion matrix, comparing the obtained results with the correct
standard ones;

· rand index, measuring the fraction of fair decisions made by the clustering
division;

- a clustering algorithm, computing such data groups. Clustering algorithms may
be classified based on their inner structure into three possible techniques:

i. Hierarchical clustering algorithms, where clusters are designed in order
to obtain a hierarchical clustering structure. Strategies for hierarchical
clustering are typically of two types: agglomerative, i.e., bottom-up; divisive,
also known as top-down. Agglomerative algorithms start with dividing each
input data into different clusters and continue with the gradual unification
of clusters two by two, using an iterative approach. On the contrary, a
divisive clustering algorithm begins with a single cluster containing all the
initial points and gradually divides it into smaller clusters;

ii. Partitional clustering algorithms, where data is divided into a set of of
disjoint clusters such that the following requirements are satisfied:

· each cluster contains at least one data point;

· each data point belongs to one cluster only;

iii. Bayesian clustering algorithms, a probabilistic model giving a posterior
distribution over the whole space of clusters.

Dimensionality reduction
Dimensionality reduction defines the unsupervised learning technique for lowering the
number of input variables when dealing with high dimensional sets of data. Working
with big data, this may be a complicate task due to the difficulties caused by working
in high dimensional spaces. Specifically, two major issues may occur: sparsity of
data, leading to sparse input matrix, characterized by a predominance of zeros, and
computational problems, such as complexity of calculations or computing delay brought
on by the huge number of data to deal with.
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Dimensionality reduction is often performed in high dimensional sets of data prior
to using other Machine Learning techniques. Let us consider a generic dataset

{xi}ni=1

defined by a number n of input elements. In addition, let us assume that each input
data

xi = (xi1, x
i
2, · · · , xim)T ∈ Rm,

∀i = 1, · · · , n, namely xi has dimension m. Hence the dataset is characterised by a set
of inputs each one represented by a set of m features. In this scenario, dimensionality
reduction focuses on finding a function from the original m-dimensional input space
to a lower m′-dimension space, with the aim of decreasing the number of features.
Dimensionality reduction is usually used for data compression and data visualization
problems. Specifically, in instances where huge input data are considered, reducing
the number of features solves the problem of both employing and storing such data.
Moreover, dimensionality reduction may be used to plot data in order to visualize
data characteristics, when the lower dimension space is chosen to be 2-D or 3-D. A
key issue of dimensionality reduction lies in the correct selection of the dimension m′,
in order to retain the significant properties of the original input data. Moreover, in
order to obtain meaningful information, when reducing the dimension of data, it is
important to preserve the inter-correlation factors existing between inputs, namely the
connections present between the input vectors in the original input space.

Dimensionality reduction techniques may be classified into two relevant classes,
based on the problem it is intended to solve. When we wish to reduce the number of
features to those which are considered the most representative, we talk about feature
selection. In particular, suppose we are considering a set of data characterized by a large
number of features where only a limited number of them are explicative and critical for
the problem we wish to solve. Feature selection allows to keep those important features
and dispose of those that do no give contribution to the resolution of the problem. On
the other hand, when all the existing features are mapped onto a new space of smaller
dimension we talk about feature projection. Differently from feature selection where
reduction of the dataset is performed choosing only relevant features and removing the
irrelevant ones, feature projection takes the whole set of features and project it onto
a different dimension set, with the purpose of lowering the size of the features, while
preserving the structure and information of the original dataset.

1.2.1.3 Reinforcement learning

If the connection between supervised and unsupervised learning can be easily traced
by using the presence and the lacking of labels, i.e., expected given outputs paired to
each input, reinforcement learning is an intermediate learning method distinguished by
the essential notion of reward.
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Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 1.4: A reinforcement learning classical setting: an agent selects a specific action
at to which the environment associates a reward rt+1 and a new state st+1.

A reward is nothing but a feedback provided by the environment, which is useful for
the method to understand whether a specific event performed in a given phase of the
algorithm is positive, namely correct, or not. In some cases, when the performed action
is not proper and, hence the corresponding reward is negative, it is called penalty.

As for unsupervised learning, reinforcement learning algorithms do not need the
presence of labeled data but are defined by a basic framework given by:

i. a set of agents, learning and making decisions;

ii. a specific environment, where agents learn and take decisions concerning the
actions to carry;

iii. a set of actions, among which each agent may choose how to behave;

iv. the state of each agent in the environment;

v. a set of rewards connected to every possible action agents may pursue.

In a reinforcement learning environment, at each predefined discrete time-step, agents
engage with the environment and receive a time dependent state st and reward rt.
Then, subsequently, agents choose a specific action at from the given set and send
it to the environment. Consequently, the environment pairs the new action with a
novel state and reward, i.e., st+1 and rt+1, with the main goal of maximizing the
expected overall reward. Figure 1.4 shows a typical agent-environment interaction in
reinforcement learning methods.

1.3 Kernel Methods: theoretical background

The term kernel method represents a research area which defines a specific group
of algorithms connected by a core idea: projecting the given data from the input space
into a higher dimensional space with the use of a mapping function. Specifically, when
a non-linear dataset is considered, i.e., a dataset non-linearly separable in the original
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input space, a kernel based algorithm allows to perform a kernel function to map the
data to a feature space of higher dimension, where a linear separation may be applied.
A key emblematic characteristic of this method is that only the inner products of the
data needs to be computed. The concept behind kernel learning and its techniques
will be deepened and refined in Chapter 3, while in this section the underlying theory
of kernel methods is tackled.

One key concept about kernel methods is given by the Reproducing Kernel Hilbert
Space (RKHS). First introduced by Stanislaw Zaremba in the early twentieth century
[Zaremba, 1907] regarding the problem of harmonic functions, RKHS was later de-
scribed and analyzed in detail by Nachman Aronszajn in 1950 [Aronszajn, 1950]. An
RKHS provides a strategic framework, defined by a well planned and cost effective com-
putation, grounds for its use in a wide selection of areas, including Machine Learning,
Statistics, Group Theory and Complex Analysis. Specifically, an RKHS constructs a
bijective function connecting a positive definite kernel with a Hilbert space of functions.
Therefore, in order to correctly define an RKHS, it is necessary to provide the notions
of Hilbert space and kernel function first.

1.3.1 Hilbert space

As the name implies, an RKHS is based on the notion of Hilbert space. A Hilbert
space due its name to the German mathematician David Hilbert, whom in the early
1900s generalized the notion of Euclidean space and introduced the concept of infinite
dimensional space. Such theory has been utilized, among other things, in the study of
quantum mechanics and in the development of the kinetic theory of gases, other than
the theory of radiation.

In order to define the notion of Hilbert space it is necessary to introduce some key
definitions.

Definition 1.3.1. Metric space.
A metric space X is a set on which it is defined a metric function d : X ×X −→ R+,
namely a function satisfying the following properties:

a) identity of indiscernibles

d(x, y) = 0 ⇐⇒ x = y

b) symmetry

d(x, y) = d(y, x) ∀x, y ∈ X

c) triangular equality

d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X.
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Definition 1.3.2. Convergence sequence.
A sequence {xn}n∈N is said to converge to, i.e., tend to, x if

∀ε > 0 ∃n̄ ∈ N : ∀n > n̄ d(xn, x) < ε,

which is equivalent to the symbolical definition

lim
n→∞

xn = x.

Definition 1.3.3. Cauchy sequence.
A sequence {xn}n∈N is said a Cauchy sequence if

∀ε > 0 ∃n̄ ∈ N : ∀m,n ≥ n̄ d(xn, xm) < ε.

In other words, as n̄ increases, the terms of the sequence become increasingly close to
each other.

Definition 1.3.4. Complete metric space
A metric space in which all the Cauchy sequences are convergent is said to be complete.

Definition 1.3.5. Real inner product.
Consider a vector space V and the field of real numbers R. A real inner product is a
map

〈·, ·〉 : V × V −→ R

assigning a real number 〈u, v〉 to every given couple of vectors u, v of the input space,
such that the following conditions are satisfied:

a) symmetry
〈u, v〉 = 〈v, u〉

b) linearity in both the arguments

〈a · u, v〉 = 〈u, a · v〉 = a〈u, v〉

〈u+ v, w〉 = 〈u,w〉+ 〈u, v〉

〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

c) positive definiteness

〈u, u〉 ≥ 0 ∀u ∈ V and 〈u, u〉 = 0 iff u = 0

Definition 1.3.6. Complex inner product.
Consider a vector space V and the field of complex number C. An inner product is a
map

〈·, ·〉 : V × V −→ C

assigning a complex value 〈u, v〉 to every given couple of vectors u, v of the input space,
such that the following conditions are satisfied:
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a) conjugate symmetry
〈u, v〉 = 〈v, u〉

b) additivity

〈a · u, v〉 = a〈u, v〉

〈u, a · v〉 = ā〈u, v〉

〈u+ v, w〉 = 〈u,w〉+ 〈u, v〉

〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

c) positive definiteness

〈u, u〉 ≥ 0 ∀u ∈ V and 〈u, u〉 = 0 iff u = 0

An inner product space is a vector space characterized by the presence of an inner
product. The concept of inner product is directly linked with the notion of norm, given
by

‖u‖ :=
√
〈u, u〉.

Note that, in this thesis from now on when we consider real space inner products,
for the simplicity of notation on we are going to introduce the standard dot product
notation

〈u, v〉 := uTv,

where uT is the transpose of u.

Definition 1.3.7. Hilbert space
A Hilbert space (H, 〈·, ·〉H) is an inner product space that is complete in the induced
norm.

An incomplete space with an inner product is called pre-Hilbert space.
Note that, for simplicity of notation from now on we are going to consider real

valued Hilbert spaces and kernel functions.

1.3.2 Kernel functions

Definition 1.3.8. Positive definite kernel
Let X 6= ∅. A function k : X × X −→ R is a positive definite kernel on X if there
exist a Hilbert space (H, 〈·, ·〉H) and a map φ : X −→ H such that ∀x, x̃ ∈ X

k(x, x̃) := 〈φ(x), φ(x̃)〉H,

and the following requirements are satisfied:

a) symmetry
k(x, x̃) = 〈φ(x), φ(x̃)〉H = 〈φ(x̃), φ(x)〉H = k(x̃, x);
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b) positive definiteness
∀x1, x2, . . . , xn ∈ X and c1, c2, . . . , cn ∈ R

n∑
i,j=1

cicjk(xi, xj) ≥ 0,

namely, the matrix K := (Kij) of elements Kij = k(xi, xj) is positive semi
definite.

Note that, the non empty set X does not necessary have to be equipped with an
inner product: the product 〈φ(x), φ(x̃)〉H is the inner product defined on the Hilbert
space H.
The function φ is known as feature map, mapping points x ∈ X from the original input
space to a usually higher dimensional feature space.
Given x1, x2, . . . , xn ∈ X , the symmetric matrix K, with

Kij = k(xi, xj) = 〈φ(xi), φ(xj)〉H,

is known as the Gram matrix or kernel matrix.
To prevent confusion, it is important to underline that, as specified by Definition

1.3.8, a positive definite kernel only requires the Gram matrix to be symmetric and
positive semi definite (i.e., characterized by non negative eigenvalues). In the event
that a kernel function is marked by a positive definite Gram matrix, namely all its
eigenvalues are strictly positive, we talk about strictly positive definite kernel.

Definition 1.3.9. Conditionally positive definite kernel
Let X 6= ∅. A kernel function k : X × X −→ R is conditionally positive definite on X
if and only if it is symmetric and

n∑
i,j=1

cicjk(xi, xj) ≥ 0

∀x1, x2, . . . , xn ∈ X and c1, c2, . . . , cn ∈ R such that
∑n
i=1 ci = 0.

1.3.2.1 Basic properties of kernels

Given a positive definite kernel function k : X × X −→ R, we have that

i. k(x, x) ≥ 0 for every x ∈ X ,

ii. Cauchy-Schwarz inequality holds

k(xi, xj) ≤
√
k(xi, xi)k(xj , xj),

iii. given a scalar α > 0, then αk is still a positive definite kernel.
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If

ki : X × X −→ R, i = 1, . . . , n

is a family of positive definite kernel functions. Then, the following additional properties
are satisfied

iv. Positive combination of kernels
Given a1, a2 ≥ 0, then the combination a1k1 + a2k2 is still a positive definite
kernel,

v. Product of kernels
the product k1k2 = k1(x, x̃)k2(x, x̃) is still a positive definite kernel,

vi. Limit of kernels
the limit

lim
i→∞

ki(x, x̃)

if exists is still a positive definite kernel.

1.3.2.2 Examples of kernels

We are now going to introduce some of the most popular kernel functions.
Let us consider a generic input set X ⊆ Rm with corresponding inner product

defined on X and let x, x̃ ∈ X be two generic input data points.

i. Linear kernel
The easiest kernel map is the linear kernel. The linear kernel on x and x̃ is
defined as

k(x, x̃) = xTx̃+ c,

where the scalar value c ≥ 0 is an at user’s discretion constant.

ii. Polynomial kernel
The polynomial kernel is one of the most famous and used kernel functions,
primarily for its characteristic of using features vectors from the input space as
well as its combinations. Given a polynomial degree d, a constant c ≥ 0 and a
scalar parameter α, the polynomial kernel on x and x̃ is given by

k(x, x̃) = (α(xTx̃) + c)d.

iii. Radial basis function kernel
Given x and x̃, the radial basis function (RBF) kernel, also known as Gaussian
kernel, is defined as

k(x, x̃) = exp

(
−‖x− x̃‖

2

2σ2

)
,
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where ‖x− x̃‖2 = (x− x̃)T(x− x̃) is the squared norm of the distance of inputs
x and x̃. When x and x̃ are close to each other, the value ‖x − x̃‖ is small,
otherwise for distant input points x and x̃, the corresponding distance ‖x− x̃‖
will be large. The value σ is a user adjustable flexible parameter. Using the
parameter γ = 1

2σ2 , the radial basis function kernel is equivalent to the following
formulation

k(x, x̃) = exp
(
γ‖x− x̃‖2

)
.

Note that, σ (i.e., γ) is the only adaptable parameter. Therefore, the performance
of the radial basis function kernel strongly depends on the best choice of it. If σ
is too big (i.e., γ is too small) the kernel will act similarly to a linear function,
not being able to apprehend the complexity of the dataset; otherwise, in the
event that σ is too small (i.e., γ is too big), it will result in a model deficient in
regularization that most likely will be heading overfitting problems.

iv. Exponential kernel
The exponential kernel of input values x and x̃ is given by

k(x, x̃) = exp

(
−‖x− x̃‖

2σ2

)
.

It is quite similar to the radial basis function kernel structure, with only the
square of the norm of the distance of inputs x and x̃ not present.

v. Laplace kernel
The Laplace kernel has a structure similar with respect to the exponential kernel
defined as

k(x, x̃) = exp

(
−‖x− x̃‖

σ

)
,

with ‖x− x̃‖2 = (x− x̃)T(x− x̃) the norm of the distance of x and x̃ as before.

vi. Hyperbolic tangent kernel
The Hyperbolic tangent kernel, also known as Sigmoid kernel, is defined as

k(x, x̃) = tanh(ν + κ(xTx̃)),

with κ > 0 and ν < 0.

vii. ANOVA radial basis kernel
Given a generic d > 0, the ANOVA kernel of degree d equation is

k(x, x̃) =

m∑
k=1

exp(−σ(xk − x̃k)2)d,

where notations xk and x̃k respectively identify the k-th component of input
vectors x and x̃, 0 < k ≤ m.
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viii. Bessel kernel
The Bessel kernel equation is given by

k(x, x̃) =
Jv+1(σ‖x− x̃‖)
‖x− x̃‖−n(v+1)

,

where J(·) is the Bessel function of the first kind defined as

Jα(x) =

∞∑
p=0

(−1)p

p!Γ(p+ α+ 1)

(x
2

)2p+α

,

with Γ(·) being the gamma function, namely an extension of the concept of the
factorial function Γ(t) = (t− 1)! to complex numbers.

ix. Matérn kernel
The Matérn kernel of parameter ν is

k(x, x̃) =
1

Γ(ν)2ν−1

(√
2ν

l
‖x− x̃‖)

)ν
Kν

(√
2ν

l
‖x− x̃‖

)
,

where Kν(·) is a modified Bessel function and Γ(·) is the Gamma function as
above. Note that, the Matérn kernel strongly depends on the value of the
parameter ν: for small values we get a rough approximated function while, if
ν →∞, the Matérn kernel reduces to the radial basis function kernel.

x. Rational quadratic kernel
Given l, α > 0, the rational quadratic kernel formula is

k(x, x̃) = σ2

(
1 +
‖x− x̃‖2

2α`2

)−α
,

where l is a length scale parameter, α is a scale mixture parameter and σ2 is the
pooled variance, i.e., an estimate of the variance of a given samples when each
sample has different mean values.

xi. Cauchy kernel
Generalizing the notion of Cauchy distribution we obtain the Cauchy kernel as
follows

k(x, x̃) =
1

1 + ‖x.x̃‖2
σ2

,

with user selected parameter σ.

xii. Logarithmic kernel
The logarithmic kernel function is given by

k(x, x̃) = − log(‖x− x̃‖d + 1),

with parameter d > 0. Note that, the logarithmic kernel is only conditionally
positive definite (c.p.d), namely Definition 1.3.9 holds.
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xiii. Chi-square kernel
The chi-square (χ2) kernel, also known as intersection kernel, is a commonly used
kernel function to study resemblances within images measuring their distribution
with respect to specific features such as orientation, colours and so on. It is
defined as

k(x, x̃) = 1−

(
−

m∑
k=1

(xk − x̃k)2

1
2 (xk + x̃k)

)
.

Note that, as above, the χ2 kernel is only conditionally positive definite.

1.3.3 Reproducing Kernel Hilbert Space

Seamlessly from the previous section, we are going to consider Hilbert spaces over
the field of real numbers R. It is important to stress that, unless stated otherwise, all
the definitions or results hold for the field of real numbers R as well as for the complex
field C.

Let X be a non empty set and let F(X ,R) be the set of all functions having domain
X and codomain R, where the following pointwise operations are defined

1. addition
∀f, g : X −→ R and ∀x ∈ X

(f + g)(x) = f(x) + g(x),

2. scalar multiplication
∀f : X −→ R and ∀c ∈ R

(c · f)(x) = c · f(x).

Definition 1.3.10. Reproducing Kernel Hilbert Space
A set H ⊆ F(X ,R) is a Reproducing Kernel Hilbert Space (RKHS) on X if the
following conditions are true.

1. H is a vector subspace of the function space F(X ,R);

2. H is equipped with an inner product 〈·, ·〉H in relation to which it is a Hilbert
space, namely H is complete in the induced norm;

3. ∀x ∈ X the function Ex : H −→ R defined as

Ex(f) = f(x)

is bounded.

The map Ex is known as evaluation functional at point x. The evaluation functional
is always linear, namely ∀f, g ∈ H and ∀α,w ∈ R, we have that

Ex(αf + wg) = (αf + wg)(x) = αf(x) + wg(x) = αEx(f) + wEx(g).
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Note that, the evaluation functional is not necessary a continuous function.

Example 1. Let us consider the Hilbert space H = L2([0, 1]), i.e., the space of all square
integrable functions f : [0, 1] −→ R, with induced norm

‖f1 − f2‖L2([0,1]) =

√∫ 1

0

|f1(x)− f2(x)|2dx.

Now, let us consider the sequence {sn}∞n=1, with sn = xn and the evaluation functional
E1. We have that

lim
n→∞

‖sn − 0‖L2([0,1]) = 0,

namely, the sequence of functions {sn}∞n=1 converges to the zero function (i.e., the
function which has always value equal to 0) with respect to the induced norm. Therefore,
we have that

0 = E1( lim
n→∞

sn) 6= lim
n→∞

E1(sn) = lim
n→∞

1n = 1,

namely, the evaluation functional E1 is not continuous.

Now, let us consider a Hilbert space (H, 〈·, ·〉H) and let H∗ be its continuous dual
space given by all bounded linear functional from H to R. More precisely, let H∗ be a
set defined as

H∗ = {f : H −→ R s.t. f bounded linear functional}.

Theorem 1. [Riesz, 1909] The Riesz Representation Theorem for Hilbert
Spaces
Let H be a Hilbert space. For every φ ∈ H∗ there exists a unique f ∈ H such that for
every x ∈ H,

φ(x) = 〈f, x〉H. (1.2)

Proof. First of all, since a bounded operator is always continuous on norm-spaces, we
have that φ(x) is a continuous linear functional.
If φ(x) = 0 for all x ∈ H, we can trivially choose f = 0. Otherwise, let us define the set

M = {x ∈ H : φ(x) = 0}.

The linearity of φ(x) shows that M is a subspace of H, while the continuity of φ(x)

shows that M is closed. We state that M⊥ = {y | ∀x ∈ M, 〈x, y〉H = 0} is a one
dimensional set. Let y1, y2 be two non zero vectors in M⊥; by construction, φ(y1) 6= 0

and φ(y2) 6= 0. Moreover, since y1, y2 ∈M⊥, we have that 〈x, y1〉H = 〈x, y2〉H = 0, for
all x ∈ M . Hence, there must exist a scalar λ 6= 0 such that λφ(y1) = φ(y2). Since
λy1 − y2 ∈M⊥ and φ(λy1 − y2) = 0, we have λy1 − y2 ∈M , namely, λy1 − y2 = 0.
Let z ∈M⊥ with ‖z‖ = 1. Let us set

w = (φ(x))z − (φ(z))x.
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By construction we have that φ(w) = (φ(x))(φ(z))− (φ(z))(φ(x)) = 0, hence w ∈M
and 〈w, z〉H = 0. This leads to

φ(x) = (φ(x))〈z, z〉H = (φ(z))〈x, z〉H.

Thus, Eq. (1.2) holds with f = αz, α = φ(z).
The element f is unique. By contradiction, let f1, f2 such that φ(x) = 〈f1, x〉H and

φ(x) = 〈f2, x〉H. By Cauchy-Schwarz inequality we have that

0 = |φ(x)− φ(x)| = |〈x, f1 − f2〉H| ≤ ‖x‖H‖f1 − f2‖H.

Hence, ‖f1 − f2‖ = 0, which implies f1 = f2.

As a direct consequence, if H is an RKHS on X , for every x ∈ X there exists a
unique vector kx ∈ H such that, for every f ∈ H

f(x) = Ex(f) = 〈f, kx〉H. (1.3)

Definition 1.3.11. Reproducing kernel
Let (H, 〈·, ·〉H) be a Hilbert space on R-valued functions over a non empty set X . A
function k : X × X −→ R defined by

k(x, y) = ky(x)

is called a reproducing kernel for H if the following conditions are satisfied

1. ∀x ∈ X , k(·, x) = kx ∈ H,

2. ∀x ∈ X and ∀f ∈ H, 〈f, k(·, x)〉H = f(x).

The latter condition is known as the reproducing property.

Note that, for every x ∈ X , the associated function k(·, x) = kx is called the
reproducing kernel for the point x. Moreover, we have

k(x, y) = ky(x) = 〈ky, kx〉H. (1.4)

The next result shows a key property of reproducing kernels.

Proposition 2. If a reproducing kernel exists, it is unique.

Proof. We assume ad absurdum that H has two reproducing kernels k1 and k2. By
definition we have that

〈f, k1(·, x)− k2(·, x)〉H = f(x)− f(x), ∀f ∈ H, ∀x ∈ X .

Choosing f := k1(·, x) − k2(·, x), we have ‖k1(·, x) − k2(·, x)‖2H = 0, ∀x ∈ X . Hence,
k1 = k2.
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Definition 1.3.11 provides a formal notion of which properties a reproducing kernel
has to verify but does not establish any correlations between the two main concepts of
RKHS and reproducing kernel.

Theorem 3. [Berlinet and Thomas-Agnan, 2011] Existence of reproducing kernel
A Hilbert space H is a reproducing kernel Hilbert space if and only if H is fitted with a
reproducing kernel.

Proof. (=⇒) The fact that ifH is a reproducing kernel Hilbert thenH has a reproducing
kernel is a direct consequence of the Riesz representation Theorem for Hilbert spaces
(Theorem 1).

(⇐=) To prove the other implication, we assume that H is a Hilbert space equipped
with a reproducing kernel k with the reproducing property

〈f, k(·, x)〉H = f(x).

Then

|Ex(f)| = |f(x)|

= |〈f, k(·, x)〉H|

≤ ‖k(·, x)‖H‖f‖H
= 〈k(·, x), k(·, x)〉1/2H ‖f‖H
= k(x, x)1/2‖f‖H,

where in the third line we used the Cauchy-Schwarz inequality. Therefore, the function
Ex : H −→ R defined as

Ex(f) = f(x)

is a bounded linear evaluation functional.

Lemma 4. Let H be a Hilbert space with inner product 〈·, ·〉H, X a nonempty set and
φ : X −→ H. Then, h(x, y) := 〈φ(x), φ(y)〉H is a positive definite function.

Proof. By definition, we have to prove that ∀n ≥ 1, ∀(a1, . . . , an) ∈ Rn, ∀(x1, . . . , xn) ∈
Xn, the following condition is true

n∑
i=1

n∑
j=1

aiajh(xi, xj) ≥ 0. (1.5)

We have that
n∑
i=1

n∑
j=1

aiajh(xi, xj) =

n∑
i=1

n∑
j=1

〈aiφ(xi), ajφ(xj)〉H

=

〈
n∑
i=1

aiφ(xi),

n∑
j=1

ajφ(xj)

〉
H

=

∥∥∥∥∥
n∑
i=1

aiφ(xi)

∥∥∥∥∥
2

H

≥ 0,
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Hence, condition (1.5) is verified.

Corollary 5. Reproducing kernels are positive definite.

Proof. By Definition (1.3.11) we have that

k(x, y) = ky(x) = 〈ky, kx〉H.

Therefore, to prove the assert it is enough to take φ : x 7→ kx.

Using Lemma 4, it is possible to identify a notion of reproducing kernel as a function
which can be defined as a inner product. Note that, from now on we are going to use
the most basic term kernel, cutting out the word reproducing.

Definition 1.3.12. Kernel
Given X a nonempty set, a function k : X × X −→ R is a kernel if there exists a real
Hilbert space (H, 〈·, ·〉H) and a map φ : X −→ H such that for all x, y ∈ H

k(x, y) = 〈φ(x), φ(y)〉H.

The map φ is known as the feature map and space H is known as feature space.

It is noteworthy that, given a specific kernel function k, the feature map may not
be unique but different functions φ and related feature spaces may exist associated to
the same kernel.

Example 2. Let X = R, x and x̃ two generic input points and k(x, x̃) = xx̃. Trivially
it is easy to see that function φ(x) = x is a feature map with associated feature space
H = R.
Similarly, we have that

k(x, x̃) =
[
x√
2

x√
2

] [ x̃√
2
x̃√
2

]
,

with feature map

φ′(x) =

[
x√
2
x√
2

]
and feature space = R2.

Note that, in Example 2 neither of the two possible choices of feature space are
RKHS, since both H and H̃ are not spaces of functions on the original space X = R.

In Corollary 5 we have proved that all kernels are positive definite functions and
by Definition 1.3.12 we know that every kernel functions may be expressed as an inner
product of elements lying in the feature space, pointing out a close relationship between
inner products and kernel functions. Specifically, the following theorem expresses
such concept stating that for every positive definite function there exists a unique
Reproducing Kernel Hilbert Space.
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Theorem 6. [Aronszajn, 1950] Moore-Aronszajn Theorem
Let k : X ×X −→ R be a positive definite function. Then, there is a unique reproducing
kernel Hilbert space H with reproducing kernel k.

Proof. Let
H0 = span[{k(·, x)x∈X }]

be the linear span of set {k(·, x)x∈X } with corresponding inner product

〈f, g〉H0
=

n∑
i=1

m∑
j=1

αiwjk(xi, x̃j), (1.6)

where

f =

n∑
i=1

αik(·, xi)

and

g =

m∑
j=1

wjk(·, x̃j),

which implies that
k(x, y) = 〈k(·, x), k(·, x̃)〉H0

.

Hence, if we define kx = k(·, x), ∀x ∈ X , we have that

k(x, x̃) = 〈kx, kx̃〉H0 .

First of all, (1.6) is a valid inner product on H0. By construction, the only condition
of Definition 1.3.5 we need to verify is that

〈f, f〉H0
= 0 =⇒ f = 0.

Let

f =

n∑
i=1

αik(·, xi).

Let fix x ∈ X and take ai = aαi, i = 1, . . . , n, an+1 = f(x) and xn+1 = x. Since k is
positive definite by hypothesis, we have that

0 ≤
n+1∑
i=1

n+1∑
j=1

aibjk(xi, x̃j)

= a2〈f, f〉H0 + 2a|f(x)|2 + |f(x)|2k(x, x).

Again, since k is positive definite, we have that |f(x)|4 ≤ |f(x)|2k(x, x)〈f, f〉H0 , which
shows that if 〈f, f〉H0 = 0, then f = 0. At this step, space H0 with its induced norm
〈·, ·, 〉H0 is a pre-Hilbert space.

Let x ∈ X and the evaluation functional Ex, for f =
∑n
i=1 αik(·, xi). We have that

〈f, k(·, x)〉H0
=

n∑
i=1

αik(x, xi) = f(x).
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Therefore, ∀f, g ∈ H0, using the Cauchy-Schwarz inequality, the following is true

|Ex − Ex̃| = |〈f − g, k(·, x)〉H0
|

≤
√
k(x, x)‖f − g‖H0

.

Hence, the functional Ex is continuous on H0.
Now, we wish to show that every H0-Cauchy sequence {fn} which converges point-

wise to 0, converges in H0-norm to 0 as well. Let {fn} be such H0-Cauchy sequence
converging point-wise to 0 and take ε > 0. Since all Cauchy sequences are bounded,
there exists S > 0 such that ‖fn‖H0

< S, ∀n ∈ N. As a direct consequence, there
exists N1 ∈ N such that ‖fn − fm‖H0

< ε/2S, for n,m ≥ N1 and we can write

fN1
=

r∑
i=1

αik(·, xi).

Let us take N2 ∈ N such that for all n ≥ N2 we have that

|fn(xi)| < ε

2r|αi|
,

i = 1, . . . , r. Hence, for n ≥ max(N1, N2), we have that

‖fn‖2H0
≤ |〈fn − fN1 , fn〉H0 |+ |〈fN1 , fn〉H0 |

≤ ‖fn − fN1
‖H0
‖fn‖H0

+

r∑
i=1

|αifn(xi)| (1.7)

< ε,

hence, the H0-Cauchy sequence fn converges in H0-norm to 0.
We now need to extend H0 to make it complete. First of all, note that for any

Cauchy sequence {fn} in H0, ∀x ∈ X , m,n ∈ N we have that

|fn(x)− fm(x)| ≤ ‖fn − fm‖H0

√
k(x, x).

Hence, for every x ∈ X the sequence {(fn(x))} is a Cauchy sequence in R and has a
limit. Let us consider H as the set of functions f : X −→ R which are point-wise limits
of Cauchy sequences {fn} in H0. Namely, if {fn} is a Cauchy sequence in H0, then
limn→∞ fn(x) = f(x) is in H. First of all, by construction we have that H0 ⊂ H.

Next, let define an inner product on H and let show that H with its induced inner
product is a Reproducing Kernel Hilbert Space with reproducing kernel k. Let us
consider two Cauchy sequences {fn} and {gn} in H0 and their corresponding functions
f and g in H. Using again the Cauchy-Schwarz inequality we have that ∀n,m ∈ N

|〈fn, gn〉H0
− 〈fm, gm〉H0

| = |〈fn, gn − gm〉H0
+ 〈fn − fm, gn〉H0

≤ ‖fn‖H0‖gn − gm‖H0 + ‖fn − fm‖H0‖gm‖H0 .
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Hence, the sequence {〈fn, gn〉H0
}n∈N is a Cauchy sequence in R and the inner product

〈fn, gn〉H0
converges. Moreover, let us us consider two Cauchy sequences {f ′n} and

{(g′n)} in H0 which converge respectively to f and g in H as well. Then from (1.7) we
known that

lim
n→∞

‖fn − f ′n‖H0
= 0

and, respectively,
lim
n→∞

‖gn − g′n‖H0 .

Moreover,

|〈fn, gn〉H0 − 〈f ′n, g′n〉H0 | = |〈fn, gn − g′n〉H0 + 〈fn − f ′n, gn〉H0

≤ ‖fn‖H0‖gn − g′n‖H0 + ‖fn − f ′n‖H0‖gn‖H0 ,

hence 〈fn, gn〉H0
and 〈f ′n, g′n〉H0

have the same limit only depending on the functions
f and g. We can now define a inner product on H as

〈f, g〉H = lim
n→∞

〈fn, gn〉H0 .

By the properties of 〈·, ·〉H0
, we know that 〈·, ·〉H is a positive definite map. Moreover,

given a Cauchy sequences {fn} in H0 such that limn→∞‖fn‖H0
= 0, then f = 0.

Hence, space H with its induced norm 〈·, ·, 〉H is a pre-Hilbert space.
We now need to show that H is a complete space. First of all, we note that H0 is

dense in H: for any f ∈ H defined as the point-wise limit of {fn} in H0, we have that
fn ∈ H for any n ∈ N, and

lim
n→∞

〈f, fn〉H = lim
p→∞

lim
n→∞

〈fp, fn〉H0 .

Let {fn} be a Cauchy sequence in H. For each n ∈ N we can define f ′n ∈ H0 such that

lim
n→∞

‖fn − f ′n‖H = 0.

For all ε > 0, let N ∈ N such that ∀n,m > N , ‖fn−fm‖H < ε/3 and ‖fn−f ′n‖H < ε/3,
then

‖f ′n − f ′m‖H0 = ‖f ′n − f ′m‖H
≤ ‖f ′n − fn‖H + ‖fn − fm‖H + ‖fm − f ′m‖H

≤ ε

3
+
ε

3
+
ε

3

≤ ε.

Hence, {f ′n} is a Cauchy sequence in H0, defining a function f ∈ H. Moreover,

lim
n→∞

‖f − f ′n‖H = 0,

hence
lim
n→∞

‖f − fn‖H ≤ lim
n→∞

‖f − f ′n‖H + lim
n→∞

‖f ′n − fn‖H.
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Therefore, f is the limit of the sequence {fn} leading to H complete. Hence space H
is a Hilbert space.

Finally, k is a reproducing kernel on H. If f ∈ H, then by construction the
corresponding Cauchy sequence {fn} ∈ H0 converges point-wise to f . Moreover, for
every x ∈ X , we have that k(·, ·) ∈ H0 and H0 ⊂ H. By construction of the inner
product 〈·, ·〉H, we have that

〈f, k(·, x)〉H = lim
n→∞

〈fn, k(·, x)〉H0

= lim
n→∞

fn(x)

= f(x).

Therefore, the function k is a reproducing kernel for H. Considering that H0 is dense
in H, the space H is the unique Reproducing Kernel Hilbert Space containing H0 with
reproducing kernel k.

Basically, the Moore-Aronszajn Theorem shows that for every positive definite
function k there exists a unique Reproducing Kernel Hilbert Space H for which the
function k is a reproducing kernel. More generally, we have that every positive definite
function is a (reproducing) kernel.

An alternative design and understanding of kernel function and Reproducing Kernel
Hilbert Space is given by the use of Mercer’s theorem, particularly using the idea of
integral operator of a kernel k.

Definition 1.3.13. Integral operator
Let X be a compact metric space, µ a Borel measure on X and k : X × X −→ R a
positive definite kernel on X . In addition, assume that∫ ∫

X
k(x, x̃)2 dµ(x) dµ(x̃) <∞. (1.8)

The map Lk : L2
µ(X ) −→ L2

µ(X ) defined by∫
X
k(x, x̃)f(x̃) dµ(x̃)

is the integral operator of kernel k.

Note that, since k is symmetric, then Lk is a self-adjoint operator, namely ∀f, g ∈ L2
µ,

then
〈f, Lkg〉L2

µ
= 〈Lkf, g〉L2

µ
.

The positive definiteness of k leads to Lk positive operator, i.e.,

〈f, Lkf〉L2
µ
≥ 0, ∀f ∈ L2

µ.

Moreover, if kernel k is continuous, Lk is a compact operator.
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Hence, under the hypothesis of corresponding positive definite kernel, the integral
operator Lk is a self-adjoint, positive, compact operator and the following result may
be applied.

Theorem 7. [Reed, 2012] Spectral Theorem
Let H be a Hilbert space and L : H −→ H be a self-adjoint, positive, compact operator.
Then, there exists an orthonormal basis {ei} of eigenvectors of Lk with corresponding
eigenvalues {λi} with |λ1| ≥ |λ2| ≥ · · · > 0 and λi → 0, such that

Lf =
∑
i

λi〈f, ei〉Hei, f ∈ H.

In other words, a self-adjoint, positive, compact operator can be unitarily diagonal-
ized in an appropriate orthonormal basis.

Theorem 8. [Mercer, 1909] Mercer’s Theorem
Let X be a compact metric space, µ be a strictly positive finite Borel measure on X and
let k(·, ·) be a continuous positive definite kernel function satisfying condition (1.8).
Then

k(x, x̃) =
∑
i

λiei(x)ei(x̃),

where the series converges uniformly on X × X and absolutely for each pair (x, y) ∈
X × X .

Note that, beyond the basic assumptions and under the further hypothesis that X
is a compact metric space and k : X ×X −→ R is a continuous positive definite kernel,
Mercer’s theorem shows an alternative characterization for the feature map φ:

k(x, y) =
∑
i

λiei(x)ei(y)

= (
√
λiei(x))T(

√
λiei(y)).

Hence, we can pick the sequence space `2 as feature space with corresponding feature
map of the form

φ : x 7→
{√

λiei(x)

}
,

for every x ∈ X .





Chapter 2

Linear Learning Models

Linear learning defines the Machine Learning key category concerning linear models.
The term linear models includes all the Machine Learning methods using a linear
function to determine the best fitting predictor for a set of given data.

As described in the next sections, linear models are undoubtedly the simplest one to
be implemented and solved, since they rely on the assumption that output values may
be approximated using a linear combination of the input vectors. This assumption has
a different meaning when applied to classification dataset, i.e., data with corresponding
output belonging to a specific binary class, or if implemented at regression dataset,
i.e., with real valued outputs. Specifically, in classification problems this implies that
data may be correctly separated through the use of a hyperplane.

First of all, it is important to understand if, given a specific set of points, it is
possible to use a linear model to fit the data or, otherwise, if the considered dataset
has a non-linear behavior and a different non-linear model should be used.

First in this chapter, a description of the most used and known linear models is
presented. In the field of linear classification, the Perceptron algorithm is introduced,
describing its learning algorithm in a schematized way and proving its convergence
for linearly separable set of data. Then, the Support Vector Machine algorithm is
described in the specific case of linearly separable two-class dataset. Finally, the logistic
regression method is described, focusing on the maximum likelihood estimation method
used for computing the related coefficients.

After that, the linear regression method is proposed. Specifically, first the closed
form solution is presented, namely the actual mathematical expression for the optimum
value; after that, the gradient descent rule applied to the least square method is
described, analyzing one of the most popular indirect strategies available.

Finally, a linear learning framework approach commonly used in unsupervised
problems is proposed: the Linear Discriminant Analysis. Linear Discriminant Analysis
algorithm is used both for classification problems and dimensionality reduction issues,

41
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with a final discussion on the similarities and differences between Linear Discriminant
Analysis and Support Vector Machine.

2.1 Supervised Learning

2.1.1 Linear Classification

The term linear classification describes the supervised learning research field
characterized by the general goal of classifying labeled data through the use of a
linear combination of input feature variables. As described in Chapter 1, when only
raw data is available, it is necessary to extract features useful in the actual learning
phase. Such features are used to obtain a specific learning function, taking into account
feature characteristics and input-output correlation factors. Concerning the output, in
classification we tackle the problem of predicting a discrete output value. Specifically,
we are focusing our attention on the task of binary classification, namely the problem
of finding an output value which can take only two possible quantities.

Let us assume
D = {(xi, yi)}ni=1 (2.1)

to be a generic labeled dataset, where n specifies the number of elements, xi =

(xi1, x
i
2, . . . , x

i
m)T ∈ Rm, i = 1, . . . , n, is the i-th input vector of dimension m and yi is

the label corresponding to the i-th input vector xi. Moreover, since we are describing
a classification approach, we know that this implies a fundamental condition on labels
which must assume discrete values. Hence, for the sake of clarity we consider labels
yi ∈ {−1,+1}, i = 1, . . . , n, i.e., a binary classification problem.

Given a generic input vector xi = (xi1, x
i
2, . . . , x

i
m)T, linear classification methods

tackle the problem of finding a decision making function f of xi as a linear combination
of input features together with a weight vector w. Namely, we have that

ŷi = f
(
wTxi + θ

)
= f

( m∑
j=1

wjx
i
j + θ

)
(2.2)

with w = (w1, w2, . . . , wm)T weight vector and θ ∈ R threshold value learned during
the algorithm with respect to the given labeled dataset. As a direct consequence of
Equation (2.2), we have that a linear classifier tackles the problem of separating data
with the use of a straight line, for one dimensional cases, a plane in the event of dealing
with bi-dimensional training dataset or a hyperplane for higher dimensional scenarios.
Specifically, let us consider a linearly separable set of data such that points belonging
to different classes are located onto different sections of space. Then, we can assume
that there exist a vector w and a scalar θ such that

wTxi ≥ θ, if yi = +1

wTxi < θ, if yi = −1.
(2.3)
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H

Figure 2.1: Black dots and black empty dots belong to two linearly separable different
classes. Plane H correctly classifies the given dataset.

If Equations (2.3) are verified, vector w and scalar θ define a hyperplane separating
the two classes of data points. Such hyperplane is known as separating hyperplane and
is a key notion in linear classification techniques.

Figure 2.1 shows a basic linearly separable binary classification example, where
data belonging to two linearly separable classes are separated through the use of a
separating hyperplane.

2.1.1.1 Perceptron

The Perceptron algorithm was first proposed in the 50s by Frank Rosenblatt
[Rosenblatt, 1957], relying its basic mechanism on the biological physical structure of
the human neuron. Let us consider D an n-dimensional training set as defined in (2.1),
with training inputs xi = (xi1, . . . , x

i
m)T ∈ Rm and corresponding labels yi ∈ {−1,+1},

i = 1, . . . , n.
The Perceptron is a classical binary classifier algorithm, based on the notion of

separating hyperplane, namely the decision boundary dividing the two considered
classes is a straight line. Specifically, the Perceptron algorithm uses a function f , called
activation function, from the input space to the output space. Given a training data
xi, the function f is defined by the Heaviside step function as follows

f(xi) =

1, if wTxi + θ ≥ 0

0, otherwise,
(2.4)

with θ ∈ R threshold value. Equation (2.4) is also called the Perceptron classification
rule. Note that, condition wTxi ≥ 0 may be also written as w̃Tx̃i ≥ 0 where w̃ =
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Activation
function

∑
w2xi2 output f(xi)

...
...

wmxim

w1xi1

w01

inputs weights

Figure 2.2: A classical Perceptron structure. Given a generic input point xi =

(xi1, . . . , x
i
m)T and a weight vector w = (w0, w1, . . . , wm)T, a linear combination of

given input xi and weight vector w is performed. After that, a specific activation
function is used to obtain the computed output.

(w0, w1, . . . , wm)T and x̃i = (xio, x
i
1, . . . , x

i
m)T, with w0 = θ and xi0 = 1 for each

i = 1, . . . . , n. In this section we will utilize this second formalism but, for the sake of
simplicity, we will continue to use neat notations x and w.

Figure 2.2 shows the basic Perceptron framework for a generic input xi = (xi1, . . . , x
i
m)T

with output value f(xi) = sign (wTxi). If yi 6= f(xi), namely the computed output
does not match with the corresponding label, the weight vector w is updated according
to the following rule

w = w + ηyix
i,

where η is the learning rate of the Perceptron, lying within the range 0 to 1, with
highly volatile changes of weight vector w for larger choices of η.

The Perceptron learning algorithm is described in Algorithm 1.

Algorithm 1: Perceptron learning algorithm.
Data: A set of training data D = {(xi, yi)}ni=1, a learning rate η
Result: A separating hyperplane coefficient w∗

Initialize the weight vector w = 0;
repeat

Choose a training pair (xi, yi);
Compute output value f(xi) = sign (wTxi) ;
if yi 6= f(xi) then

w = w + ηyix
i;

end

until convergence;
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As shown in Algorithm 1, the Perceptron learning algorithm considers one example
at the time, instantly applying the weight vector w and, in case the prediction is not
correct, i.e., yi 6= f(xi), consequently updating it. In literature, applying the learning
algorithm to every training example is called an epoch. At the end of each epoch, a
weight vector is selected and, if it checks the considered convergence rule, the algorithm
terminates; otherwise, a new epoch may begin.

Note that, by construction the convergence of the Perceptron model described
in Algorithm 1 only occurs in cases in which the two classes are linearly separable.
Specifically, if a linearly separable training set is considered, the Perceptron learning
algorithm ensures that a final weight vector w∗, corresponding to a correct separating
hyperplane, will be found after a finite number of epochs.

Before proving it, some assumptions are needed. First, since we are considering a
finite linearly separable dataset D, then there exists some w∗ ∈ Rm correctly separating
the given dataset. Moreover, we assume that there exists some γ ∈ R such that, for
every i ∈ {1, 2, . . . , n}, we have that

yi(w
Txi) ≥ γ.

Finally, we can assume without loss of generality that there exists R ∈ R such that

‖xi‖ ≤ R,

for all i ∈ {1, 2, . . . , n}.
Now we are ready to prove the convergence of the Perceptron algorithm.

Theorem 9. Perceptron convergence.
Let

D = {(xi, yi)}ni=1

be a linearly separable training dataset with training inputs xi = (xi1, . . . , x
i
m)T ∈ Rm

and corresponding labels yi ∈ {−1,+1}, i = 1, . . . , n. Then, the Perceptron learning
algorithm makes at most R2

γ2 updates before converging to a separating hyperplane with
corresponding weight vector w∗.

Proof. From Algorithm 1, if the Perceptron learning algorithm terminates returning a
weight vector, then the corresponding separating hyperplane correctly divides points
belonging to different classes. Hence, it is sufficient to show that the algorithm ends
after at most R2

γ2 iterations.

Let us consider wk as the weight vector computed after the k-th iteration on a
incorrectly classified point {xj , yj}, namely

wk = wk−1 + yjx
j ,
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with learning rate η = 1. Moreover, let us assume w0 = 0. Then, we have

wk
T
w∗ = (wk−1 + yjx

j)
T
w∗

= wk−1T
w∗ + yjx

jTw∗

> wk−1T
w∗ + γ.

By induction, since w0 = 0, we have that

wk
T
w∗ > kγ. (2.5)

Moreover,

‖wk‖2 = wk
T
wk = (wk−1 + yjx

j)T(wk−1 + yjx
j)

= ‖wk−1‖2 + 2yjw
k−1T

xj + ‖xj‖2

≤ ‖wk−1‖2 + ‖xj‖2

≤ ‖wk−1‖2 +R2,

where we have used the fact that yjwk−1T
xj ≤ 0. Again, since w0 = 0, applying the

formula above, we obtain that
‖wk‖2 ≤ kR2. (2.6)

Finally, combining Equations (2.5) and (2.6) we have

k2γ2 ≤ (wk
T
w∗)2 ≤ ‖wk‖2‖w∗‖2 ≤ kR2‖w∗‖2,

which implies

k ≤
(
R

γ

)2

‖w∗‖2.

Therefore, the Perceptron learning algorithm will converge after a finite number of
iterations.

In the Perceptron training phase, the loss function used is

L(x, y, w) = max (0,−ywTx). (2.7)

Note that, we have assumed that, if w∗ correctly separates the given data, then
yiw
∗Txi ≥ γ for some γ ∈ R. Therefore, for every input xi with corresponding label

yi = +1, we have that w∗Txi ≥ γ, while for those inputs xi with negative label yi = −1,
then w∗Txi ≤ γ. Now, let us suppose that during epoch k some training errors occur.
Then, we have the following scenario. If a data point xi is correctly classified, then
yiw

Txi ≥ 0. Otherwise, for incorrectly classified points xi, we have that yiwTxi < 0.
Namely the loss function described in Equation (2.7) is 0 for correctly classified points.
Otherwise, if a point xi is wrongly classified, namely it lies in the incorrect side of the
considered space, then the corresponding penalty is given by the value −yiwTxi.
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Assume now that the dataset D = {(xi, yi)}ni=1 is not linearly separable but we still
wish to find a separating hyperplane with the use of a a classical Perceptron algorithm
with the smallest number of incorrectly classified data. To do so, we have to consider
a squared loss function. As before, let

ŷi = f(xi)

be the computed output and yi the actual label and let

ej = ŷj − yj

be the error corresponding to the j-th component of the training set D. Then, the
squared loss function is given by

E(w) =
1

2

n∑
i=1

e2
i =

1

2

n∑
i=1

(ŷi − yi)2.

We can use the squared loss function to calculate the optimal weight vector w∗,
computing the gradient of E(w) with respect to vector w, i.e., the derivative of the
error function in the direction of the weight vector. Specifically, once the gradient of
the error

∇wE =
∂E
∂w

is computed, vector w is updated using the following rule

w = w − η∇wE .

Algorithm 2 schematizes the explained learning rule.

Algorithm 2: The Perceptron learning algorithm with the use of gradient
descent rule. Once a weight vector is given, the corresponding output is
calculated for every input data. Then the gradient of the squared loss over
the entire dataset is computed.
Data: A set of training data D = {(xi, yi)}ni=1, a learning rate η
Result: A separating hyperplane coefficient w∗

Initialize the weight vector w = 0;
repeat

Compute output value f(xi) = sign (wTxi) for every given input;
w = w − η∇wE

until convergence;

2.1.1.2 Support Vector Machine

A Support Vector Machine algorithm was initially proposed in the first half of the
sixties by Vladimir Vapnik and Alexey Chervonenkis [Vapnik and A. Y. Chervonenkis,
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1964] for classifying linearly separable set of data, and, later on, broaden for the
non-linear case by Vapnik himself and others. Specifically, in 1992 Vapnik together
with Bernhard Boser and Isabelle Guyon [Boser et al., 1992] suggested an innovative
approach for a non-linear classifier making use of kernel functions to extend the initial
proposed method to non-linearly separable set of data and, in 1995, Vapnik and
Corinna Cortes published the current Support Vector Machine approach [Cortes and
Vladimir Vapnik, 1995] by making use of soft margins for non separable dataset.

Let us consider the linearly two-class separable case. Let D be a generic training
dataset as specified in (2.1) with xi = (xi1, x

i
2, . . . , x

i
m)T ∈ Rm and corresponding

class label yi ∈ {−1,+1}, for every i = 1, . . . , n. As briefly described above, Support
Vector Machine algorithm was initially proposed as a linear classification method
and is based on the idea of classifying the given data with the use of a separating
hyperplane. Specifically, Support Vector classifiers aim to tackle the problem by finding
the hyperplane with maximum margin separating the data points xi with corresponding
class label yi = 1 with respect to those having label yi equal to −1.

A generic hyperplane in Rm may be written as

wTx+ θ = 0, (2.8)

with w ∈ Rm vector orthogonal to the hyperplane and θ ∈ R threshold value. If the
dataset is linearly separable, it is possible to show that there exist w and θ such that

wTxi + θ ≥ +1, if yi = +1

wTxi + θ ≤ −1, if yi = −1.
(2.9)

Note that, (2.9) is equivalent to writing

yi[w
Txi + θ] ≥ 1,

for all i = 1, . . . , n.
With reference to Figure 2.3, the separating hyperplane is given by wTx+ θ = 0

defining two portions of space demarcated by equations wTx+θ ≥ +1 and wTx+θ ≤ −1.
If a point xi lies in the side of space defined by wTx+ θ ≥ +1, it has corresponding
label yi equal to +1, similarly for data lying in the section of space delineated by
wTx + θ ≤ −1, the matching label is equal to −1. Still with reference to Figure
2.3, the core concept of Support Vector Machines is to look at such two parallel
hyperplanes, separating the given data with respect to their corresponding class labels.
Specifically, Support Vector Machine algorithms look for such two hyperplanes such
that the distance between them is maximized. Such distance is known as margin and
plays a key role.

Intuitively, given a linearly separable two-class dataset, there exist infinitely many
hyperplanes correctly separating data into the given classes. While other linear classifi-
cation techniques do not specifically distinguish between these separating hyperplanes,
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wTx+ θ = +1
wTx+ θ = 0

wTx+ θ = −1

margin

Figure 2.3: The hyperplane of equation wTx+ θ = 0 separates points belonging to the
two given classes. If a point has output yi = +1, then it lies on the portion of space
boarded by the hyperplane of equation wTx+ θ = +1; on the contrary, if a data point
has output yi = −1, it is on the section of space given by the hyperplane defined by
wTx+ θ = −1. The distance between such two hyperplanes takes the name of margin.

as we shall see, Support Vector Machines search for the specific hyperplane lying as
far away as possible from the two given classes of data. Such distance between the two
classes is known as margin of the classifier. Of course, the farther a data point is from
the separating hyperplane, the more certain of the classification of such data we are.

More specifically, for a generic data point xi with corresponding label yi and a
separating hyperplane with corresponding parameters (w, θ), the functional margin is
defined as the quantity

λi = yi(w
Txi + θ). (2.10)

It is easy to note that, the bigger the functional margin, the more correct and trusting
the prediction of a certain data is. A large value for the functional margin requires a
large positive value of wTxi + θ. Analogously, for negative values of yi, the quantity
wTxi + θ has to be a large negative number for the functional margin to be large.
Hence, when dealing with functional margin, we search for big values of it in order
to be certain about the classifier. Anyway, it should be noted that, we can always
re-scale the values of parameters (w, θ) to get large values in (2.10), since λi does not
rely on the size of w and θ but only on its signs. For example, if we consider (4w, 4θ)

instead of (w, θ), we obtain a functional margin yi((4w)Txi + 4θ) = 4yi(w
Txi) which is

four times bigger than (2.10) but with no actual change in the separating hyperplane.
Hence, as a result, some constraint conditions on vector w have to be imposed.

To do so, we consider some geometrical notions. By construction, vector w is a
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normal vector to the hyperplane defined by Equation (2.8) and w/‖w‖ is a unit vector
pointing in the same direction as w. It is a fact that the distance between a point and a
hyperplane is orthogonal to the hyperplane itself and, therefore, parallel to unit vector
w/‖w‖. Let us consider a generic data point xi with corresponding positive label yi
and let γi be the distance of such point with respect to the decision hyperplane, i.e.,
the geometric margin of point xi. Moreover, let us take into account the closest point
to xi lying on the hyperplane. We have that such point is given by

xi − γi
w

‖w‖

and is located onto the hyperplane of Equation (2.8). Hence we have that

wT
(
xi − γi

w

‖w‖

)
= 0. (2.11)

Solving Equation (2.11) for γi gives

γi =
wTxi + θ

‖w‖
=

1

‖w‖
wTxi +

θ

‖w‖
.

As a rule, for a general training data (xi, yi) with no knowledge on the sign of the
label, the geometric margin is defined as

γi = yi

(
1

‖w‖
wTxi +

θ

‖w‖

)
. (2.12)

Note that, if ‖w‖ = 1, Equations (2.10) and (2.12) are the same, namely the functional
and the geometrical margins coincide. Moreover, as a direct consequence we have that
the geometrical margin does not change when scaling of parameters (w, θ) happens.

Up to this point, we have considered the notions of functional margin and geometrical
margin with respect to one single data point. Let us take a generic dataset given by
D = {(xi, yi)}ni=1 as in (2.1). Based on Equation (2.10), the functional margin of D is
defined as

λ = min
i=1,...,n

λi.

Analogously, based on Equation (2.12), the geometrical margin of D is defined as

γ = min
i=1,...,n

γi.

Note that, by construction we have that

γ =
λ

‖w‖
.

Since Support Vector Machines tackle the problem of finding a separating hyperplane
by maximizing the margin between the two sets of classes, the optimal hyperplane may
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be found solving the following optimization problem

max
γ,w,θ

min
i=1,...,n

wTxi + θ

‖w‖
s.t. yi[wTxi + θ] ≥ 1, ∀i = 1, . . . , n.

(2.13)

By definition of geometrical margin and structural margin of the dataset D =

{(xi, yi)}ni=1 stated above, Problem (2.13) can be rewritten as

max
λ,w,θ

λ

‖w‖
s.t. yi[wTxi + b] ≥ 1, ∀i = 1, . . . , n.

(2.14)

Since the functional margin is invariant with respect to re-scaling, we can set the
functional margin λ = 1. In this way, solving the maximization Problem (2.13), i.e.,
Problem (2.14), is equivalent to solve the following minimization problem

min
w,θ

1

2
‖w‖2

s.t. yi[wTxi + θ] ≥ 1, ∀i = 1, . . . , n.

(2.15)

Note that, Problem (2.15) is a convex quadratic optimization problem with linear
constraints. Hence, it can be solved using basic quadratic programming (QP) program-
ming libraries in an efficient way. Problem (2.15) is known in the scientific literature
as hard margin Support Vector Machine since it takes into account specific dataset
given by linearly separable two-classes data with no possibility of error occurring.

Let us now assume that the considered dataset D = {(xi, yi)}ni=1 is not linearly
separable, namely the system of inequalities defined in (2.9) does not admit solutions.
To extend Problem (2.15) to this scenario, let us consider slack variables ξi for all
i = 1, . . . , n in order to relax the constraint on the margin. Specifically, we now have:

yi[w
Txi + θ] ≥ 1− ξi

ξi ≥ 0, ∀i = 1, . . . , n.

Whenever 0 < ξi ≤ 1, the associated data point xi is correctly classified and lies in the
correct section of space; otherwise, when ξi > 1, the paired training data xi enters the
decision space of the opposite class and, therefore, is incorrectly classified. Hence, by
definition we have that

n∑
i=1

ξi

represents an upper-bound on the number of wrongly classified points in the training
dataset D. This justifies its inclusion in the objective function. Specifically, in the
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event of employing slack variables ξi,∀i = 1, . . . , n, Problem (2.15) becomes

min
w,θ,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi[wTxi + θ] ≥ 1− ξi, ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n,

(2.16)

with C > 0 parameter which represents some kind of degree of freedom, namely
indicating how much a misclassified sample must pay for violating the margin constraint.
Problem (2.16) takes the name soft margin Support Vector Machine.

2.1.1.3 Logistic Regression

Once again, let us consider the dataset defined in (2.1) with input vectors xi =

(xi1, . . . , x
i
m)T ∈ Rm and corresponding binary labels yi ∈ {0,+1} for every i = 1, . . . , n.

Suppose we are trying to solve a classification problem, that is learning a classifier
function predicting binary outcomes taking into account input-output correlation
factors. Up to now, when a new input vector is considered, the classification methods we
looked at, exactly estimate a precise output value belonging to the labels set considered.
As part of statistical Machine Learning models, logistic regression algorithm, also
known as logit regression, aims to obtain a probability output value that one of two
outputs occurs, taking into consideration the relationship between input vectors and
output values. The American scientist Joseph Berkson is widely recognised as the
predominant figure developing logistic regression model [Berkson, 1944].

The logistic regression model has the goal of finding a conditional distribution
function P (y | x) computing the probability of a specific output y for a given input
vector x.

Let p(x) = P (y = 1). The logistic regression model is based on the key idea not to
directly model probability function p(x) but to use the logit function, also known as
log-odds function, of p(x), defined as

logit(p(x)) = log
p(x)

1− p(x)
. (2.17)

Note that, by definition
logit : (0, 1) −→ R

and is the inverse of the logistic curve of equation f(x) = 1
1+e−x . Moreover, the

following results hold.

· logit(0, 5) = 0;

· if 0 < p(x) < 0, 5 then logit(p(x)) < 0;

· if 0, 5 < p(x) < 1 then logit(p(x)) > 0.
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Figure 2.4: Logit function plot in its domain of definition (0,1).

Figure 2.4 shows the graph of logit function in the domain defined by values 0 and 1.
Logistic regression models the logit function of p(x) as a linear function of x.

Specifically, logistic regression method is formally given by

log
p(x)

1− p(x)
= θ + wTx. (2.18)

Solving Equation (2.18) with respect to variable p(x) we obtain

p(x) =
eθ+w

Tx

1 + eθ+wTx
=

1

1 + e−(θ+wTx)
. (2.19)

Therefore, remembering that p(x) = P (y = 1), if solving Equation (2.19) we get a value
p(x) ≥ 0, 5, model predicts y = 1; otherwise, for values of p(x) < 0, 5 we have y = 0.
Therefore, whenever θ + wTx is non-negative, the related input point is classified as
belonging to class +1, while for input vectors with corresponding negative values of
θ + wTx, we talk about points of class 0. The separating hyperplane of the two given
classes is specified by equation

θ + wTx = 0.

In addition to predicting the odds that an input point belongs to a specific class,
logistic regression also defines class probabilities in Equation (2.19) depending on the
distance of points from the separating hyperplane. Specifically, given an input vector
xi, if ‖θ + wTxi‖ is large, then the probability class p(xi) will tend to the extreme
points 0 and 1 more quickly, making the prediction more accurate and certain.

The logistic regression coefficients θ and w are usually computed through the use
of the maximum likelihood estimation (MLE) method. From a broad point of view, let
us consider a Bernoulli set of labels and let

p(x̃, β) = P (y = 1 | x = x̃)
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be a function defined by parameter β. Then, the conditional likelihood function is
given by

L(β) =

n∏
i=1

P (y = yi | x = xi) =

n∏
i=1

[
p(xi, β)yi(1− p(xi, β))(1−yi)

]
. (2.20)

For a proper choice of function p(xi, β) depending on parameter β, the likelihood
function (2.20) is a function of parameter vector β as well. Hence, we can get an
estimate of parameter vector β maximizing the likelihood function. Since we are
considering a two classes problem, we have probability p if yi = +1 and probability
(1− p) if yi = 0. Hence, by Equation (2.20), we have that the likelihood function is
given by

L(β) =

n∏
i=1

[
p(xi)yi(1− p(xi))(1−yi)

]
,

with

β =

(
θ

w

)
.

If we compute the natural logarithm of the likelihood function, known as the log-
likelihood, we get

l(θ, w) := log(L(β)) =

n∑
i=1

[
yi log p(xi) + (1− yi) log(1− p(xi))

]

=

n∑
i=1

log(1− p(xi)) +

n∑
i=1

yi log
p(xi)

1− p(xi)

=

n∑
i=1

log

(
1− eθ+w

Txi

1 + eθ+wTxi

)
+

n∑
i=1

yi(θ + wTxi)

=

n∑
i=1

− log(1 + eθ+w
Txi) +

n∑
i=1

yi(θ + wTxi),

where Equations (2.18) and (2.19) have been used. In this way we have obtained a
value for the log-likelihood function l(θ, w).

To determine the best θ and w optimizing the likelihood function one option would
be to compute the derivative with respect to the parameters and set it to zero. First of
all, let us try to compute the partial derivative of l(θ, w) with respect to one component
of w, e.g., wj . We have

∂l(θ, w)

wj
= −

n∑
i=1

1

1 + eθ+wTxi
eθ+w

Txixij +

n∑
i=1

yix
i
j

=

n∑
i=1

(yi − p(xi))xij .

Unfortunately, there is no close form solution for determining a stationary point. As a
consequence, logistic regression method uses iterative approximation processes, e.g.,
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Newton’s method, to find the best fitting solution numerically, starting from a tentative
initial choice of parameters θ and w.

2.1.2 Linear Regression

When we are asked to predict a continuous output value the corresponding learning
problem is known as regression problem. Specifically, regression algorithms aim to
find some kind of connection linking the input values with the corresponding outputs.
When looking for the easiest possible connection between data, we talk about linear
regression. Let us consider a generic dataset

D = {(xi, yi)}ni=1, (2.21)

with xi = (xi1, . . . , x
i
m)T ∈ Rm and corresponding continuous labels yi ∈ R. Suppose

we are looking for a specific function estimating the existing relationship between given
inputs xi and related output yi.

In linear regression the goal is to represent the approximation function as a linear
combination of the input vectors, fitting the training data {(xi, yi)}ni=1 with the use of
a line. In particular, for every given input vector xi = (xi1, . . . , x

i
m)T, we look for a

function f such that
f(xi) = θ + w1x

i
1 + · · ·+ wmx

i
m, (2.22)

with weight vector w = (θ, w1, . . . , wm)T. To simplify Equation (2.22), we can introduce
the notation

f(xi) =

m∑
j=0

wjx
i
j = wTxi, (2.23)

where we have introduced xi0 = 1 for every i = 1, . . . , n. We can express the above
formula in the matrix notation as

f = Xw (2.24)

where

f =


f1

f2

...
fn

 ,

with fi = f(xi) for every i = 1, . . . , n,

X =


(x1)T

(x2)T

...
(xn)T

 =


1 x1

1 x1
2 · · · x1

m

1 x2
1 x2

2 · · · x2
m

...
...

...
. . .

...
1 xn1 xn2 · · · xnm

 ,

and w is the weight vector as specified above. By Equation (2.24), it is clearly visible
that linear regression algorithm entirely relies on the choice of vector w that better
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represents the given dataset. The question is how to pick this vector that better
describes the available data. One logic way is to consider the difference between the
computed outputs fi = f(xi) and the given labels yi for every i = 1, . . . , n. To do so,
we consider the vector ε given by

ε =


ε1

ε2
...
εn

 ,

where εi = fi−yi is the error term corresponding to i-th data point (xi, yi), namely, the
difference between function f computed at point xi with respect to the corresponding
given label value yi. Let J (w) be the cost function defied as

J (w) =
1

2

n∑
i=1

(f(xi)− yi)2

=
1

2

n∑
i=1

(wTxi − yi)2.

(2.25)

Again, considering our dataset D, one way to learn the best w is by trying to minimize
the cost function J (w). Hence, we look for w∗ such that

w∗ := arg min
w
J (w)

Such method is known as Least Mean Square (LMS) and may be solve through the
use of several strategies.

First, let us consider the closed form solution. In order to compute the actual
mathematical expression of w∗, let us write the cost function defined in Equation (2.25)
using a matrix notation

J (w) =
1

2
(Xw − Y )T(Xw − Y ). (2.26)

To find the optimum value w∗ minimizing Equation (2.26), we need to compute the
derivative of the cost function with respect to w. Specifically, we have

∂J
∂w

=
1

2

∂

∂w
(Xw − Y )T(Xw − Y )

=
1

2

∂

∂w
(wTXTXw − wTXTY − Y TXw + Y TY )

= (XTXw −XTY ).

To find w∗, we set
∂J
∂w

= 0 =⇒ XTXw −XTY = 0. (2.27)

Hence, using Equation (2.27), we have that1

w∗ = (XTX)−1XTY.

1We assume that XTX is available.
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When the closed form solution cannot be calculated or is too expensive to be
computed, other indirect strategies need to be considered. Probably the best known is
the gradient descent algorithm. First of all, let us consider an initial choice of w, say
w0. Gradient descent algorithm iteratively computes the following update rule

wt+1 := wt − α∇J (wt),

for every t ≥ 0. Hence, for every iteration specified by parameter t, the gradient of the
cost function J (w) at wt is computed. The new value wt+1 is updated with respect to
direction opposite of the gradient. Moreover, parameter α is called learning rate of
the algorithm. To have a more clear vision of the algorithm, using Equation (2.25) we
can compute the gradient of the cost function J (w). First of all, we known that the
weight vector w is a vector of m+ 1 elements of the form w = [θ, w1, . . . , wm]T. Hence
the gradient ∇J (wt) takes the form

∇J (wt) =

[
∂J
∂θ

,
∂J
∂w1

, . . . ,
∂J
∂wm

]
.

Therefore, for every j = 0, . . . ,m, the j-th component of the gradient vector takes the
form

∂J
∂wj

=
∂

∂wj

1

2

n∑
i=1

(wTxi − yi)2

=
1

2

n∑
i=1

∂

∂wj
(wTxi − yi)2

=
1

2

n∑
i=1

2(wTxi − yi)
∂

∂wj
(wTxi − yi)

=
1

2

n∑
i=1

2(wTxi − yi)(xij)

=

n∑
i=1

(wTxi − yi)(xij).

Specifically, each element of the gradient vector is equal to ∂J
∂wj

=
∑n
i=1(wTxi−yi)(xij),

∀j = 0, . . . ,m. Namely, the partial derivative of the cost function with respect of the
j-th component of weight vector w is computed as the sum of the error term (wTxi−yi)
multiplied by the j-th component of the corresponding input vector xi. Algorithm 3
schematizes the proposed method.
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Algorithm 3: Gradient descent for Least Mean Square in linear regression
problems.
Data: A set of training data D = {(xi, yi)}ni=1, a learning rate α
Result: A weight vector w∗

Initialize the weight vector w0 = 0;
repeat

Compute ∇J (wt) = [∂J∂θ ,
∂J
∂w1

, . . . , ∂J
∂wm

] gradient of cost function J (w) at
wt;
Update vector w as wt+1 := wt − α∇J (wt)

until convergence;

Note that, for small values of the learning rate α, Algorithm 3 is guaranteed to
converge. As a matter of fact, even if gradient descent algorithm may be sensitive to
the presence of local minima, the problem we aim to solve has only one global minimum
value, since cost function J (w) is a convex quadratic function by construction. Hence,
Algorithm 3 always converges to optimum value w∗.

In Algorithm 3 it should be underlined that the weight vector w is not updated
before computing the error term (wTxi − yi) for every training data {(xi, yi)}ni=1. An
alternative solution would be not to wait until every error term is found but updating
w as soon as a new error term is found. This method is known as stochastic gradient
descent (i.e., incremental gradient descent) and is schematized in Algorithm 4.

Algorithm 4: Stochastic gradient descent for Least Mean Square in linear
regression problems.
Data: A set of training data D = {(xi, yi)}ni=1, a learning rate α
Result: A weight vector w∗

Initialize the weight vector w0 = 0;
repeat

Consider every training pair (xi, yi);
Update vector w = (θ, w1, . . . , wm)T as
wt+1
j := wtj − α(wTxi − yi)(xij)

until convergence;

Hence, while Algorithm 3 has to scan the entire training dataset before updating
the weight vector w, stochastic gradient descent algorithm starts modifying w as soon
as an error term occurs, making Algorithm 4 more convenient in terms of time and
cost of operations.
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2.2 Unsupervised Learning

2.2.1 Linear Discriminant Analysis

The term discriminant defines a function that, given an input vector, computes
an output related to it. Specifically, the expression linear discriminant is used to
describe a discriminant function using a linear combination of the input vectors. Linear
Discriminant Analysis (LDA) is a linear learning method used for both classification
problems and dimensionality reduction issues. In this context, linear discriminant
analysis aims to map input data points into a lower dimension space, in order to obtain
the best separable decision function between the given different classes.

As before, let D = {(xi, yi)}ni=1 be a generic training set as defined in (2.1),
with xi = (xi1, . . . , x

i
m)T ∈ Rm and corresponding labels yi ∈ {−1,+1}, for every

i = 1, . . . , n. Linear discriminant analysis task searches for a function

f : Rm −→ {−1,+1}

such that f is linear with respect to input vectors xi, i = 1, . . . , n and correctly classifies
the given training point. Specifically, Linear Discriminant Analysis algorithm searches
for a function f such that, for every xi,

f(xi) = wTxi

with w ∈ Rm weight vector. Once a threshold value θ is chosen, if f(xi) ≥ θ, then
output +1 is assigned to input xi. On the contrary, if f(xi) < θ, input xi will be given
output −1. Hence, vector w has a key role in Linear Discriminant Analysis. Based on
the choice of w two possible outcomes are possible: we may obtain a good projection
of the input vectors and, therefore, achieve a good separation between classes; in other
cases, instead, we may obtain a complex projection, often leading to misclassifications.
Figure 2.5 shows a two class dataset projected onto two different lines defined by weight
vector w1 and w2.

Primarily, taking into account the two-class training dataset D, Linear Discriminant
Analysis assumes that each class may be represented with respect to its mean value
and covariance function. Hence, let us denote C1 and C2 as the two class labels of
dataset D and let n1 and n2 respectively describe the number of elements of each class.
The mean value of each class is given by

µ1 =
1

n1

∑
i∈C1

xi,

µ2 =
1

n2

∑
i∈C2

xi.

A first idea would be to look for a weight vector w such that
m∑
i=1

wi = 1,
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Figure 2.5: A generic two class dataset represented by the solid and empty dots. Weight
vector w1 leads to a projection of points that best separates the two given classes. On
the contrary, vector w2 generates a projection causing an inappropriate division of the
considered classes.

maximizing the following quantity,

1

n1

∑
i∈C1

wTxi − 1

n2

∑
i∈C2

wTxi = wT(µ1 − µ2),

where expressions 1
n1

∑
i∈C1

wTxi and 1
n2

∑
i∈C2

wTxi represents the projection of
class mean µ1 and µ2 respectively. Such optimization leads to a non optimal solution
when the class covariance functions assume different values with respect to each class.
To solve this issue, Linear Discriminant Analysis algorithm optimizes the following
function

J(w) =
wTSBw

wTSWw
, (2.28)

where SB is the between classes covariance matrix and SW is the within classes
covariance matrix, respectively defined as

SB = (µ2 − µ1)T(µ2 − µ1),

SW =
∑
j

∑
i∈Cj

(xi − µj)(xi − µj)T.

Hence, Linear Discriminant Analysis aims to determine for a weight vector w maxi-
mizing the variance function of the projected centers SB , namely with class means far
apart, while minimizing the variance function within each class of the considered data
points SW at the same time. Computing the derivative of (2.28) and setting it to zero
we obtain

∂J

∂w
=
SBw(wTSWw)− SWw(wTSBw)

wTSWw
= 0.
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To solve the Linear Discriminant Analysis problem it is necessary to consider the
following generalized eigenvalue problem

SBw = J(w)SWw.

Therefore, assuming matrix SW is invertible, finding the maximum of (2.28) is equivalent
to obtaining the largest eigenvectors corresponding to the largest eigenvalues of S−1

W SB

[Ordowski and Meyer, 2004].
From the construction of the problems, the Linear Discriminant Analysis algorithm

may be associated with Support Vector Machine method. In fact, both models want to
determine the optimal hyperplane separating the given data with respect to each class.
However, differently from Support Vector Machine where there are no prerequisite
on the considered dataset, Linear Discriminant Analysis technique starts with the
assumption that every subset of the training set, corresponding to each class, is normally
distributed. Specifically, Linear Discriminant Analysis needs to compute the mean
value and the covariance matrix of every given class. Moreover, despite being a linear
classifier, as stated above, Linear Discriminant Analysis algorithm is usually used for
dimensionality reduction problems, in order to reduce the dimension of big input space
with the expected desire of obtaining an easier to handle set of data.





Chapter 3

Kernel Learning Models

The key idea behind kernel learning is in the use of positive definite kernel functions.
Let us consider a generic dataset D as specified in (2.1). Moreover, let X be the input
set and Y the label set. As described in Chapter 1, given a Hilbert space (H, 〈·, ·〉H)

and a map φ : X −→ H, a positive definite kernel is a function k : X × X −→ R
defined by

k(xi, xj) := 〈φ(xi), φ(xj)〉H,

such that the corresponding Gram matrix K := (Kij) where Kij = k(xi, xj) is
symmetric and positive semi-definite for all x1, x2, . . . , xn ∈ X.

Differently from classical linear methods, where problems are solved seeking for a
linear separation function in the original space, kernel learning algorithms all have in
common the same basic focus: original input data is mapped onto a higher dimensional
feature set where new coordinates are not computed but only the inner product of
input points. Mapping points from a generic input space X to a Hilbert space H
brings some well-known benefits. Specifically, the most immediate advantage in using
kernel methods is the fact that it is possible to deal with non-linear set of data by
mapping them into feature spaces, where they can be linearly separable. In particular,
as already described beforehand, several kernel functions exist, producing a large set
of possible choices with respect to the original dataset considered.

Moreover, kernel methods operate in an efficient way. In fact, let us consider a
kernel function k : X ×X −→ R. By construction, for every couple of input points
xi, xj in the input space X, kernel k is defined as k(xi, xj) = Kij = 〈φ(xi), φ(xj)〉H. As
a direct consequence, it is not necessary to compute vectors φ(xi) and φ(xj) to obtain
the corresponding kernel, but it is sufficient to calculate the value 〈φ(xi), φ(xj)〉H
given by the inner product of the specific input point defined with respect to the
Hilbert space H (the kernel trick). Therefore, kernel learning represents an efficient
approach: using kernel methods makes it possible to deal with non-linear dataset
in a linear way mapping points to a higher dimension feature set with the addition

63
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of not having to compute the actual coordinates of points onto such new space by
the use of function φ(·), but only their inner product. Moreover, kernel algorithms
are a convenient approach: they allow to analyse and manipulate sets of non-linearly
separable data through the use of linear functions, allowing a significant reduction of
computational time.

As stated in Chapter 1, the concept of reproducing kernel was first introduced
by Nachman Aronszajn in 1950 [Aronszajn, 1950]. Later in the nineties, an in-deep
analysis on reproducing kernels was carried out. Specifically, Tomaso Poggio and
Federico Girosi have made use of reproducing kernels in Radial Basis Function (RBF)
networks, i.e., a specific neural network using radial basis function as activation function
[Poggio and Girosi, 1990]. In the same year, Grace Wahba used reproducing kernels in
classical approximation techniques for data analysis [Wahba, 1990]. In 1992 Bernhard
Boser together with Isabelle Guyon and Vladimir Vapnik presented a maximum margin
training algorithm trasforming the primal optimization problem into its dual form
making use of a kernel representation [Boser et al., 1992]. From an unsupervised
learning point of view, in 1998 Bernhard Schölkopf, Alexander Smola and Klaus-Robert
Müller firstly used kernel functions for non-linear set of data in Principal Component
Analysis [Schölkopf et al., 1998].

3.1 Supervised Learning

3.1.1 Support Vector Machine

Again, let us consider an n-dimensional generic dataset D as in (2.1) with input
set X of elements xi = (xi1, · · · , xim)T ∈ Rm for every i = 1, . . . , n, and corresponding
class labels set Y = {y1, y2, . . . , yn}, with yi ∈ {−1,+1}, for every i = 1, . . . , n. In
Chapter 2, we introduced the following optimization problem corresponding to the soft
margin Support Vector Machine classifier

min
w,θ,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi[wTxi + θ] ≥ 1− ξi, ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n,

(3.1)

with C > 0 training error parameter and ξi slack variables, for every input point
i = 1, . . . , n with ξi ≥ 1 corresponding to wrongly classified data points and 0 ≤ ξi < 1

whenever an input point xi is correctly classified.
We can consider the Lagrangian function associated to Problem (3.1) given by

L(w, θ, ξ, α, β) =
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑
i=1

αi
[
yi[w

Txi + θ]− 1 + ξi
]

+

n∑
i=1

βiξi, (3.2)
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with αi, βi ∈ R Lagrangian multipliers with αi, βi ≥ 0 for every i = 1, . . . , n. In order
to obtain the dual of Problem (3.1), we first compute the partial derivatives of the
Lagrangian function L(w, θ, ξ, α, β) with respect to w and θ and set them to zero.

Specifically, we have

∂L
∂w

(w, θ, ξ, α, β) = w −
n∑
i=1

αiyix
i = 0,

implying that

w =

n∑
i=1

αiyix
i. (3.3)

Moreover, we have that

∂L
∂θ

(w, θ, ξ, α, β) =

n∑
i=1

αiyi = 0. (3.4)

Using Equation (3.3) into the Lagrangian function (3.2), we obtain the following
expression

L(w, θ, ξ, α, β) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
iTxj − θ

n∑
i=1

αiyi +

n∑
i=1

ξi(C − αi + βi).

Now, considering Equation (3.4), we have that the Lagrangian function becomes

L(w, θ, ξ, α, β) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
iTxj +

n∑
i=1

ξi(C − αi + βi).

Moreover, we have that
∂L
∂ξ

(w, θ, ξ, α, β) = C − αi + βi = 0. (3.5)

Hence, the corresponding Wolfe-dual of Problem (3.1) is given by

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
iTxj

s.t.
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C i = 1, . . . , n,

(3.6)

where the constraints 0 ≤ αi ≤ C come from combining Lagrangian multiplier condition
αi ≥ 0, ∀i = 1, . . . , n with the result obtained using Equation (3.5). Now, since βi ≥ 0

for every i = 1, . . . , n, this leads to constraint αi ≤ C, ∀i = 1, . . . , n. Note that
Problem (3.6) is equivalent to the corresponding problem

min
α

Γ(α) =
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
iTxj −

n∑
i=1

αi

s.t.
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C i = 1, . . . , n.

(3.7)
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Once Problem (3.7) is solved and a solution α∗ is found minimizing the objective
function Γ(α), the corresponding primal vector w∗ may be computed using Equation
(3.3) as

w∗ =

n∑
i=1

α∗i yix
i.

As a direct consequence, it is important to note that vector w∗ is only dependent
by the input vectors xi corresponding to α∗i > 0. Such input points xi are known
as support vectors and are those closer to the maximum margin classifier. Support
vectors are, in general, a small subset of the total number of input vectors, still fully
controlling the margin geometrical features. Moreover, the input vectors xi with with
corresponding Lagrangian multipliers 0 < α∗i < C are called free support vectors, while
those xi with respective α∗i = C are known as bounded support vectors, i.e. they lie
inside the margin.

Once the primal solution w∗ is found, we can compute the corresponding value for
θ∗. Specifically, let us consider the complementary slackness conditions corresponding
to Problem (3.1)

α∗i

(
yi
[
w∗Txi + θ∗

]
− 1 + ξ∗i

)
= 0 (3.8a)

β∗i ξ
∗
i =

(
α∗i − C

)
ξ∗i = 0 (3.8b)

where in Equation (3.8b) we used condition (3.5). If we consider any free support vector
xi, i.e., an input vector with corresponding value of Lagrangian multiplier 0 < α∗i < C,
from Equation (3.8b) we have that ξ∗i = 0. Using it in Equation (3.8a) we have that

yi
[
w∗Txi + θ∗

]
− 1 = 0,

Hence, once the optimal w∗ is found, we can easily obtain value θ∗.
For a new point x̄ to be classified, the corresponding Support Vector Machine

output is given by

f(x̄) = sgn(w∗Tx̄+ θ∗) = sgn
( n∑
i=1

α∗i yix
iTx̄+ θ∗

)
,

with

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

signum function.
Note that, the Wolfe-dual optimization Problem (3.7) may be entirely written in

terms of the inner products of the input feature vectors. As a direct consequence, this
makes Support Vector Machine optimization problem easily extendable to non-linear
sets of data, exploiting kernel theory.
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Let φ : X −→ H be a feature map from the input set X ⊂ Rm to a feature space
H of dimension greater than m. Hence, each input feature vector xi = (xi1, · · · , xim)T

is mapped onto a higher dimensional feature space H, resulting in vector φ(xi). If we
replace xi with φ(xi) for every i = 1, . . . , n, Problem (3.7) becomes

min
α

Γ(α) =
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈φ(xi), φ(xj)〉H −
n∑
i=1

αi

s.t.
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C i = 1, . . . , n,

(3.9)

Moreover, we have

w∗ =

n∑
i=1

α∗i yiφ(xi),

where w∗ is the optimum solution of Problem (3.9). Using any input point such that
0 < α∗i < C, we can compute the value of θ∗ solving the following equation

yi
[
w∗Tφ(xi) + θ∗

]
− 1 = 0.

Finally, for a new point x̄ to be classified, the corresponding Support Vector Machine
output is given by

f(x̄) = sgn(w∗Tφ(x̄) + θ∗) = sgn
( n∑
i=1

α∗i yi〈φ(xi), φ(x̄)〉H + θ∗
)
.

Using the kernel definition proposed in Chapter 1, we consider a kernel function k

defined as

k(xi, xj) = 〈φ(xi), φ(xj)〉H,

with 〈·, ·〉H inner product of the feature space H. Problem (3.9) becomes

min
α

Γ(α) =
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj)−
n∑
i=1

αi

s.t.
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C i = 1, . . . , n.

(3.10)

The decision function described above can also be expressed in terms of the kernel
function k as follows. For a novel point x̄, the corresponding output is given by the
following

f(x̄) = sgn
( n∑
i=1

α∗i yik(x
i, x̄) + θ∗

)
.
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Note that, given any set of training data D = {(xi, yi)ni=1} of dimension n with
xi = (xi1, · · · , xim)T ∈ X and class labels Y = {y1, y2, . . . , yn}, the use of a kernel
function leads to an n× n kernel matrix K defined as

K =
(
k(xi, xj)

)n
i,j=1

=


k(x1, x1) · · · k(x1, xn)

... · · ·
...

k(xn, x1) · · · k(xn, xn)

 ,

symmetric and semi-positive definite by definition.

3.1.2 Gaussian Process

Gaussian Process (GP) is a supervised learning technique describing a distribution
over functions. It is a kernel based algorithm which stands out from the others due to its
probabilistic approach. Classical approaches make explicit use of existing relationship
between input data and corresponding output, choosing between several possibilities,
e.g., linear, polynomial or exponential. In these cases, where given formula are used
to express such connection and where parameter size and features are set, we have
parametric models. On the contrary, when such explicit hypothesis is not given, we have
non-parametric models. Specifically, in this case we are not making any mathematical
assumption either on the input-output relationship or on the weights, but we simply
set our beliefs on the space of functions. In non-parametric models we do not design a
finite set of parameters describing our dataset, leaving in this way a very high degree
freedom to the possible choice of predictors. Gaussian Process belongs to the class of
non-parametric model, placing a prior on the space of functions with no assumptions
on the set of parameters.

From a theoretical point of view, a Gaussian Process is a stochastic process, namely a
collection of random variables indexes by either time or space, where every distribution,
characterised by being of finite dimension, is a multivariate Gaussian distribution,
i.e., any finite choice of variables is normally distributed. If a Gaussian probability
distribution is used to scalars or vectors in the form of random variables, a Gaussian
Process describes the features of functions. Despite functions are defined on an infinite
numbers of points, Gaussian Processes aim to deal with functions onto a specific finite
set of points, that is the input dataset. Specifically, let us consider a generic dataset D
with continuous labels as described in (2.21). Gaussian Processes describe a probability
distribution over functions f such that f(xi), for every xi ∈ X, has an n variate
Gaussian distribution. Similarly to the classical Gaussian distribution, which is fully
marked by a mean function and covariance function, a Gaussian Process is entirely
defined by two key factors: its mean function m, defined as the expected value

E[f(xi)]
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of the entire set of variables f(xi), ∀i = 1, . . . , n of the problem, and its covariance
function

k(xi, xj),

given by

k(xi, xj) = E[(f(xi)−m(xi))(f(xj)−m(xj))]

for every i, j = 1, . . . , n.
Once again, it is important to note that, the use of a covariance function k on D

directly produces an n×n covariance matrix K with elements given by Kij = k(xi, xj),
∀i, j = 1, . . . , n.

In general, given a Gaussian Process f(x) with corresponding mean function m(x)

and covariance function k(x, x′), for the function f the following notation is used

f(x) ∼ G(m(x), k(x, x′)).

Note that, has described in-deep in Chapter 1, if the mean function m(x) may assume
any possible value, zero included, the covariance matrix K generated by the covariance
function has to be positive semi-definite, namely, the corresponding covariance function
k(x, x′) has to be positive definite. The use of Gaussian process in Machine Learning
may be established in 1996 with the works of Carl Edward Rasmussen and Christopher
Williams [Rasmussen, 2003] and Radford Neal [Neal, 2012].

As stated in Chapter 2, given an n-dimensional dataset D as in (2.21) with
X ⊂ Rm input set and Y output set, in linear regression models for every input vector
xi = (xi1, . . . , x

i
m)T ∈ X, we look for a function f such that

f(xi) =

m∑
p=0

wpx
i
p = wTxi, (3.11)

with xi0 = 1 for every i = 1, . . . , n and weight vector w = (w0, w1, . . . , wm)T. Hence,
introducing ε = (ε0, ε1, . . . , εn)T error term, we have the following relationship between
f(xi) and corresponding label yi

yi = f(xi) + εi, (3.12)

for every i = 1, . . . , n. Namely, we assume that the computed output f(xi) differs from
the given one yi by an error term εi. We consider the error term ε having a Gaussian
distribution, i.e., independent and identically distributed, with mean equal to zero and
variance σ2, namely

ε ∼ N (0, σ2
n). (3.13)

As a direct consequence of Equation (3.12), it follows that

yi − f(xi) ∼ N (0, σ2
n).
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The likelihood, i.e., the probability density of the outputs given the parameters, is
given by

p(Y |X,w) =

n∏
i=1

p(yi|xi, w) =

n∏
i=1

1√
2πσn

exp

(
− (yi − wTxi)2

2σ2
n

)
=

1

(2πσ2
n)n/2

exp

(
− 1

2σ2
n

|Y −XTw|2
)

= N (XTw, σ2
nI),

(3.14)

where the standard Gaussian distribution function for p(yi|xi, w) is obtained combining
the error term Gaussian distribution with the model defined by Equation (3.12).
Therefore, the likelihood function

p(Y |X,w)

follows a Gaussian distribution with mean equal to XTw and the variance of the error
term ε as variance term.

As for every classical Machine Learning algorithm, the main goal of Gaussian
Process method is, given a new input point x̄, to determine an output value f(x̄) based
on a predictor obtained by the use of a training dataset. Let us assume that the vector
w is normally distributed with zero mean function and covariance matrix equal to
Sp ∈ Rm×m, that is

w ∼ N (0, Sp). (3.15)

Equation (3.15) is known as prior with respect to the parameter vector w.
Using Bayes rule, that is

p(a|b) =
p(b|a)p(a)

p(b)
,

we can obtain the posterior distribution of weights w as

p(w|Y,X) =
p(Y |X,w)p(w)

p(Y |X)
, (3.16)

where the term P (Y |X) is called marginal likelihood and is defined as

p(Y |X) =

∫
p(Y |X,w)p(w) dw. (3.17)

Hence, once a new data x̄ is considered, the predictive distribution for f̄ = f(x̄) is
given by

p(f̄ |x̄, X, y) =

∫
p(f̄ |x̄, w)P (w|X,Y ) dw. (3.18)

Equations (3.16) and (3.18) cannot, in general, be solved exactly and are often estimated
with the use of approximation techniques, such as the maximum a posteriori (MAP)
method. However, in the approach specified by Equations (3.12) and (3.13), also known
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as Bayesian linear regression, the posterior and the predictive distribution may be
computed [Rasmussen, 2003]. Specifically, we have

w|Y,X ∼ N
(

1

σ2
n

A−1XY,A−1

)
, (3.19a)

f̄ |x̄, X, y ∼ N
(

1

σ2
n

x̄−1A−1XY, x̄−1A−1x̄

)
, (3.19b)

where
A =

1

σ2
n

XXT + S−1
p . (3.20)

Hence, from (3.19a) and (3.19b) both posterior and predictive distribution for Bayesian
linear regression model follow a Gaussian distribution.

Again, let us consider a generic dataset D as specified in (2.21). Let φ be a feature
map from the input set X ⊂ Rm to a feature space H of dimension m′ greater than
m. We can replace the original points xi with vectors φ(xi) for every i = 1, . . . , n and
Problem (3.11) becomes

f(xi) =

m′∑
p=0

w′pφ(xi)p = 〈w′, φ(xi)〉H, (3.21)

with novel weight vector w′ of dimension m′, i.e., the dimension of φ(xi), ∀i = 1, . . . , n.
Analogously, considering the posterior distribution given in (3.19b), we obtain

f̄ |x̄, X, y ∼ N
(

1

σ2
n

φ(x̄)TA−1ΦY, φ(x̄)TA−1φ(x̄)

)
, (3.22)

where Φ is a matrix of dimension m′ × n with columns given by vectors φ(xi),∀i =

1, . . . , n. Note that, (3.22), as well as (3.19b), contains the inverse of matrix A in both
mean and covariance function. Hence, when the chosen feature space has dimension
m′ bigger than m, solving (3.22) would need to compute the inverse of a large matrix
m′ ×m′ A, leading to a poor cost-effective implementation. Now, remembering from
(3.20) that matrix A was initially defined as 1

σ2
n
XXT + S−1

p , if we consider the feature
map φ and the corresponding matrix Φ, we have that

A =
1

σ2
n

ΦΦT + S−1
p .

Moreover, introducing K = ΦTSpΦ we have the following

ASpΦ =

(
1

σ2
n

ΦΦT + S−1
p

)
SpΦ =

=
1

σ2
n

ΦΦTSpΦ + ΦI =

=
1

σ2
n

Φ
(
ΦTSpΦ + σ2

nI
)

=

=
1

σ2
n

Φ
(
K + σ2

nI
)
.

(3.23)
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Now, Equation (3.23) reduces to

SpΦ
(
K + σ2

nI
)−1

=
1

σ2
n

A−1Φ, (3.24)

multiplying (3.23) by A−1 on the left and by (K + σ2
nI)−1 on the right. Hence, the

mean function of (3.22) becomes

1

σ2
n

φ(x̄)TA−1ΦY = φ(x̄)TSpΦ
(
K + σ2

nI
)−1

Y. (3.25)

Now, let us consider the covariance function of (3.22) defined as

φ(x̄)TA−1φ(x̄).

Using the matrix inversion lemma [Henderson and Searle, 1981], we have that

A−1 =
(
S−1
p + Φσ−2

n IΦ
)−1

=

= Sp − SpΦ
(
σ2
nI + ΦTSpΦ

)−1
ΦTSp =

= Sp − SpΦ
(
σ2
nI +K

)−1
ΦTSp.

(3.26)

Hence, the covariance function expression becomes

φ(x̄)TA−1φ(x̄) = φ(x̄)TSpφ(x̄)− φ(x̄)TSpΦ
(
K + σ2

nI
)−1

ΦTSpφ(x̄).

Therefore, Equation (3.22) is equivalent to

f̄ |x̄, X, y ∼ N
(
φ(x̄)TSpΦ

(
K + σ2

nI
)−1

Y,

φ(x̄)TSpφ(x̄)− φ(x̄)TSpΦ
(
K + σ2

nI
)−1

ΦTSpφ(x̄)

)
.

(3.27)

Note that, Equation (3.27) only requires the computation of the inverse of the matrix
(K + σ2

nI) with K = ΦTSpΦ ∈ Rn×n, where n is the number of observations of the
given dataset D. Hence, compared to Equation (3.22) where the inverse of the m′×m′

matrix A needs to be computed, deriving the inverse is advantageous when m′ > n.
Moreover, it should be underlined that Equation (3.27) includes feature matrix Φ

only in relationship with Sp, namely as products equal to φ(x̄)TSpΦ, ΦTSpφ(x̄) and
φ(x̄)TSpφ(x̄).

Let now
k(xi, xj) := φ(xi)TSpφ(xj).

Remembering that the covariance matrix Sp is positive semi-definite by definition, we
can write

k(xi, xj) = 〈ψ(xi), ψ(xj)〉,

with ψ(x) := S
1/2
p φ(x). Thus, substituting k in Equation (3.27), also in this case we

obtain a formulation purely containing inner products with respect to the feature
space.
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3.2 Unsupervised Learning

3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most common and used dimen-
sionality reduction techniques. Hence, given a generic large dataset given by a set of
interconnected variables, Principal Component Analysis aims to determine the existing
variable connections in order to reduce the number of attributes of the given dataset
to a smaller number of unconnected variables, still containing the key information of
the original set of data [Jolliffe, 2011]. As a direct consequence, Principal Component
Analysis is mainly used for two specific purposes:

· To reduce the number of variables by finding those which are linearly depended
with each other;

· To find the variables that are the most representative of the given set of data.

To do so, principal component analysis focuses on the concept of variance.
Let us consider a generic dataset of dimension n,

X = {xi}ni=1, (3.28)

with elements xi = (xi1, x
i
2, . . . , x

i
m)T ∈ Rm, for every i = 1, . . . , n.

Firstly, as a pre-processing step, we center the given data on the mean of the given
features. Namely given

µ =
1

n

n∑
i=1

xi = 0,

we set
xi := xi − µ,

for every i = 1, . . . , n1. Doing so, we do not impose any change on the original data,
but this will ensure that the novel dataset will be centered with respect to the new
axis, also known as principal components.

The covariance matrix S is defined as an n× n matrix of elements sij equal to the
covariance between inputs xi and xj for i 6= j and the variance of the i-th element for
i = j, namely for elements in the primal diagonal. Note that, when the covariance
matrix is not known, a common estimator is given by the sample covariance matrix

Q =
1

n− 1

n∑
i=1

xixi
T
, (3.29)

Q ∈ Rm×m, with elements equal to the sample covariance, i.e., an estimate of the
covariance done in a sample of the entire dataset, for i 6= j, and the sample variance of

1For the sake of simplicity, we decided to use the same symbol xi for both the original and the
centered data.
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the observed values for i = j. Principal Component Analysis looks for a set of size
p � m, of weights vectors αk = (αk1 , α

k
2 , . . . , α

k
m)T ∈ Rm, k = 1, . . . , p, mapping the

original input dataset, namely each row of matrix X, into a Principal Component
vector zi = (zi1, z

i
2, . . . , z

i
p)

T. Specifically, we have that

zik = xi
T
αk,

for every i = 1, . . . , n, k = 1, . . . , p.
The first principal component z1 is computed in such a way to have the largest

variance, imposing as further constraint that the sum of squares of the components of
weight α1 is equal to 1, namely,

α1T
α1 = 1.

The second principal component z2 is sought to be uncorrelated with respect to the
first principal component z1 and again to maximize the variance. This goes on until
the final principal component zp is found, with number p equivalent to the number of
principal components established at the beginning of the algorithm.

Let us suppose that we are considering the m×m sample covariance matrix Q as
described in (3.29). Starting from the first principal component, α1 is chosen so that
it maximizes the variance

Var(xi
T
α1) = α1T

Qα1

with respect to a normalization constraint on vector α1T
α1 = 1.

Hence, we wish to solve the following problem

max
α

α1T
Qα1

s.t. α1T
α1 = 1.

(3.30)

To find α1 maximizing the variance and subject to the normalization constraint, we
can consider the Lagrangian function corresponding to Problem (3.30) given by

L(α, λ) = α1T
Qα1 − λ(α1T

α1 − 1),

with λ Lagrangian multiplier. We compute the partial derivative of L(α, λ) with respect
to λ and obtain

∂L
∂λ

= Qα1 − λα1 = 0, (3.31)

which is equivalent to the following expression

(Q− λI)α1 = 0,

where I is the identity matrix of dimension m×m. Therefore, we have that λ is an
eigenvalue of matrix Q with corresponding eigenvector α1. Moreover, note that the
following condition holds

α1T
Qα1 = α1T

λα1 = λα1T
α1 = λ,
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where we used the fact that Qα1 = λα1 stated in Equation (3.31). Hence, to maximize

α1T
Qα1,

is equivalent to determine the largest eigenvalue of the matrix Q.
Let us define λ1 := α1T

Qα1. As a direct consequence, the second principal
component is given by zi2 = xi

T
α2, with λ2 = α2T

Qα2 second largest eigenvalue of Q.
In this way, at the end of the algorithm we obtain the following p eigenvalues

λ1 > λ2 > · · · > λp,

with corresponding eigenvectors α1, α2, . . . , αp satisfying the condition

Qαi = λiαi.

Algorithm 5 summarizes the Principal Component Analysis algorithm described above.

Algorithm 5: The Principal Component Analysis algorithm.
Data: A set of training data X = {(xi)}ni=1 with xi ∈ Rm,
a dimension p� m

Result: A new set of variables of dimension p
Compute µ = 1

n

∑n
i=1 x

i;
Replace each xi with xi − µ;
Compute the sample covariance matrix Q;
Find the eigenvalues λ1, λ2, . . . , λp with corresponding eigenvectors
α1, α2, . . . , αp of matrix Q such that λ1 > λ2 > · · · > λp;
For each xi ∈ X compute the corresponding principal component
zi = (zi1, z

i
2, . . . , z

i
p)

T ∈ Rp, with

zik = x1T
αk,

for every k = 1, 2, . . . , p.

Principal Component Analysis technique was first extended with the use of kernel
functions during the nineties [Schölkopf et al., 1998]. Let φ be a feature map from
the input set X ⊂ Rm to a feature space H of dimension m′ greater than m and let
φ(xi), ∀i = 1, . . . , n be the projections of input data onto the feature space H. Again,
consider the projections to have zero mean. As a direct consequence, the matrix Q
now becomes

Q =
1

n

n∑
i=1

φ(xi)φ(xi)
T
. (3.32)

From Equation (3.31) we have that

Qαk = λkα
k, ∀k = 1, . . . , p, (3.33)
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with p fixed number of principal components. Using Equation (3.32) in (3.33) we
obtain that

1

n

n∑
i=1

φ(xi)(φ(xi)
T
αk) = λkα

k, (3.34)

that can be used to obtain the following expression for αk

αk =

n∑
i=1

bki φ(xi). (3.35)

Now, combining Equations (3.34) and (3.35), we get

1

n

n∑
i=1

φ(xi)φ(xi)
T

n∑
j=1

bkjφ(xj) = λk

n∑
i=1

bki φ(xi). (3.36)

Define now
k(xi, xj) = 〈φ(xi), φ(xj)〉H = φ(xi)Tφ(xj).

If we multiply Equation (3.36) from the left by φ(xl)
T, we obtain

1

n

n∑
i=1

k(xl, xi)

n∑
j=1

bkj k(xi, xj) = λk

n∑
i=1

bki k(xl, xi),

which can be written in the matrix form as

K2bk = λknKb
k, (3.37)

with K matrix with elements Kij := k(xi, xj) and bk = (bk1 , b
k
2 , . . . , b

k
n)T ∈ Rn, for

every k = 1, . . . , p. Moreover, as for classical Principal Component Analysis algorithm,
we require αk,∀k = 1, . . . , p, to respect a normalization constraint, namely

αk
T
αk = 1,

and hence
n∑

i,j=1

bki b
k
jφ(xi)Tφ(xj) = bk

T
Kbk = λknb

kT
bk = 1.

Therefore, the normalization constraint is equal to the following

||bk|| =
√
bk

T
bk =

1√
λkn

.

Using Equation (3.37), we can compute the vector bk and the corresponding
principal component following the classical scheme described before. Specifically, using
Equation (3.35) we have that

zik = φ(xi)Tαk = φ(xi)T
n∑
j=1

bkjφ(xj),

for every i = 1, . . . , n and k = 1, . . . , p.
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Algorithm 6 summarizes the kernel Principal Component Analysis algorithm where
we assume that the projection of the input data has zero mean.

Algorithm 6: The kernel Principal Component Analysis algorithm.
Data: A set of training data X = {(xi)}ni=1 with xi ∈ Rm,
a dimension p� m,
a feature map φ and corresponding kernel matrix K
Result: A new set of variables of dimension p
Assume the projection of the input data has zero mean;
Compute the sample covariance matrix Q;
Find the p largest eigenvalues λ1, . . . , λp of the covariance matrix Q;
Find bk = (bk1 , b

k
2 , . . . , b

k
n)T ∈ Rn solving

Kbk = λknb
k

for every k = 1, . . . , p;
For each xi ∈ X compute the corresponding principal component
zi = (zi1, z

i
2, . . . , z

i
p)

T ∈ Rp, with

zik = φ(xi)Tαk = φ(xi)T
n∑
j=1

bkjφ(xj),

for every k = 1, . . . , p.

Note that, as for every other method described in this chapter, we never have to
compute the value of the feature map φ in the input set X, but we only have to exactly
compute the kernel values Kij = φ(xi)Tφ(xj) for every i, j = 1, . . . , n, given by the
inner products of the feature map computed with respect to every input data.

3.3 Multiple Kernel Learning

A fair choice of the employed kernel function is a critical issue in kernel learning
algorithms. In fact, the decision of using one specific kernel function and related
kernel parameters instead of others, is a key issue for the entire success or failure of an
algorithm. Such decision is usually made through the use of a cross-validation method,
i.e., an estimating technique splitting the dataset into training set and validation set
and constructing the predicted model, using the training set, and evaluating it via the
validation set. Cross-validation methods test the accuracy of implemented models with
respect to unknown data, in order to obtain results which are not fully dependent and
representative of the training data but may be successfully applied to novel inputs as
well.
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To address the problem of finding the “best” kernel function, instead of employing
one single kernel function, Multiple Kernel Learning (MKL) algorithms tackle the
problem of selecting kernel functions by using a combination of preset base kernels.

Let

X = {xi}ni=1

be an n dimensional generic dataset with xi = (xi1, x
i
2, . . . , x

i
m)T ∈ Rm for every

i = 1, . . . , n. Furthermore, let

{kl(xi
l
, xj

l
)}Ll=1

be a set of predefined kernel functions kl : Rml × Rml −→ R, l = 1, . . . , L, with Rml

defined by the dimension l of the corresponding features xil, xj l taken as inputs. Then,
we may define

kγ(xi, xj) := fγ
(
{kl(xi

l
, xj

l
)}Ll=1

)
, (3.38)

as the combination of kernel functions kl, l = 1, . . . , L. Specifically, we have that
fγ : RL −→ R represents a combination function having as inputs all the preset
kernel functions kl, l = 1, . . . , L and with the corresponding output a kernel kγ . Note
that, nothing was said about the nature of function fγ . Specifically, Multiple Kernel
Learning might considered linear combination of kernel functions as well as non-linear
ones, leading to linear or non-linear choice of function fγ . Moreover, γ represents the
combination parameters, namely the combination coefficients associated to every base
kernel kl, l = 1, . . . , L, representing its weight with respect to the combination function.
Just as kernel parameters, combinations parameters can be fine-tuned during the
algorithm in order to obtain the best possible mix for the considered set of data. As a
direct consequence, Multiple Kernel Learning main goal is to find the best combination
coefficients and kernel weights so that the best possible classifier, i.e., a function
mapping input data to corresponding outputs with largest accuracy value, is obtained.

As specified in [Gönen and Alpaydın, 2011], the main reasons to use Multiple
Kernel Learning instead of classical kernel approaches may be outlined into two chief
points. First, instead of using a single fixed structured kernel function, which may
be specially suited for finding (unknown) specific data connections, multiple kernel
approach allows to use different kernel functions together and, therefore, to look at
different multi data bonds. In this way, when the given set of data is not entirely
experienced, the user may operate using several kernels, optimizing its parameters
based on data relationships and key characteristics, consequently obtaining a better
classifier. In addiction, different kernels may use specific preset features of given data
as inputs, allowing in this way to obtain an even more dataset specific function kγ
taking into consideration inter features connections other than inter data relationships.

With regard to function fγ , several approaches exist. Specifically, the classical and
most used way in which Multiple Kernel Learning is realized is through the use of a
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linear combination of base kernel functions. In this way, Equation (3.38) becomes

kγ(xi, xj) = fγ
(
{kl(xi

l
, xj

l
)}Ll=1

)
=

L∑
l=1

γlkl(x
il, xj

l
), (3.39)

with γl, l = 1, . . . , L combination coefficients defining the corresponding weights with
respect to the associated base kernel. Usually, kernel weights are chosen such that

γl ≥ 0, ∀l = 1, . . . , L

and
L∑
l=1

γl = 1,

making (3.39) a convex combination. Since, by definition, a kernel function is expressed
as

k(xi, xj) = 〈φ(xi), φ(xj)〉H,

where φ is a feature map, we can define

φγ(x) =


√
γ1φ1(x1)
√
γ2φ2(x2)

...
√
γLφL(xL)

 ,

from which it follows that

L∑
l=1

γlkl(x
il, xj

l
) =


√
γ1φ1(xi

1
)

√
γ2φ2(xi

2
)

...
√
γLφL(xi

L
)


T
√
γ1φ1(xj

1
)

√
γ2φ2(xj

2
)

...
√
γLφL(xj

L
)

 = 〈φγ(xi), φγ(xj)〉H,

giving the structural dot product form we expect from a kernel function.
Moreover, the function fγ may correspond to a non-linear combination of the base

kernel functions, usually involving a much higher computational effort not always,
however, leading to greater performance results [Cortes, Mohri, et al., 2009; Varma
and Babu, 2009].

Regarding the learning approaches, several exploited methods exist which can be
classified into the five following approaches [Gönen and Alpaydın, 2011].

· Fixed rule methods, where the multiple kernel function is defined at the beginning
of the algorithm as a simple technique, for example sums or products of base
kernels, and no combination parameter is required and, therefore, achieved during
the algorithm. For example, following such method, [Kashima et al., 2009] makes
use of pairwise kernels, i.e., kernels with the main goal of learning a model for
pairs of input data;
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· Heuristic methods, where the best combination of parameters is obtained through
the use of some heuristic approach: parameters are individually defined relaying
on single base kernel functions. Such individual kernels make either use of the
kernel matrix or are tested on the training set, taking the achieved results as
a measurement. Basing its algorithm on a heuristic algorithm to find the best
fitting combination parameters, [Tanabe et al., 2008] obtains the following rule

γp =
ap − θ∑L
l=1(al − θ)

,

with ap accuracy value achieved making use of the single kernel kp and θ threshold
value;

· Optimization methods, where the best combination of parameters is obtained
by solving an optimization problem. Such optimization may be incorporated in
the original optimization problem, e.g., in the case of Support Vector Machines
[Z. Chen, Li, and Wei, 2007], or can be carried out separately before the actual
learning algorithm is performed;

· Bayesian methods, where combination parameters are obtained by interpreting
them as random variables. Specifically, parameters are initialized through the
use of prior functions. Afterwards, using information from the covariance matrix,
combination parameters are eventually learned. For example, [Christoudias et al.,
2009] uses a fixed rule kernel multiplied by a parametric kernel as a rule for the
final multiple kernel formula;

· Boosting where the combination parameters are learnt through the use of boost-
ing methods. Specifically, avoiding to use the often expensive optimization
approaches, an iterative process is performed where a new base kernel is con-
sidered at every new iteration until some originally defined stop condition is
achieved. As an example, [Wu et al., 2017] develops a boosting multiple kernel
approach for regression problems by performing a gradient boosting method.

In particular, let us consider the multiple kernel binary classification problem with
respect to the classical Support Vector Machine framework. Once again, let us consider
a generic dataset D as in (2.1). We known that the primal soft margin Support Vector
Machine classifier is given by

min
w,θ,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi[wTxi + θ] ≥ 1− ξi, ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n,

(3.40)

with C > 0 the training error parameter and ξi the slack variables corresponding to
input points for every i = 1, . . . , n. Call that ξi ≥ 1 corresponds to wrongly classified
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data points xi, while 0 ≤ ξi < 1 is associated to correctly classified input points xi.
Constructing the Lagrangian function L and setting the partial derivatives of L with
respect to w, θ and ξi equal to zero, we obtain the dual expression described in Problem
(3.7).

To obtain the multiple kernel Support Vector Machine formulation, we need to
start from the decision function we aim to obtain. Suppose we are considering L base
kernel functions given by k1(x, x′), k2(x, x′), . . . , kL(x, x′). As stated in [Zien and Ong,
2007], in a multiple kernel framework we are looking for a classification function of the
form

fw,θ,γ(x) =

L∑
l=1

γl〈wl, φl(x)〉H + θ,

with φl associated to the l-th kernel function kl. Therefore, Problem (3.40) becomes

min
w,θ,ξ,γ

1

2

L∑
l=1

γl||wl||2 + C

n∑
i=1

ξi

s.t. yi

L∑
l=1

γl〈wl, φl(xi)〉H + yiθ ≥ 1− ξi, ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n,

L∑
l=1

γl = 1, γl ≥ 0 ∀l = 1, . . . , L.

(3.41)

Note that, the formulation stated in Problem (3.41) is not in general convex because of
the product term γl||wl||2 of two of the variables to be optimized. To solve this issue,
the following replacement is considered

vl := γlwl.

This substitution leads to the convex minimization problem below in both γl and vl
variables.

min
v,θ,ξ,γ

1

2

L∑
l=1

1

γl
||vl||2 + C

n∑
i=1

ξi

s.t. yi

L∑
l=1

〈vl, φl(xi)〉H + yiθ ≥ 1− ξi, ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n,

L∑
l=1

γl = 1, γl ≥ 0 ∀l = 1, . . . , L.

(3.42)

Note that, Problem (3.42) may be considered as a two-step optimization problem, with
inner problem given by the optimization with respect to v, θ, ξ, and the outer given by
the minimization problem with respect to γ. Following this observation, one way to
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tackle Problem (3.42) consists in solving the inner minimization problem with respect
to v, θ, ξ leaving vector γ fixed; then γ is updated using a descent direction algorithm
this time fixing v, θ, ξ, in order to get the minimum of the considered objective function.
For a more efficient approach guarantying the convergence of the algorithm, let us
focus on the inner problem, namely

min
v,θ,ξ

1

2

L∑
l=1

1

γl
||vl||2 + C

n∑
i=1

ξi

s.t. yi

L∑
l=1

〈vl, φl(xi)〉H + yiθ ≥ 1− ξi, ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n.

(3.43)

The Lagrangian function of Problem (3.43) is given by

L(v, θ, ξ, α, ν) =
1

2

L∑
l=1

1

γl
||vl||2+C

n∑
i=1

ξi+

n∑
i=1

αi

[
1−ξi−yi

L∑
l=1

〈vl, φl(xi)〉H−yiθ

]
−

n∑
i=1

νiξi.

Setting the partial derivatives of L(v, θ, ξ, α, ν) with respect to v, θ, and ξ to zero we
obtain the following dual optimization problem

min
α

1

2

n∑
i,j=1

αiαjyiyj

L∑
l=1

γlkl(x
i, xj)−

n∑
i=1

αi

s.t.
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C ∀i = 1, . . . , n.

(3.44)

Now, considering the outer minimization problem with respect to the linear combination
parameter γ, the dual problem of (3.42) becomes

min
γ∈RL

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyj

L∑
l=1

γlkl(x
il, xj

l
)−

n∑
i=1

αi

s.t.
n∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , n,

L∑
l=1

γl = 1,

γl ≥ 0, l = 1, . . . , L.

(3.45)

A well-known and frequently used solution technique for solving Problem (3.45) consists
in a two-step procedure. First the inner optimization problem is solved, leading to the
minimization of the objective function given by

J(γ) :=
1

2

n∑
i=1

n∑
j=1

αiαjyiyj

L∑
l=1

γlkl(x
il, xj

l
)−

n∑
i=1

αi,
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with respect to the constraints given by

n∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , n.

(3.46)

After that, the combination coefficients γ may be computed. Several approaches for
finding parameter γ exist.

For example, in [Rakotomamonjy, F. Bach, et al., 2007] parameter γ is initially
fixed and the classical Support Vector Machine problem (3.44) is solved assuming

k(xi, xj) =

L∑
l=1

γlkl(x
il, xj

l
)

as kernel function. Then the partial derivative of J(γ) is computed as follows

∂J(γ)

∂γm
=

1

2

n∑
i=1

n∑
j=1

αiαjyiyjkm(xi
m
, xj

m
), (3.47)

for every m = 1, . . . , L. Hence, γ is updated using the gradient descent rule. Algorithm
7 schematizes the proposed approach.

Algorithm 7: Support Vector Machine multiple kernel approach described
in [Rakotomamonjy, F. Bach, et al., 2007].
Data: A set of training data X = {(xi)}ni=1 with xi ∈ Rm,
a set of training labels Y = {(yi)}ni=1 with yi ∈ {−1,+1},
Result: A combination of the parameters γl, l = 1, . . . , L and Lagrangian

multipliers αi, i = 1, . . . , n

Initialize γl = 1/L for l = 1, . . . , L;
while stopping criteria is met do

Find the Lagrangian coefficients αi, i = 1, . . . , n solving the inner classical
Support Vector Machine problem with k(xi, xj) =

∑L
l=1 γlkl(x

il, xj
l
) and

compute the corresponding J(γ);
Compute the partial derivative ∂J(γ)

∂γm
for every m = 1, . . . , L;

Compute descent direction d = ∇J(γ) and stepsize β;
γ ← γ + βd

end

Another multiple kernel Support Vector Machine approach is proposed in [Rako-
tomamonjy, F. R. Bach, et al., 2008] under the name of SimpleMKL, where a reduced
gradient algorithm [Luenberger, Ye, et al., 1984] is described. Just as in the earlier
example, an iterative two step algorithm is proposed. As a first step, the minimiza-
tion problem defined by (3.44) is considered, with fixed combination parameters γl,
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l = 1, . . . , L. Once the appropriate optimal Lagrangian multipliers αi, i = 1, . . . , n

are obtained with respect to the considered iteration, the outer convex optimization
problem with respect to coefficients γl is considered. First, the partial derivative of
J(γ) with respect to γm, is given by Equation (3.47). Let γµ be a nonzero component
in the vector γ. Then, the reduced gradient is equal to

∇redJm =


∂J(γ)

∂γm
− ∂J(γ)

∂γµ
, for m 6= µ

∑
m 6=µ

(
∂J(γ)

∂γm
− ∂J(γ)

∂γµ

)
, otherwise.

Moreover, if there exist some indexes m such that the corresponding γm = 0 and
|∇redJm| > 0, this would jeopardize the positivity constraint condition of combination
parameters vector γ. In this case, the descent direction is automatically set to zero.
Therefore, the descent direction dm is given by

dm =



0 if γm = 0 and |∇redJm| > 0,

−

(
∂J(γ)

∂γm
− ∂J(γ)

∂γµ

)
if γm > 0 and m 6= µ,

−
∑
m6=µ

(
∂J(γ)

∂γm
− ∂J(γ)

∂γµ

)
if m = µ.

(3.48)

At every new iteration, the parameter γ is updated using the vector d defined in (3.48).
Algorithm 8 schematizes the proposed method.

Algorithm 8: SimpleMKL approach described in [Rakotomamonjy, F. R.
Bach, et al., 2008].
Data: A set of training data X = {(xi)}ni=1 with xi ∈ Rm, a set of training

labels Y = {(yi)}ni=1 with yi ∈ {−1,+1}, stepsize β
Result: A combination of the parameters γl, l = 1, . . . , L and Lagrangian

multipliers αi, i = 1, . . . , n

Initialize γl for l = 1, . . . , L;
while stopping criteria is met do

Find the Lagrangian coefficients αi, i = 1, . . . , n solving the inner quadratic
optimization problem and compute the corresponding J(γ);
Compute the partial derivative ∂J(γ)

∂γm
for every m = 1, . . . , L;

Compute d based on (3.48);
γ ← γ + βd

end

In [Z. Chen and Li, 2007] the problem of finding γ is tackled through the minimiza-
tion of the generalization error: the error ξi, i = 1, . . . , n obtained using the generated
solution achieved fixing parameters γ is considered in a novel minimization problem



3.4. INFINITE KERNEL LEARNING 85

together with coefficients γ. Specifically, through an iterative algorithm, once the
convex optimization problem defined in (3.44) is solved and an early value of parameter
α is computed, the following minimization problem is considered.

min
γ,ξ

L∑
l=1

γl + λ

n∑
i=1

ξi

s.t. yi

( n∑
j=1

αjyj

L∑
l=1

γlkl(x
il, xj

l
) + b

)
≥ 1− ξi

ξi ≥ 0 i = 1, . . . , n,

γl ≥ 0 l = 1, . . . , L,

(3.49)

Algorithm 9 shows the approach described above in a schematic way.

Algorithm 9: Multiple kernel Support Vector Machine approach outlined in
[Z. Chen and Li, 2007].
Data: A set of training data X = {(xi)}ni=1 with xi ∈ Rm, a set of training

labels Y = {(yi)}ni=1 with yi ∈ {−1,+1}
Result: A combination of the parameters γl, l = 1, . . . , L and Lagrangian

multipliers αi, i = 1, . . . , n

Initialize γl for l = 1, . . . , L;
while stopping criteria is met do

Find the Lagrangian coefficients αi, i = 1, . . . , n solving the inner quadratic
optimization problem;
Find the combination coefficients γl, l = 1, . . . , L solving the optimization
problem defined in (3.49);

end

Note that, as in Algorithms 7 and 8, the stopping criteria is a preset condition
forcing the algorithm to stop its iteration process after a finite number of iterations.

3.4 Infinite Kernel Learning

The problem of considering multiple base kernel functions may be broadly extended
with the use of infinitely many kernels. In this scenario, namely where an infinite
number of kernel functions is used, we talk about Infinite Kernel Learning (IKL).

As specified in the previous section, Multiple Kernel Learning uses a finite number
of preset base kernel functions and combines them in order to obtain a final combination
kernel. Specifically, let {kl(xi

l
, xj

l
)}Ll=1 be a set of L predefined base kernel functions.
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Most multiple kernel approaches use a linear combination technique, namely

kγ(xi, xj) = fγ
(
{kl(xi

l
, xj

l
)}Ll=1

)
=

L∑
l=1

γlkl(x
il, xj

l
),

with γl combination parameters defined by the the convex constraints, i.e.,

γl ≥ 0,

L∑
l=1

γl = 1.

In this way, Multiple Kernel Learning tries to improve the obtained solution, tackling the
given problem through the use of the “best” kernel function and, therefore, considering
different data representation and correlation factors.

Kernel learning approach is further extended with the idea of exploiting a combi-
nation of possibly infinite base kernels. In this way, no limitation about the number
of finite base kernel functions exists, leaving a broader possibility of choice other
than allowing different multi data similarities. Over the last twenty years, a limited
number of research works has been dealing with the idea of using an infinite base kernel
set. As a starting point, [Argyriou et al., 2006] proposed an interesting Difference
of Convex functions (DC) approach for learning the kernel functions starting from a
predefined finite base kernel set. As a direct consequence, [Gehler and Nowozin, 2008]
firstly proposed an implementation trying to solve an Infinite Kernel Learning Support
Vector Machine problem based on the theoretical formulation expressed in [Argyriou
et al., 2006]. Along the lines of the infinite kernel technique proposed by [Gehler and
Nowozin, 2008], [Y. Liu et al., 2017] tackles the problem of Infinite Kernel Learning
problems with respect to its convergence rate. Specifically, the paper proposes a new
generalization error method, called Principal Eigenvalue Proportion (PEP), based on
spectrum analysis, characterized by fast convergence rate with the skill of learning
infinite kernel combination parameters.

Let us focus on the infinite kernel Support Vector Machine approach described in
[Gehler and Nowozin, 2008]. We consider the classical n dimensional generic dataset D
as in (2.1) with inputs xi ∈ X ⊂ Rm and corresponding label set Y with yi ∈ {−1,+1}.
As already described in the previous section, a general primal version of Multiple
Kernel Learning Support Vector Machine is given by the following formulation, convex
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with respect to both γl and vl.

min
v,θ,ξ,γ

1

2

L∑
l=1

1

γl
||vl||2 + C

n∑
i=1

ξi

s.t. yi

L∑
l=1

〈vl, φl(xi)〉H + yiθ ≥ 1− ξi, ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n,

L∑
l=1

γl = 1, γl ≥ 0 ∀l = 1, . . . , L,

(3.50)

with vl := γlwl and φl : x ∈ Rm 7→ φl(x) ∈ Rm′ , l-th feature function, mapping points
in the m-dimensional input set to a feature set of higher dimension m′.

Now, in Infinite Kernel Learning the kernel set Kinf given by

Kinf =

{∫
Ω

kldp(l) : p ∈M(Ω)

}
,

is considered, where notation kl defines the kernel function with corresponding param-
eter γl, with l belonging to the compact index set Ω. Moreover, note that notation
M(Ω) means the set of all probability measures defined in set Ω [Y. Liu et al., 2017].

Then, Problem (3.50) can be extended to

inf
Ωf⊂Ω

min
v,θ,ξ,γ

1

2

∑
l∈Ωf

1

γl
||vl||2 + C

n∑
i=1

ξi

s.t. yi
∑
l∈Ωf

〈vl, φl(xi)〉H + yiθ ≥ 1− ξi, ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n,∑
l∈Ωf

γl = 1, γl ≥ 0,

(3.51)

where the inner problem is a classical multiple kernel Support Vector Machine framework
and the outer optimization is tackled with respect to the set Ωf , a closed and bounded
finite subset of original compact index set Ω of possibly infinite size. As usual, the
Wolfe-dual of Problem (3.51) is constructed. To do so, we consider the Lagrangian
function of (3.51) given by

L(v, θ, ξ, γ, α, η, λ, δ) =
1

2

∑
l∈Ωf

1

γl
||vl||2 + C

n∑
i=1

ξi −
n∑
i=1

αi

(
yi
∑
l∈Ωf

〈vl, φl(xi)〉H + yiθ

− 1 + ξi

)
−

n∑
i=1

ηiξi + λ

( ∑
l∈Ωf

γl − 1

)
−
∑
l∈Ωf

δlγl,

(3.52)
with Lagrangian multipliers αi, ηi, δl ∈ R+ for every i = 1, . . . , n and l = 1, . . . , L and λ
∈ R. For the sake of simplicity, we use the truncated notation L(v, θ, ξ, γ, α, η, λ, δ) = L.



88 CHAPTER 3. KERNEL LEARNING MODELS

First, note that (3.52) may be equivalently written in the following way

L =− 1

2

∑
l∈Ωf

1

γl
||vl||2 +

∑
l∈Ωf

1

γl
||vl||2 −

n∑
i=1

αiyi

[ ∑
l∈Ωf

〈vl, φl(xi)〉H
]
−

n∑
i=1

αiyiθ

+

n∑
i=1

αi +

n∑
i=1

ξi
(
C − αi − ηi

)
−

n∑
i=1

ηiξi + λ

( ∑
l∈Ωf

γl − 1

)
−
∑
l∈Ωf

δlγl.

(3.53)
Now, let us compute the partial derivatives of the Lagrangian function L with respect
to variables v, θ, ξ and γ and set them to zero.

∂L
∂vl

=
1

γl
vl −

n∑
i=1

αiyiφl(x
i) = 0, (3.54a)

∂L
∂θ

=

n∑
i=1

αiyi = 0, (3.54b)

∂L
∂ξi

= C − αi − ηi = 0, (3.54c)

∂L
∂γl

= −1

2

1

γ2
l

||vl||2 + λ− δl = 0. (3.54d)

Now, substituting the values obtained through (3.54) in Equation (3.53) we obtain

L =
∑
l∈Ωf

γl

[
− 1

2

1

γ2
l

||vl||2 + λ− δl

]
︸ ︷︷ ︸

=0 from (3.54d)

+
∑
l∈Ωf

vl

[
1

γl
vl −

n∑
i=1

αiyiφl(x
i)

]
︸ ︷︷ ︸

=0 from (3.54a)

+

n∑
i=1

ξi

[
C − αi − ηi

]
︸ ︷︷ ︸
=0 from (3.54c)

−θ

[
n∑
i=1

αiyi

]
︸ ︷︷ ︸

=0 from (3.54b)

+

n∑
i=1

αi − λ.

Finally, using both (3.54a) and (3.54d), we obtain the Wolfe-dual. Specifically, from
Equation (3.54a) we have that

1

γl
vl =

n∑
i=1

αiyiφl(x
i).

Now, using it in (3.54d) we get the following result

1

2

n∑
i,j=1

αiαjyiyj〈φl(xi), φl(xj)〉H ≤ λ,

where the positiveness of Lagrangian multiplier ηi, ∀i = 1, . . . , n is used.
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Hence, the Wolfe-dual problem of Problem (3.51) takes the form

sup
Ωf⊂Ω

max
α,λ

n∑
i=1

αi − λ

s.t. 0 ≤ αi ≤ C, ∀i = 1, . . . , n

T (l, α) ≤ λ ∀l ∈ Ωf

α ∈ Rn, λ ∈ R,

(3.55)

where

T (l, α) :=
1

2

n∑
i,j=1

αiαjyiyj〈φl(xi), φl(xj)〉H,

and α = (α1, . . . , αn)T ∈ Rn.
As for the primal formulation of the problem, the infinite kernel Wolfe dual problem

given in (3.55) is defined by a two-step optimization framework. Specifically, the
problem is characterized by an inner maximization problem with respect to the
Lagrangian multipliers α and λ and by an outer problem tackling the matter of finding
the subspace Ωf ⊂ Ω such that Ωf is the supremum of the compact index set Ω.

Consider the inner maximization problem alone.

max
α,λ

n∑
i=1

αi − λ

s.t. 0 ≤ αi ≤ C, ∀i = 1, . . . , n

T (l, α) ≤ λ, ∀l ∈ Ωf

α ∈ Rn, λ ∈ R,

(3.56)

Let α∗ and λ∗ be the optimum solution of Problem (3.56). It is important to stress
that Problem (3.56) satisfies all the required conditions needed for using Theorem 4.2
of [Hettich and Kortanek, 1993]. Specifically we have that the following conditions
occur.

1. Ωf is a compact set (is a closed bounded subset of a compact set Ω);

2. The objective function

f : (α, λ) 7→
n∑
i=1

αi − λ

is concave (it is a linear function with respect to both variables α and λ);

3. The constraint function

g : (l, α, λ) 7→ T (l, α)− λ

is convex with respect to α and λ (it is convex with respect to variable α and
linear with respect to variable λ);
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4. The optimum solution
n∑
i=1

α∗i − λ∗

is finite (0 ≤ αi ≤ C for every i = 1, . . . , n, and T (l, α∗) ≤ λ∗ ≤ δl);

5. For every set of n+ 1 elements l0, . . . , ln there exist (α̃, λ̃) such that

T (lt, α̃)− λ̃ < 0

for every t = 0, . . . , n (one can take α̃i = 0 for every i = 1, . . . , n and λ̃ ∈ R+).

Then, from [Hettich and Kortanek, 1993] we have that the following statement holds.

Theorem 10. If for every l ∈ Ω and α ∈ Rn with 0 ≤ αi ≤ C, ∀i = 1, . . . , n, we have
that the function T (l, α) takes only finite values, i.e., T (l, α) <∞, then there exists a
finite set Ωf ⊂ Ω equivalent to the optimum value of Problem (3.55) with counterpart
(α∗, λ∗), and the optimal values of Problems (3.55) and (3.56) overlap.

Proof. The proof is a direct consequence of Theorem 4.2 of [Hettich and Kortanek,
1993]. See Appendix B for further details.

Therefore, if the function T (l, α) assumes only finite values for every possible choice
of l ∈ Ω and 0 ≤ αi ≤ C, i = 1, . . . , n, then an optimal solution of Problem (3.55) with
only a finite number of strictly positive γl exists. Moreover, such optimum solution
corresponds to the optimal of Problem (3.56) and, hence, may be computed solving
the inner maximization problem alone.

Once Problem (3.56) is solved and the corresponding optimum solution α∗, λ∗ are
found, using a classical Support Vector Machine framework, the classifier takes the
following form

f(x̄) = sgn

{
n∑
i=1

α∗i yi
∑
l∈Ωf

γlkl(x̄, x
i) + θ

}
,

with x̄ new input point.
Once again, let us consider the implementation approach proposed in [Gehler and

Nowozin, 2008]. In [Gehler and Nowozin, 2008], the index set Ωf is designed through
the use of an iterative approach. The proposed approach tackles the problem by
splitting the original Problem (3.56) into two sub-problems: the restricted master
problem and the subproblem. Starting from an initial finite set Ω0 ⊂ Ω, at each
iteration t, the restricted master problem searches for parameters α and λ with respect
to index set Ωt; as a counterpart, once such optimal values for α and λ are found, the
subproblem looks for new indexes to be selected. Therefore, each iteration ends by
getting a new index set Ωt such that

Ωt−1 ⊆ Ωt ⊆ Ω.
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Algorithm 10 proposes a pseudo-code for the described approach.

Algorithm 10: Support Vector Machine infinite kernel approach described
in [Gehler and Nowozin, 2008].
Data: A set of training data X = {(xi)}ni=1 with xi ∈ Rm,
a set of training labels Y = {(yi)}ni=1 with yi ∈ {−1,+1},
a regularization parameter C,
a kernel parameter set Ω.
Result: Combination parameters γl, Lagrangian multipliers αi, i = 1, . . . , n

and θ.
Select lv ∈ Ω and set Ω0 = {lv};
t← 0;
while stopping criteria is not met do

Find the Lagrangian coefficients αi, i = 1, . . . , n, λ and parameters θ and γl
solving the multiple kernel Support Vector Machine Problem (3.56) using
index set Ωt;
Compute lv = arg maxl∈Ω T (l, α);
if T (lv, α) < λ then

break
end
Set Ωt+1 = Ωt ∪ {lv};
t← t+ 1;

end

Note that, the restricted master problem consists in tackling the multiple kernel
problem described above. Such problem may be solved using any standard Support
Vector Machine technique stated in the previous section. Concerning the subproblem
phase, it involves the resolution of the following problem

lv = arg max
l∈Ω

T (l, α) = arg max
l∈Ω

1

2

n∑
i,j=1

αiαjyiyjkl(x
i, xj). (3.57)

If an optimal solution lv = arg maxl∈Ω T (l, α) such that T (lv, α) < λ is found, the
control directly exits from the loop statement and the algorithm terminates. Otherwise,
a new iteration begins with Ωt+1 = Ωt ∪ {lv}, namely adding the newly computed
lv to the index set. Therefore, the convergence of the iterative process proposed in
Algorithm 10 strongly relies on the resolution of the subproblem. In this context, the
following theorem constitutes a fundamental result to ensure its convergence.

Theorem 11. Assume that the subproblem defined in (3.57) may be solved. Then,
one of the following statement is true.

1. Algorithm 10 stops after a finite number of iterations with a solution to problem
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(3.56);

2. Algorithm 10 has at least one point of accumulation, each one of these solving
problem (3.56).

Note that, Theorem 11 is a direct application of Theorem 7.2 in [Hettich and
Kortanek, 1993], where the solution of a semi-infinite programming problem, namely a
specific problem where an objective function defined by a finite number of variables is
subject to an infinite number of constraints, is tackled through the use of a sequence
of finite programming problems, i.e., with only a finite number of constraints.



Chapter 4

Two novel Machine Learning
approaches

This chapter presents two novel results: “Infinite Kernel Extreme Learning Machine”
and “Multi-Kernel Covariance Terms in Multi-Output Support Vector Machines”. As
it will be clearer reading the next sections, the common thread of such results is the
idea of utilizing a combination of kernels in already existing or modified supervised
Machine Learning frameworks.

First, a novel approach combining the existing Extreme Learning Machine algorithm
together with the Infinite Kernel Learning approach discussed in Chapter 3 is proposed
[Marcelli and De Leone, 2019]. Specifically, an in-depth description of the supervised
learning technique is given, analysing its core structure and describing the corresponding
classifier. Starting from the state of the art theory on Extreme Learning Machine and
Infinite Kernel Learning, a new algorithm is proposed where, the original Extreme
Learning Machine formulation is extended using a combination of possibly infinite kernel
functions. The algorithm is a two-step procedure and an analysis on its convergence is
included. Finally, the proposed method is tested on 20 public classification dataset
and the obtained accuracy, precision and recall values are listed regarding both the
training set and the test set.

Secondly, a pre-existing covariance function developed for multi-task Gaussian
processes is included in a new Support Vector Machine framework [Marcelli and De
Leone, 2020]. In particular, first the problem of solving more than one task at the
same time, i.e., Multi-Task Learning, is presented, giving a description of the problem
and defining the main differences with the Multi-Output Learning subfield. After
that, an original idea for a multi-task kernel matrix is outlined. These multi-task
kernels are eventually used in a newly developed Support Vector Machine framework,
specifically suitable for the multi-task case. The proposed model is tested on four real
open-source dataset as well as on 40 synthetic collections of data and the obtained

93
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accuracy, precision and recall values are presented.

4.1 Infinite Kernel Extreme Learning Machine

4.1.1 Extreme Learning Machine

Extreme Learning Machine (ELM) is a supervised Machine Learning algorithm
first introduced in 2004 [G.-B. Huang, Zhu, et al., 2004] which may be considered a
combination between feedforward Neural Networks and Support Vector Machines.

The basic idea behind Extreme Learning Machine is to implement a method that
can improve the learning speed of classical Single-Hidden Layer Feedforward Neural
Networks (SLFNs). The term feedforward Neural Network defines an artificial neural
network framework, i.e., a collection of nodes called neurons connected with each-other,
where information flows only into one specific direction, with no presence of loops
allowed. Specifically, in a feedforward Neural Network, information only moves forward,
from the input to the output layer. The classical and simplest example of feedforward
Neural Network is given by the Perceptron, which was deeply described in Chapter
2, a linear classifier where only two layers are allowed, i.e., the input layer and the
output layer. During its learning phase, a Perceptron learns a real-valued vector of
weights corresponding to each input neuron. When multiple layers of neurons are
considered, we have a multiple-layer Neural Network, characterized by the presence
of one or more inner layers, known with the name of hidden layers. Figure 4.1 shows
a classical multiple-layer Perceptron with five input nodes and one hidden layer. As
mentioned above, connections between neurons only go in one direction, namely from
the input layer to the output layer, without the presence of loops. Furthermore, each
arrow is associated with a weight and each neuron with a threshold value.

When a feedforward Neural Network is used, in order to obtain the optimal
parameters, all weights and biases characterizing each layer have to be tuned, making
the learning algorithm quite slow. Moreover, among the most used algorithms to solve
the problem we find the gradient method, which is usually characterized by a slow
convergence and may be defined by local minima convergence issues.

Extreme Learning Machine has the structure of classical feedforward Neural Net-
works with one or multiple hidden layers, but is characterized by a fundamental feature:
hidden nodes variables, i.e., parameters and weights, need not to be tuned but are
randomly assigned at the beginning of the algorithm and remain fixed throughout all
the computation. In this way, Extreme Learning Machine is characterized by lower
computational complexity, moving from an iterative based approach to a one-step
type algorithm, maintaining, however, a remarkable performance compared to classical
Machine Learning methods. Extreme Learning Machine algorithm present two impor-
tant features that characterize it from classical Machine Learning approaches: better
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Figure 4.1: Multiple-layer Perceptron with one hidden layer.

generalization performance and faster convergence. Specifically, this method achieves
the first goal since it not only aims to minimize the approximation error, given by the
difference between the expected output and the computed result, but at the same time
it also looks for the smallest norm weights which correctly fulfil the purpose.

Extreme Learning Machine was first introduced in the field of Single-Hidden Layer
Feedforward Neural Networks with the aim of solving slow convergence phenomena
and local minima convergence, developing a model which could improve the learning
speed and, at the same time, reach a global optimum [G.-B. Huang, L. Chen, et al.,
2006; G.-B. Huang, Zhu, et al., 2004, 2006]. Later, it was broaden to the general field
of feedforward Neural Networks. The key idea behind Extreme Learning Machine
affects the hidden layer: as already said, the parameters of hidden nodes need not
to be learned but are randomly chosen as an initial step of the algorithm and never
changed during the whole execution of the algorithm.

In particular, consider a Single-Hidden Layer Feedforward Neural Network with
one hidden layer defined by Q hidden nodes and an output layer characterized by p
output nodes. Given a generic input xi ∈ Rm with corresponding generic output yi, a
classical Extreme Learning Machine architecture is mathematically modelled as

f(xi) =

Q∑
q=1

wqφq(x
i), (4.1)
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Figure 4.2: Extreme Learning Machine framework for a generic input vector xi ∈ Rm,
∀i = 1, . . . , n. Hidden nodes parameters (aq, bq), q = 1, . . . , Q, are randomly chosen at
the beginning of the algorithm and never changed. Weights wq, q = 1, . . . , Q connecting
the input layer and the output layer are found solving problem (4.5).

where w = (w1, . . . , wQ)T is the output weight connecting the hidden layer with the
output layer, and φ : Rm −→ RQ maps data from the m-dimensional input space to
the Q-dimensional hidden space.

Specifically,
φq(x

i) = gq(aq, bq, x
i) (4.2)

defines the activation function, i.e., the output function, of the q-th hidden node with
respect to input xi with parameters (aq, bq). Note that, the activation function is
decided and fixed at the beginning of the algorithm and may not be unique, meaning
that each hidden node may have assigned a different output function.

Similarly to feedforward Neural Networks, in Extreme Learning Machine the goal is
to minimize the training error but, at the same time, it aims to reach the smallest norm
of the output weights wq, q = 1, . . . , Q as well: as underlined in [Bartlett, 1998], the
number of parameters does not effect the generalization performance of the network;
on the contrary, the size of the weights tends to strongly affect the accuracy of the
algorithm. In order to obtain such results, the concept of minimum norm least-square
solution of a general linear system is used.

Let us consider a generic multi-output training set

{xi, yi}ni=1 (4.3)
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where xi = (xi1, . . . , x
i
m)T ∈ Rm and yi = (yi1, . . . , y

i
p)

T ∈ Rp, with yij ∈ {0, 1}.
Specifically, yij = 1 whether xi belongs to the j th class, while on the contrary yij = 0

if xi does not belong to the j th class, for every i = 1, . . . , n and j = 1, . . . , p. Let
Φ ∈ Rn×Q and Y ∈ Rn×p respectively be the hidden layer output matrix and the
matrix containing all the labels yi for i = 1 . . . n. Namely

Φ =


(φ(x1))

T

...
(φ(xn))

T

 =


φ1(x1) . . . φQ(x1)

...
. . .

...
φ1(xn) . . . φQ(xn)

 ∈ Rn×Q,

and

Y =


(y1)

T

...
(yn)

T

 =


y1

1 . . . y1
p

...
. . .

...
yn1 . . . ynp

 ∈ Rn×p.

In Extreme Learning Machine the key idea is to solve the following problem

minimize

||Φw − Y ||σ1
π

||w||σ2
τ

(4.4)

with σ1 > 0, σ2 > 0 and π and τ defining the utilized norm function. Therefore,
Extreme Learning Machine aims to tackle the problem by considering the minimization
of the approximation error, given by the difference between the expected output and
the computed result, while at the same time looking for the smallest norm weights
w ∈ RQ×p. In this way, as we will see in-depth later, the method tends to have a better
generalization performance with respect to classical feedforward Neural Networks,
together with a faster convergence rate. In particular, observing the problem defined in
(4.4), its goal is not only to reduce the gap between the given output and the computed
output, but it also searches for the smallest norm weight w. The aim is to determine
w to be the minimum norm least-square solution of the system ||Φw − Y ||, i.e., the
smallest 2-norm solution among all the least-square solutions.

A similarly worded as in (4.4), Extreme Learning Machine aims is to solve the
following minimization problem

min
w∈RQ×p

||Φw − Y ||2, (4.5)

leaving out the minimization over w in substance. The optimal solution to Problem
(4.5) is given by

ŵ = Φ†Y,

with Φ† the Moore-Penrose generalized pseudo-inverse of matrix Φ. Note that, it is
possible to show that this special matrix Φ† is indeed the minimum norm least-square
solution of Problem (4.5) [G.-B. Huang, Zhu, et al., 2004]. Moreover, the convergence
speed is characterized by the fact that Extreme Learning Machine randomly assigns
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values to the hidden layer, only adjusting the output weights. In this way, the classical
minimization problem to be solved with iterative adjustments becomes a one step
algorithm, aiming to compute the pseudo-inverse of matrix Φ, reducing in this manner
the computational costs.

The minimization of the norm of the weights and of the classification error is given
by

min
w∈RQ×p

1

2
||w||2 +

C

2

n∑
i=1

||ξi||2

s.t φ(xi)Tw = yi
T − ξiT i = 1, . . . , n,

(4.6)

where ξi = (ξi1, . . . , ξ
i
p)

T ∈ Rp is the training error vector with respect to input xi, for
every i = 1, . . . , n, and C is the regularization parameter. The Lagrangian function
associated to Problem (4.6) is given by the following equation

LELM(w, ξ, α) =
1

2
||w||2 +

C

2

n∑
i=1

||ξi||2 −
n∑
i=1

p∑
j=1

αij

(
φ(xi)Twj − yij + ξij

)
(4.7)

where αi = (αi1, . . . , α
i
p)

T ∈ Rp, i = 1, . . . , n, are the Lagrangian parameters. The
Karush-Kuhn-Tucker (KKT) optimality conditions are obtained by calculating the
partial derivatives of LELM(w, ξ, α) with respect to variables w, ξ and α and set them
to zero. Specifically, we have

∂LELM

∂wj
= wj −

n∑
i=1

αijφ(xi)T = 0,

∂LELM

∂ξi
= Cξi − αi = 0, i = 1, . . . , n,

∂LELM

∂αi
= φ(xi)Tw − (yi

T − ξiT) = 0, i = 1, . . . , n,

or equivalently

w = ΦTα, (4.8a)

α = Cξ, (4.8b)

Φw − (Y − ξ) = 0. (4.8c)

Based on the size n of the data set specified in (4.3) and on the number Q of chosen
hidden neurons, different solutions of Problem (4.6) exist. Specifically, the following
two scenarios may occur.

1. If n < Q, i.e., the number of training data is not bigger than the number of the
hidden neurons, matrix Φ has more columns than rows. In this specific scenario,
the following procedure ca be applied: the values of equations (4.8a) and (4.8b)
are substituted in equation (4.8c) obtaining the following

ΦΦTα− Y +
1

C
Iα = 0⇒ α =

(
1

C
I + ΦΦT

)−1

Y, (4.9)



4.1. INFINITE KERNEL EXTREME LEARNING MACHINE 99

where I is the identity matrix of dimension n× n.
Now, combining (4.8a) and (4.9) we obtain

w = ΦT
(

1

C
I + ΦΦT

)−1

Y. (4.10)

Remembering Equation (4.1) and substituting the value of w defined by (4.10),
the Extreme Learning Machine output function corresponding to a generic input
value x̄ can be obtained as

f(x̄) =

Q∑
q=1

wqφq(x̄) = φ(x̄)ΦT
(

1

C
I + ΦΦT

)−1

Y. (4.11)

2. If n > Q, namely when a very large dataset is considered, a different technique
is used. Specifically, substituting (4.8b) into the Equation (4.8a), we obtain

w = CΦTξ =⇒ ξ =
1

C
(ΦT)

†
w. (4.12)

Now, using the result for ξ obtained from Equation (4.12) into Equation (4.8c)
we obtain that

Φw − Y − 1

C
(ΦT)

†
w = 0,

from which we have

w =

(
1

C
I + ΦTΦ

)−1

ΦTY,

where we used the fact that ΦT(ΦT)
†

= I. Hence, as before, considering Equation
(4.1), if n > Q the Extreme Learning Machine classifier for a generic input x̄ is
now

f(x̄) =

Q∑
q=1

wqφq(x̄) = φ(x̄)

(
1

C
I + ΦTΦ

)−1

ΦTY. (4.13)

In the classical Extreme Learning Machine classifier, the hidden layer purpose is
to map the given input from the original space to a higher dimensional space. In
particular, in this specific scenario a mapping φ : Rm −→ RQ is considered, where the
generic component q is equal to φq(xi) = gq(aq, bq, x

i), corresponding to the activation
function of the q-th hidden neuron, q = 1, . . . , Q. Therefore, through the hidden layer,
input data is mapped into a higher dimensional space. As a direct consequence, this
novel space may be considered as a feature space, leading to the implementation of an
Extreme Learning Machine kernel function.

It is important to note that, in Equation (4.11) matrix Φ only appears in the form
of the product ΦΦT and, analogously, in Equation (4.13) matrix Φ shows up purely
with the term ΦTΦ. These expressions are also known as Extreme Learning Machine
kernel matrix with elements of the form

φ(xi)Tφ(xj),
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for every i, j = 1, . . . , n, corresponding to the inner product in the considered feature
space (in this case RQ).

Differently from classical kernel methods, where the corresponding kernel function is
selected based on the specific set of data and on the given problem, here the feature map
and the associated kernel function strictly rely on the hidden layer. Therefore, since, by
definition, weights on the arcs from the input to the hidden layer are randomly assigned
at the beginning of the algorithm, the corresponding Extreme Learning Machine kernel
function as described in (4.2) is randomly established and cannot be modified.

4.1.2 Related work

Our main goal is to combine Extreme Learning Machine together with the idea of
Infinite Kernel Learning, i.e., to use an infinite combination of base kernels. Specifically,
we will introduce an algorithm, called Infinite Kernel Extreme Learning Machine (IK-
ELM), tackling the problem of optimizing a single feedforward Neural Network with
hidden nodes randomly initiated and never changed, with the use of infinitely many base
kernel functions. In particular, our starting point is the work by [X. Liu et al., 2015],
where an approach called Multiple Kernel Extreme Learning Machine (MK-ELM) is
described. The base concept there is to merge the Extreme Learning Machine structure
with Multiple Kernel Learning technique: the computed optimal kernel function is
a combination of predefined base kernel functions. The coefficients of such kernel
combination, together with the Extreme Learning Machine parameters, are learnt
during the process.

Consider the generic training set defined in (4.3). The Multiple Kernel Extreme
Learning Machine problem is defined as follows:

min
γ

min
v,ξ

1

2

L∑
l=1

1

γl
||vl||2 +

C

2

n∑
i=1

||ξi||2

s. t.
L∑
l=1

〈vl, φl(xi)〉H = yi − ξi, ∀i = 1, . . . , n

L∑
l=1

γl = 1, γl ≥ 0, ∀l = 1, . . . , L,

(4.14)

where {φl(·)}Ll=1 are the L feature mapping from Rm to a Hilbert space H of undefined
dimension corresponding to the predefined base kernels {kl(·, ·)}Ll=1, {γl}Ll=1 are the
base kernel combination parameters, and vl :=

√
γlwl for l = 1, . . . , L as for the

classical Multiple Kernel Support Vector Machine framework described in Chapter 3.
Moreover, vl ∈ R|φl(·)|×p, for every l = 1, . . . , L, leading to

v := (v1, . . . , vL) ∈ R(|φ1(·)|+···+|φL(·)|)×p.
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The Lagrangian function corresponding to Problem (4.14) is given by

LMK-ELM(γ, v, ξ, α, λ, δ) =
1

2

L∑
l=1

1

γl
||vl||2 +

C

2

n∑
i=1

||ξi||2 −
L∑
l=1

δlγl + λ

(
L∑
l=1

γl − 1

)

−
n∑
i=1

p∑
j=1

αij

(
L∑
l=1

〈vl, φl(xi)〉H − yij + ξij

)
.

In [X. Liu et al., 2015] an iterative scheme for the Multiple Kernel Extreme Learning
Machine algorithm for both sparse and non-sparse case is outlined. Specifically, after
computing the partial derivatives of LMK-ELM with respect to variables vl, ξij and αij ,
the following matrix expression is obtained

α =

(
Kγ +

1

C
I
)
Y T, (4.15)

where Kγ is the matrix of elements

kγ(xi, xj) =
L∑
l=1

γlkl(x
i, xj),

for every i, j = 1, . . . , n. Algorithm 11 schematizes the Multiple Kernel Extreme
Learning Machine approach proposed by [X. Liu et al., 2015].

Algorithm 11: Multiple kernel extreme learning machine general approach
described in [X. Liu et al., 2015]. Note that, depending on the specific type of
dataset, i.e., sparse or non sparse, kernel combination weights γ are updated
using a different rule.
Data: A set of training data {xi, yi}ni=1, regularization parameter C, a set of

base kernel functions kl, l = 1, . . . , L

Result: Combination parameters γl, Lagrangian multipliers α
Initialize γ ← γ0;
t← 0;
while max{|γt+1 − γt|} < 1e− 4 do

Compute kγ(·, ·) =
∑L
l=1 γlkl(·, ·);

Find αt solving equation (4.15);
Update γt+1;
t← t+ 1

end

4.1.3 The proposed model

We extend the formulation described in (4.14) using a combination of possibly
infinitely many base kernel functions. From now on, for the sake of calculations, let us



102 CHAPTER 4. TWO NOVEL MACHINE LEARNING APPROACHES

consider the single output case. Specifically, we consider a classification training set D,
with

X = {xi}ni=1

feature set with elements xi = (xi1, x
i
2, . . . , x

i
m)T ∈ Rm, i = 1, . . . , n, and

Y = {yi}ni=1

label set with yi ∈ {−1, 1}, for every i = 1, . . . , n. Note that, as in [Gehler and Nowozin,
2008], Ωf and Ω are, respectively, a finite set and a set of undefined cardinality of
kernel parameters. Moreover, the feature maps are defined as

φl : Rm −→ H,

where H is a Hilbert space, for every l ∈ Ωf . Then, the problem we wish to solve is
the following

inf
Ωf⊂Ω

min
γ

min
v,ξ

1

2

∑
l∈Ωf

1

γl
||vl||2 +

C

2

n∑
i=1

||ξi||2

s. t.
∑
l∈Ωf

〈vl, φl(xi)〉H = yi − ξi, ∀i = 1, . . . , n

∑
l∈Ωf

γl = 1, γl ≥ 0, l ∈ Ωf ,

(4.16)

with the set of all possible kernels theoretically containing an uncountable number of
elements. In Problem (4.16) we can define an inner problem with respect to variables
v, ξ and γ and an outer problem searching for the best finite subset of Ωf ⊂ Ω.
Furthermore, as set out in more detail below, the inner problem is subdivided once
again, splitting it with respect to the two minimization processes, respectively regarding
γ and v, ξ.

Consider first the inner problem

min
γ

min
v,ξ

1

2

∑
l∈Ωf

1

γl
||vl||2 +

C

2

n∑
i=1

||ξi||2

s. t.
∑
l∈Ωf

〈vl, φl(xi)〉H = yi − ξi, ∀i = 1, . . . , n

∑
l∈Ωf

γl = 1, γl ≥ 0, l ∈ Ωf .

(4.17)

To build the dual problem of (4.17), we construct the Lagrangian function corresponding
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to this inner problem given by the following expression.

LIK-ELM(γ, v, ξ, α, λ, δ) =
1

2

∑
l∈Ωf

1

γl
||vl||2 +

C

2

n∑
i=1

||ξi||2

−
∑
l∈Ωf

δlγl + λ

∑
l∈Ωf

γl − 1


−

n∑
i=1

αi

∑
l∈Ωf

〈vl, φl(xi)〉H − yi + ξi

 ,

(4.18)

with αi, λ and δl Lagrangian multipliers. Moreover the Lagrangian multipliers δl are
non-negative for all l ∈ Ωf . The Karush–Kuhn–Tucker conditions corresponding to
Problem (4.17) are given by the following expressions:

∂LIK-ELM

∂vl
=

1

γl
vl −

n∑
i=1

αiφl(x
i)T = 0, (4.19a)

∂LIK-ELM

∂γl
= −1

2

1

γ2
l

||vl||2 + λ− δl = 0, (4.19b)

∂LIK-ELM

∂ξi
= Cξi − αi = 0, (4.19c)

∂LIK-ELM

∂αi
=
∑
γl

〈vl, φl(xi)〉H − yi + ξi = 0. (4.19d)

Substituting Equations (4.19a)-(4.19d) in Equation (4.18) we can rewrite the Lagrangian
function as

LIK-ELM(γ, v, ξ, α, λ, δ) =
∑
l∈Ωf

1

γl
||vl||2 +

∑
l∈Ωf

(
− 1

2

1

γ2
l

||vl||2 − δl + λ

)
− λ

+

n∑
i=1

αiyi +

n∑
i=1

ξi(Cξi − αi)−
C

2

n∑
i=1

||ξi||2

−
n∑
i=1

αi

∑
l∈Ωf

〈vl, φl(xi)〉H

 .

(4.20)

Taking into account the fact that the Lagrangian multipliers δl are non-negative for all
l ∈ Ωf , we obtain the following dual form of Problem (4.17)

max
α,λ

n∑
i=1

αi

(
yi −

αi
2C

)
− λ

s. t. T (l, α) ≤ λ, ∀l ∈ Ωf ,

(4.21)

where

T (l, α) :=
1

2

n∑
i,j=1

αiαj〈φl(xi), φl(xj)〉H.
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Figure 4.3: The solid line object represents the feasible region of Problem (4.21). The
dotted line object shows the feasible region of Problem (4.22). The red star presents a
feasible solution for both problems. The red dot shows an example of a point lying in
the feasible region of Problem (4.21) but not in the feasible region of Problem (4.22).

The constraint T (l, α) ≤ λ is obtained using Equation (4.19b).
Given Problem (4.21), we can construct the dual form of Problem (4.16) as follows

max
α,λ

n∑
i=1

αi

(
yi −

αi
2C

)
− λ

s. t. T (l, α) ≤ λ, ∀l ∈ Ω.

(4.22)

Note that, in this formulation, the feasible region, namely the set containing all the
feasible solutions, is smaller than the one corresponding to Problem (4.21). In fact, by
construction, Problem (4.21) is defined by fewer constraints, given by

T (l, α) ≤ λ, ∀l ∈ Ωf .

Hence, if (α∗, λ∗) is an optimal solution of Problem (4.21), two things may happen:
either (α∗, λ∗) verifies

T (l, α∗) ≤ λ∗, ∀l ∈ Ω,

namely (α∗, λ∗) is an optimal solution of Problem (4.22); either there exists some l ∈ Ω

such that
T (l, α∗) > λ∗.

This second scenario is equivalent to the event that (α∗, λ∗) lies in the feasible region
of Problem (4.21) but is not located in the feasible region of Problem (4.22). In this
case, l is added to Ωf , namely, a new kernel is considered. Figure 4.3 shows the two
described scenarios.

Moreover, it is important to point out that, in the formulation of Problem (4.22)
we leave out the supremum corresponding to the infimum of Problem (4.16): if there
exists a solution (α∗, λ∗) with corresponding values ξ∗, v∗, γ∗, satisfying the condition
T (l, α∗) ≤ λ∗ for all l ∈ Ω, then it also satisfies the condition for all the finite sets
Ωf ⊂ Ω. Finally, as already pointed out in Chapter 3, from Theorem 4.2 of [Hettich
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and Kortanek, 1993] it follows that if Problem (4.22) admits solution, then its optimal
solution is defined by only a finite number of l different from zero. Therefore, the
proposed algorithm searches for a finite set Ωf as a solution of our problem.

Based on the above calculations, we propose an iterative two-step algorithm for
Infinite Kernel Extreme Learning Machine, schematized in Algorithm 12 [Marcelli and
De Leone, 2019]. With reference to the inner Problem (4.17), we define the following
problem given by

min
γ

S(γ)

s. t.
∑
l∈Ωf

γl = 1

γl ≥ 0, l ∈ Ωf ,

(4.23)

with

S(γ) := min
v,ξ

1

2

∑
l∈Ωf

1

γl
||vl||2 +

C

2

n∑
i=1

||ξi||2

s. t.
∑
l∈Ωf

〈vl, φl(xi)〉H = yi − ξi, ∀i = 1, . . . , n.

(4.24)

The proposed algorithm may be summarised as follows.

Step 1. Solve Problem (4.17) with values of γ fixed, where problem S(γ) is defined as in
(4.24);

Step 2. Look for the value of l ∈ Ω maximizing function T (l, α).

Algorithm 12 summarizes the proposed approach.
Now, we are going to analyze every step of Algorithm 12 in detail, in order to

determine how it may be solved.
First, it should be pointed out that the main advantage of using Extreme Learning

Machine framework is that, differently form other classification approaches, it does not
need the use of an iterative approach but is an exact algorithm.

We now focus on Step 1 of the proposed algorithm. It involves the search of a
vector of fixed size γ, minimizing the function S(γ) over the unit simplex

∆ := {γ : eTγ = 1, γ ≥ 0}.

As pointed out [De Klerk et al., 2008], the optimization of a quadratic function over a
simplex may be a difficult task to perform, but well-known schemes exist in order to
perform this kind of problem, e.g., Genetic Algorithm, Accelerated Projected Gradient
Descent, Exponentiated Gradient Descent. Note that, once we obtain the value γ∗, we
can compute λ∗ using the complementarity condition∑

l∈Ωf

δlγl = 0
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Algorithm 12: Infinite Kernel Extreme Learning Machine

Begin
Given Ω, select Ωf ⊂ Ω ;
Step 1 Solve

min
γ

S(γ)

s. t. eTγl = 1, γl ≥ 0

to obtain λ∗, α∗, the dual optimal solution of Problem (4.22);
where

S(γ) := min
v,ξ

1

2

∑
l∈Ωf

1

γl
||vl||2 +

C

2

n∑
i=1

||ξi||2

s. t.
l̃∑
l=1

〈vl, φl(xi)〉H = yi − ξi, ∀i = 1, . . . , n

Step 2 Compute
max
l∈Ω

T (l, α∗)

where

T (l, α) :=
1

2

n∑
i,j=1

αiαj〈φl(xi), φl(xj)〉H

if T (l, α∗) ≤ λ∗ then
break;

else
add l to Ωf and return to Step 1;

end
end
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together with the corresponding Karush–Kuhn–Tucker condition given by Equation
(4.19b).

Finally, with respect to Step 2, the value of the function T (l, α∗) plays the role of
some kind of evaluation threshold, specifying whether or not a new kernel needs to be
selected.

As regard to the convergence of the proposed Infinite Kernel Extreme Learning
Machine algorithm, we can use a direct application of Theorem 7.2 in [Hettich and
Kortanek, 1993]. Specifically, as stated in the previous chapter by Theorem 11, we know
that, if the problem admits solution, either Algorithm 12 ends after a finite number of
steps, leading to a solution of the problem, or it has at least one accumulation point,
each one of these solving the problem. Namely, similarly to [Gehler and Nowozin,
2008], the following statement is true. Note that, there is no assurance that, given a
feasible problem, Algorithm 12 would identify a finite set Ωf adequate to render the
general set Ω. Anyway, if Algorithm 12 ends after a finite number of iterations, then
Infinite Kernel Extreme Learning Machine algorithm converges, obtaining the optimal
solution.

4.1.4 Numerical results

In order to explore the performance of the proposed Infinite Kernel Extreme
Learning Machine, we present an experimental analysis on 20 public dataset, with
the specific goal of tackling the execution of our proposed model in various dataset.
Since the proposed model is a binary classification algorithm by nature, we decided to
focus our attention on classification dataset, yet not taking into account the number of
classes of the considered dataset, that is, tackling both binary and multi-class dataset.
Specifically, when dealing with multi-class dataset, we decided to select a preset class
and use the classification algorithm with respect to all the others, i.e., fixing a label
and training the classifier against the examples of every other class. We decided to
make this choice since the main goal of the proposed implementation is not to provide
the most effective algorithm but to show the feasibility of the suggested Infinite Kernel
Extreme Learning Machine. In particular, rather than aiming to get ambitious and
vying results, we wish to achieve proper results, showing the fairness of our method
from an implementation point of view.

Table 4.1 reports the name (first column), the number of examples (second column),
the number of attributes (third column) and the type of problem (forth column) of the
sets of data we utilized. Moreover, footnotes report the source of each dataset.
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The algorithm starts with three fixed initial base kernel functions

k1(xi, xj) = xi
T
xj ,

k2(xi, xj) = (xi
T
xj)2,

k3(xi, xj) = (xi
T
xj)3,

i.e., the linear kernel and two polynomial kernels, respectively of degree 2 and 3 and
null free parameters. For precision, it is fair to underline that, we decided to implement
our code with the possibility of using k1, k2, k3 as initial base kernels. In practice,
however, we fixed the combination parameter for kernel k3 equal to 0, and, therefore,
in our experiments, polynomial kernel functions of degree 3 were never used.

The choice of further kernel functions is made as follows. We search for novel kernel
functions among Gaussian kernels of the form

kµ(xi, xj) = e−µ||x
i−xj ||2/m,

where m is the size of the input space. Specifically, the following maximization problem
is solved in order to compute the novel kernel combination parameters

max
µ

1

2

n∑
i=1

n∑
j=1

α∗iα
∗
je
−µ||xi−xj ||2/m

s. t. µ1 ≤ µ ≤ µ2,

with α∗ the dual optimal solution of Problem (4.22). Moreover, in our implementation
we decided to fix the range of parameter µ in the interval [0.1; 700]. In this way, as
described in the previous section, the proposed model searches for a finite number of
kernels from a base kernel set of infinite dimension.

The program is coded in MatLab version R2021a and executed on a laptop. Ap-
pendix A contains the main parts of the code implemented by us and used to obtain the
results reported in Table 4.2. It is important to emphasise that, our MatLab implemen-
tation is based on the Infinite and Multiple Kernel Learning algorithm for MatLab code
by Peter Gehler and Sebastian Nowozin [Gehler and Nowozin, 2008]. Specifically, as
well as the source code, our implementation utilizes the Interior Point Optimizer Ipopt,
an open source software package for large-scale nonlinear optimization. Instead, unlike
the original code, we did not use the Support Vector Machine solver libsvm and that is
because, as deeply emphasizes in the previous sections, Extreme Learning Machine
tackles the problem of finding the best combination parameters by considering the
minimization of the approximation error, given by the difference between the expected
output and the computed result, while at the same time looking for the smallest norm
weights. In this way, Extreme Learning Machine has a very similar formulation with
respect to classical Support Vector Machine. However, while Support Vector Machine
framework requires an optimization algorithm, Extreme Learning Machine needs only
to solve a system of equations.
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The obtained results are shown in Table 4.2, where the achieved performance values
for both the training set and the test set are shown. Specifically, we computed the
accuracy, the precision and the recall values obtained in the training phase of the
algorithm, as well as using a testing subset of the dataset. As is evident from the table,
we achieved very high performance measures in the training set, with lowest values for
the “phishing data” dataset with accuracy value of 0.969, precision value of 0.979 and
recall value of 0.970. Weaker results were obtained for the test set. Looking at the
accuracy of the test set, we can see that its value is in the range specified by the lowest
value of 0.710 for the “cardiovascular” dataset and by the highest value of 0.980 for
the “diabetes” dataset. Concerning the precision on the test set, we can observe that
its lowest value of 0.640 is obtained on the “cardiovascular” dataset, while its highest
result of 0.990 is obtained with the use of the “diabetes” dataset. Finally, as regards to
the recall value, its best value of 0.977 is obtained for the “diabetes” dataset, while a
limited result of 0.740 is achieved for the “pima indians” dataset.

Note that, the worst results were obtained with the “cardiovascular” dataset and
the “heart” dataset.

As far as the “cardiovascular” dataset is concerned, it is a binary classification
dataset and it contains over 68, 000 instances characterized by 11 attributes. The aim
is to find the presence of cardiovascular disease on the basis of specific patients body
attributes. Considering the huge number of instances, we decided to narrow the number
of examples used to only 1, 000 balanced instances, with 500 examples belonging to
class 1 and 500 examples belonging to class −1. Regardless a balanced number of both
classes were selected, we strongly believe that chopping the number of instances in
such a substantial way, may justify the weak results obtained in comparison with the
other dataset.

With respect to the “heart” dataset, as specified in Table 4.1, it is given by 304

examples made of 13 attributes. Specifically, the aim is to determine, using the 13 body
attributes of each candidate, whether or not a person suffers of heart disease. Although
the “heart” dataset is a binary classification dataset, we obtained not as good results
as for the other dataset. However, we observed that, comparing the results obtained
in three different papers [Brown, 2004; K. Huang et al., 2004; Zhou and Jiang, 2004],
the accuracy has value ranging from 0.789 [Zhou and Jiang, 2004] to 0.857 [K. Huang
et al., 2004], results that are not all that far from those obtained using the Infinite
Kernel Extreme Learning Machine method.

In conclusion, we may say that the values specified in Table 4.2 may be considered
as a very promising achievement of our proposed method. In particular, it is important
to underline that, in our implementation we did not perform any fine-tuning method,
namely no transfer learning approach was used in order to improve the weakest parts
of our code. Moreover, we decided to use standard optimization techniques, not paying
attention to operating with more optimization processes, with the aim of picking
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the best performance one. Finally, no changes were made to the standard Ipopt
options, leaving them fixed throughout the entire experimental analysis. We decided
to make these choices because, as already mentioned above, we were more interested
in investigating the feasibility of out proposed method, more than generating racing
results, on a par with other existing performance values.

Dataset Examples Attributes Type of problem
abalone1 4177 8 multi-class
banknote1 1372 4 binary
cardiovascular2 68684 (only

1000 used)
11 binary

cryotherapy1 90 6 binary
diabetes1 2000 8 binary
divorce1 170 54 binary
glass1 214 9 multi-class
heart1 304 13 binary
ionosphere1 351 34 binary
iris1 150 4 multi-class
leaf2 340 15 multi-class
phishing data1 1354 9 multi-class
pima indians2 768 8 binary
seeds1 210 7 binary
sonar3 208 60 binary
breast cancer1 570 31 binary
wine1 178 13 multi-class
wine quality (red)1 1599 11 multi-class
wine quality (white)1 4898 11 multi-class

Table 4.1: Name, number of examples, number of attributes and number of target
values of the dataset used in the evaluations.

1https://archive.ics.uci.edu/ml/datasets.php
2https://www.kaggle.com/datasets
3https://datahub.io/machine-learning/sonar

https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/datasets
https://datahub.io/machine-learning/sonar
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Accuracy Precision Recall
Dataset Training Test Training Test Training Test
abalone 0.998 0.812 0.999 0.907 0.998 0.858
banknote 1 1 1 1 1 1
cardiovascular 1 0.710 1 0.648 1 0.764
cryotherapy 1 0.9444 1 0.875 1 1
diabetes 1 0.980 1 0.99 1 0.977
divorce 1 0.971 1 1 1 0.945
glass 1 0.955 1 0.900 1 0.900
heart 1 0.771 1 0.640 1 0.762
ionosphere 1 0.943 1 1 1 0.923
iris 1 1 1 1 1 1
leaf 1 0.956 1 1 1 0.956
phishing data 0.969 0.882 0.979 0.884 0.970 0.896
pima indians 1 0.753 1 0.926 1 0.740
seeds 1 1 1 1 1 1
sonar 1 0.762 1 0.870 1 0.741
speech feature 1 0.907 1 0.800 1 0.800
breast cancer 1 0.978 1 0.932 1 1
wine 1 1 1 1 1 1
winequality (red) 1 0.844 1 0.857 1 0.857
winequality (white) 1 0.783 1 0.882 1 0.812

Table 4.2: Accuracy, precision and recall values of training and test sets of the dataset
specified in Table 4.1 using Infinite Kernel Extreme Learning Machine algorithm.
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4.2 Multi-Kernel Covariance Terms in Multi-Output

Support Vector Machines

4.2.1 Multi-task learning

The problem of simultaneously solving more than one task is known as Multi-Task
Learning (MTL) and has gained a significant amount of notoriety over the last years.
Unlike classical supervised Machine Learning techniques, where a function is sought
to map input values to a specific appropriate output, i.e., one continuous value for
regression problems or one discrete label for classification problems, Multi-Task Learning
aims, given a specific input, to learn multiple outputs at once. Specifically, the goal of
Multi-Task Learning is to simultaneously learn multiple tasks, while considering all the
possible existing relationships as well as discrepancies and resemblances between them.
Therefore, for every given input, a multidimensional output is assigned, corresponding
to each task of the problem. The main hypothesis of Multi-Task Learning is that
each task, or at the very least a subset of them, has inter-correlation factors, making
necessary the use of an algorithm that explicitly considers this correlation. Multi-
Task Learning is often mistakenly considered to be the same or improperly swapped
with another Machine Learning subfield, known as Multi-Output Learning (MOL).
Differently from Multi-Task Learning, Multi-Output Learning associates each input to
a single vector output value. Thus, in Multi-Output Learning several possible choices
of outputs are given, but only one is finally paired to each input. Moreover, even if
inter-output correlation factors are not excluded, they do not constitute a key factor
of Multi-Output Learning.

In literature, a fair number of review articles exists, showing how to approach
Multi-Task Learning in different research areas: multi-task regression with real value
outputs [Borchani et al., 2015; Melki et al., 2017]; classifications problems [Bielza et al.,
2011; Vembu and Gärtner, 2010]; overall frameworks moving the view on the whole
prospective [D. Xu et al., 2019].

The simplest approach to solve a generic multi-task problem would be to consider
every task as independent from the others and, therefore, separately solving every
problem and, finally, combining the solutions found to obtain a general result. However,
in this way, since independent problems are solved, it is very likely to ignore significant
multi-task correlation factors, thus resulting with improper results not taking into
account relationships between different tasks [Ben-David and Schuller, 2003]. As a
direct consequence, doing so, all the benefits that make Multi-Task Learning particularly
suitable for describing real problems, i.e., problems where the inner task correlation
factors are not only present but also significantly important, are canceled. Of course, if
the given multi-task problem is defined by tasks that are not related with each other, the
method described above fits the purpose correctly. An attractive approach dealing with
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Multi-Task Learning makes use of Reproducing Kernel Hilbert Spaces of vector–valued
functions [Micchelli and Pontil, 2005]. In this case we talk of matrix–valued kernels,
an extension of the idea of kernels, where a kernel matrix is defined with respect to
every input value.

Over the last years, several approaches have been proposed for solving multi-task
problems based on the typical Support Vector Machine framework. An interesting
approach is the multi-task Support Vector Machine [Zhang et al., 2018], that com-
bines multi task learning with data from different backgrounds; regularization based
approaches such as [Evgeniou and Pontil, 2004] using minimization of regularization
functionals can be also found in literature; moreover, a sequential minimal optimization
approach [Cai and Cherkassky, 2012], decomposing the problem into a set of minimal
subproblems, has also been proposed. In [S. Xu et al., 2014], starting from the basic
formulation, a generalized multi-task Support Vector Machine framework is formulated
and solved with the use of Krylow space methods.

In Gaussian Processes the Multi-Task Learning problem is solved with the use
of multi-task covariance functions. Such functions are able to solve the critical issue
of multi-task correlations looking at all the possible connections between different
tasks. Specifically, this approach requires the covariance function to operate on a
cross-correlation factor between tasks, in addition to the classical correlation factor
of each single task. Several approaches were introduced over the years, e.g., in the
geostatical environment [Cressie, 1992; Wackernagel, 2013] known under the name of
cokriging. Several cokriging methods exist: simple, ordinary, collocated, and indicator.
They mainly differ from each other on the way the mean value is exploited. For
example, simple cokriging employs a clearly defined beforehand mean, making it
globally constant throughout the whole process. On the contrary, ordinary cokriging
opts for locally constant means based on specific points. Usually, such methods use
the same covariance function for different tasks. Along the lines of multi-task Gaussian
process, an innovative approach is proposed in [Melkumyan and Ramos, 2011], that
will be explored in more detail below.

4.2.2 Related work

Let us now outline in details the multi-task covariance function template for
Gaussian Processes presented in [Melkumyan and Ramos, 2011].

Consider a generic L-tasks training set D, with generic elements xil ∈ X and yil ∈ Y ,
respectively defining the i-th input with respect to the l-th task and the i-th output for
the l-th task. Each task is associated with a different kernel function and multi-task
factors are modelled with the use of cross covariance terms. Specifically, the paper
relies on the idea of using a convolution structure for each single task: given their basis
function φl, i.e., a smoothing kernel, a single task auto covariance function kll can be
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written as follows

kll(x
i, xj) =

∫ +∞

−∞
φi(x

i − u)φi(x
j − u) du, l = 1, . . . , L. (4.25)

Generalizing Equation (4.25), we obtain the following form for the covariance matrix
K, given by

K(xil, x
j
s) =

∫ +∞

−∞
φl(x

i
l − u)φs(x

j
s − u) du, (4.26)

where xil is in the l -th task and xjs is in the s-th task. It is important to note that, the
covariance function defined in Equation (4.26) has the characteristic of being a positive
semidefinite (PSD) matrix. Therefore, Equation (4.26) may be exploited to tackle the
construction of cross-covariance terms, i.e., elements kls with l 6= s, modelling the inter
task dependencies. The main challenge of computing such cross-covariance terms is
finding the corresponding basis functions φl, l = 1, . . . , L.

A general form to compute such basis functions is given by the following

g(τ) =
1

(2π)1/4
F−1
s→τ [

√
Fτ→s[k(τ)]], (4.27)

where τ = xi − xj and Fτ→s[k(τ)] is the Fourier transformation of an arbitrary
stationary covariance function k(τ).

Moreover, using the scheme just described, in [Melkumyan and Ramos, 2011] three
examples of cross covariance functions are provided: the squared exponential, the
Matérn and the sparse covariance functions. The exact formulations of the described
functions are given by Equations (4.28a)-(4.28c).

kSE(r, lSE) = exp

[
−1

2

(
r

lSE

)2]
, (4.28a)

kM (r, lM ) =

(
1 +

√
3r

lM

)
exp

(
−
√

3r

lM

)
, (4.28b)

kS(r, lS) =

[
2 + cos(2πr/lS)

3
(1− r/lS) +

1

2π
sin(2πr/lS)

]
H(lS − r), (4.28c)

with r = |xi − xj | and lM , lSE and lS respectively length scale parameters for Matérn,
squared exponential and sparse covariance functions. Moreover, H is the Heaviside
step function defined in Chapter 2 and the Matérn covariance function is computed
with kernel parameter ν = 3/2. The auto covariance, i.e., when the same covariance
function is used, and the cross covariance functions, i.e., when two different basis
covariance functions are considered, are calculated. Note that, as it will be clarified in
the next section, since we have utilized Matérn 3/2 and squared exponential, we are
going to present only the covariance terms including such functions.

Specifically, let us consider the definition of squared exponential and Matérn
covariance functions. Using Equations (4.28a) and (4.28b), auto covariance and cross
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covariance terms can be constructed. Using the squared exponential kernel defined in
(4.28a) and Equation (4.25), we have that the corresponding auto covariance term may
be expressed as

kSE1×SE2(r, lSE1 , lSE2) =

√
2lSE1

lSE2

l2SE1
+ l2SE2

exp

(
− r2

l2SE1
+ l2SE2

)
(4.29)

where r = |xi − xj | as above and lSE1
and lSE2

are the respective length scales.
Analogously, using (4.28b) in Equation (4.25), the Matérn 3/2 auto covariance term is
given by

kM1×M2
(r, lM1

, lM2
) = σM1M2

(lM1
e
−
√

3 r
lM1 − lM2e

−
√

3 r
lM2 ) (4.30)

with σM1M2 = 2
√
lM1 lM2/(l

2
M1
l2M2

) and lM1 , lM2 lenght scales.
Finally, we can compute the squared exponential-Matérn cross covariance term using
both (4.28a) and (4.28b) into Equation (4.25), obtaining the following expression

kSE×M (r, lSE , lM ) =
√
λ(π/2)1/4eλ

2

[
2cosh

(√
3r

lM

)

− e
√

3r
lM erf

(
λ+

r

lSE

)
− e−

√
3r
lM erf

(
λ− r

lSE

)] (4.31)

where λ =
√

3lSE
2lM

and erf is the Gauss error function defined as

erf(z) =
2√
π

∫ z

0

e−t
2

dt.

4.2.3 The proposed model

Firstly, it is important to specify that, we have decided to name it multi-output
Support Vector Machine. Therefore, from now on, when we talk about multi-output
dataset, we are actually considering data where every given input is assigned with
a corresponding multidimensional output, with the further characteristic of inter-
correlated output components.

To be able to use a kernel matrix as the ones defined by Equations (4.29)-(4.31) in
a Support Vector Machine framework, we need to construct a multi-output Support
Vector Machine, taking care of correlation factors of every output. Let us consider a
generic dataset

{xi, yi}ni=1,

with xi = (xi1, . . . , x
i
m)T ∈ Rm and yi ∈ {−1,+1}t. Starting from the classical Support

Vector Machine structure, our goal is to define a problem with a multi-task cross factor.
To do so, we propose some modifications to the classical Support Vector Machine
problem. As far as the use of kernel functions, we decided to consider more than one
feature map: specifically, for every output p = 1, . . . , t, we consider a feature map

φp(·) ∈ Rl,
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of fixed dimension l. Concerning the normal vector to the hyperplane w, we substitute
it with a more complex formulation: from every couple of outputs {i, j}, i, j = 1, . . . , t,
we consider a vector wij of dimension l, i.e., the dimension of each feature map,
leading to a three dimensional tensor W of dimension t× t× l with elements wkpq. As
an additional condition on W , we require wij. = wji., ∀i, j,= 1, . . . , t. For a sparse
representation of Support Vector Machine, w is substituted by its expansion in terms of
the dual variable. In this case the objective function contains a term imposing sparsity
of the solution. In the same spirit, similarly to classical Support Vector Machine
problem, we propose to minimize the sum of the square of every element present in
the three dimensional tensor W .

The optimization problem is the following [Marcelli and De Leone, 2020].

min
W,ξ

1

2

t∑
k,p=1

l∑
q=1

w2
kpq + C

t∑
k=1

n∑
i1

ξik

s. t. yik

(
t∑

p=1

l∑
q=1

wkpqφpq(x
i) + θk

)
≥ 1− ξik

wkpq = wpkq, k, p = 1, . . . , t, q = 1, . . . , l

ξik ≥ 0 i = 1, . . . , n, k = 1, . . . , t.

(4.32)

Note that,
t∑

p=1

l∑
q=1

wkpqφpq(x
i) =

t∑
p=1

wkp.
Tφp(x

i),

where the notation φpq is used to describe the q-th component of vector φp.
The Lagrangian function associated to (4.32) is

L(w, ξ, λ, µ, β) =
1

2

t∑
k,p=1

l∑
q=1

w2
kpq + C

t∑
k=1

n∑
i=1

ξik

−
n∑
i=1

t∑
k=1

λik

[
yik

(
t∑

p=1

l∑
q=1

wkpqφpq(x
i) + θk

)
− 1 + ξik

]

+

t∑
k=1

n∑
i=1

µikξ
i
k +

t∑
k,p=1

l∑
q=1

βkpq(wkpq − wpkq).

(4.33)

For the sake of semplicity, from now on we are going to use the bare notation L =

L(w, ξ, λ, µ, β). The Karush–Kuhn–Tucker conditions are given by the following

∂L
∂wkpq

= 0 =⇒ wkpq =

n∑
i=1

λiky
i
kφpq(x

i)− βkpq + βpkq, (4.34a)

∂L
∂θk

= 0 =⇒
n∑
i=1

λiky
i
k = 0, (4.34b)

∂L
∂ξik

= 0 =⇒ C = λik − µik. (4.34c)
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Substituting (4.34a)-(4.34c) into (4.33) we can rewrite the Lagrangian function as

L =− 1

2

t∑
k,p=1

l∑
q=1

w2
kpq +

t∑
k,p=1

l∑
q=1

wkpq

(
wkpq −

n∑
i=1

λiky
i
kφpq(x

i)− βkpq + βpkq

)

+

t∑
k=1

n∑
i=1

ξik
(
C − λik + µik

)
−

t∑
k=1

(
n∑
i=1

λiky
i
k

)
+

n∑
i=1

t∑
k=1

λik =

− 1

2

t∑
k,p=1

l∑
q=1

w2
kpq +

n∑
i=1

t∑
k=1

λik.

(4.35)
Now, recalling from (4.34a) that

wkpq =

n∑
i=1

λiky
i
kφpq(x

i)− βkpq + βpkq (4.36a)

wpkq =

n∑
i=1

λipy
i
pφkq(x

i)− βpkq + βkpq, (4.36b)

and since wkpq − wpkq = 0, we have that

wkpq =
1

2

(
n∑
i=1

λiky
i
kφpq(x

i) +

n∑
i=1

λipy
i
pφkq(x

i)

)
. (4.37)

Substituting (4.37) into (4.33) we finally obtain the ultimate form for the Lagrangian
function of Problem (4.32), given by the following

L =

n∑
i=1

t∑
k=1

λik −
1

2

t∑
k,p=1

[
1

2

(
n∑
i=1

λiky
i
kφp(x

i) +

n∑
i=1

λipy
i
pφk(xi)

)]2

=

=

n∑
i=1

t∑
k=1

λik −
1

8

t∑
k,p=1

[
n∑
i=1

n∑
i′=1

λikλ
i′

k y
i
ky
i′

k φp(x
i)Tφp(x

i′)+

n∑
i=1

n∑
i′=1

λipλ
i′

p y
i
py
i′

p φk(xi)Tφk(xi
′
) + 2

n∑
i=1

n∑
i′=1

λipλ
i′

k y
i
py
i′

k φk(xi)Tφp(x
i′)

]
=

=

n∑
i=1

t∑
k=1

λik −
1

4

t∑
k,p=1

[
n∑
i=1

n∑
i′=1

λikλ
i′

k y
i
ky
i′

k φp(x
i)Tφp(x

i′)+

n∑
i=1

n∑
i′=1

λipλ
i′

k y
i
py
i′

k φk(xi)Tφp(x
i′)

]
.

(4.38)

Note that, since both indices k and p depend on dimension t, which was chosen not to
change throughout the process, we have that

n∑
i=1

n∑
i′=1

λipλ
i′

p y
i
py
i′

p φk(xi)Tφk(xi
′
) =

n∑
i=1

n∑
i′=1

λikλ
i′

k y
i
ky
i′

k φp(x
i)Tφp(x

i′),

leading to the final formulation (4.38).
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The Wolfe-dual problem of (4.32) is given by

min
λ

−L

s. t. 0 < λik < C

n∑
i=1

λiky
i
k = 0, k = 1, . . . , t

(4.39)

with L specified as in Equation (4.38). Note that, both cross covariance and auto
covariance terms are present in (4.38). The term φk(xi)Tφk(xi

′
) is relative to the same

output relations, while φk(xi)Tφp(x
i′) takes into account the inter output correlation

factors. Moreover, note that since we are considering feature maps φp(·) ∈ Rl, ∀p =

1, . . . , t, we are using the classical inner product notation.
Now, using the notation

Kpk(xi, xi
′
) := φp(x

i)Tφk(xi
′
),

for every p, k = 1, . . . , t, once Problem (4.39) is solved and a finite solution λ∗ is found,
the classifier function for a generic given input x̂ is computed as follows

fk(x̂) =

t∑
p=1

[
1

2

n∑
i=1

λ∗iky
i
kφp(x

i) + λ∗iky
i
kφk(xi)

]T

φp(x̂) + θk

=
1

2

t∑
p=1

n∑
i=1

[
λ∗iky

i
kKpp(xi, x̂) + λ∗iky

i
kKkp(xi, x̂)

]
+ θk.

(4.40)

4.2.4 Numerical results

In order to test our proposed multi-output Support Vector Machine, we had to look
for available multi-task dataset that would be appropriate for our goal. As already
mentioned, despite being an interesting research field from both the theoretical and the
practical point of view, only a small number of publicly available multi-task dataset
are present. To overcome this deficiency, in this study, we decided to use both real
and synthetic set of data, in order to investigate a fair amount of data and to obtain
information as much reliable as possible.

Specifically, at first, we used four real open-source collection of data freely available
online from the Java open source library Mulan [Tsoumakas et al., 2009]: “jura”, “enb”,
“andro”, “sf1”. Table 4.3 lists the used dataset, specifying the number of examples,
features and targets of each dataset. Primarily, we needed to modify the dataset in
order to be able to use them in our model and to get valid information. The dataset
listed in Table 4.3 are commonly exploited in regression frameworks, since the outputs
may assume a continuous range of values. In order to use them in our classification
problem, we had to modify the output values. We proceeded in the following way.
For each one of the given outputs we computed the corresponding mean value. If
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Dataset Examples Features Targets
jura 359 15 3
enb 768 8 2
andro 49 30 6
sf1 323 10 3

Table 4.3: Description of the list of the Mulan dataset used in the experimental phase.
Each row represents a specific set of data. The second column defines the number
of examples; the third column describes the number of features; the forth column
represents the number of targets.

the original output of a sample is grater than the mean value, then the new discrete
output value assigned to it is +1, otherwise, i.e., if the original value is less than the
mean value, we assign the value -1. We apply such process to any output leading to
a novel multi-output classification dataset. Moreover, as far as the “jura” dataset is
concerned, since its feature ranges are widely dissimilar, we decided to normalize the
corresponding data. Specifically, we applied a min-max normalization, re-scaling the
features in the range [0; 1] using the following general formula

new value =
old value−min value
max value−min value

.

Once done the data pre-processing, we designed a series of experiments to evaluate
the efficiency of our model. For the “jura” and “sf1” dataset, since they consist of three
outputs, we considered each possible combination of the three outputs, i.e., output
1 and output 2 (y1 & y2), output 1 and output 3 (y1 & y3), output 2 and output
3 (y2 & y3). In this way, we derived three dataset, each one made of two output
values, from the original one. The “enb” dataset has only two outputs, therefore no
modification were needed. Finally, “andro” dataset consists of six outputs. Here, we
decided to randomly choose two outputs and apply the proposed method to them.

Since we were somehow obliged by the circumstances to merely use “jura”, “enb”,
“andro”, “sf1” as real dataset, it could be an uncertainly to analyse our proposed model
based only on the results obtained using the dataset listed in Table 4.3. Moreover, we
cannot precisely determine whether or not the considered tasks are related to each
other. Therefore, it is not trivial to evaluate the obtained results and give an objective
assessment to the implemented model.

To somehow solve this issue and obtain a more complete picture, we decided to
perform further experiments with the goal of obtaining an in-depth understanding of the
proposed model. To do so, we searched for supplementary existing multi-task dataset,
in order to generate a more appropriate and complete study of our model. Specifically,
we decided to test our model using 40 synthetic dataset obtained from the multi-target
dataset presented by [Aguiar et al., 2019]. This synthetic dataset consists of a total of
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648 sets of data and was generated using the framework presented by [Mastelini et al.,
2018]. In particular, the creation of such synthetic dataset is made through the use
of an algorithm generating the input dataset as well as an initial uncorrelated set of
features y1, y2, y3. The input dataset is defined by the number of instances, features
and targets, together with the generating group, i.e., a random partition of the data
having the same input to output linear mapping characteristics. Starting from the
uncorrelated targets the final outputs are obtained using a combination of the initial
targets y1, y2, y3. Such combination may be identity, quadratic or cubic functions of
y1, y2, y3.

Table 4.5 presents a list of the used synthetic dataset, describing the number of
features, the number of targets, the generating group and the percentage of instances
affected by noise. Moreover, the last three columns show how the correlated targets
are generated, starting from the initial values y1, y2, y3.

To perform our model, we used a kernel matrix K given by

K =

(
KM×M KSE×M
KM×SE KSE×SE

)
,

where KSE×M = KM×SE , using Equations (4.29), (4.30) and (4.31). Therefore, when
auto-covariance functions are required, KM×M and KSE×SE are used, corresponding
to elements in the main diagonal. Otherwise, if cross-covariance terms are needed, the
elements in the secondary diagonal are used.

The program is coded in MatLab version R2017b and executed on a laptop. Ap-
pendix A contains the main parts of the code implemented by us and used to obtain
the achieved results. The dual constrained optimization Problem (4.39) is solved using
the MatLab fmincon function. The computational cost incurred for the proposed
method may be considered comparable with respect to other well known kernel methods.
After the optimal solution λ∗ has been calculated, classifier (4.40) is used for the final
classification.

The results for the initial four real open-source collection of data listed in Table
4.3 are shown in Table 4.4, with a list of the achieved values for accuracy, precision
and recall. We obtained the best results with the “enb” dataset, achieving an accuracy
value of 0.99, a precision of 0.95 and a recall of 0.97. On the contrary, when we tackled
the other real dataset, we obtained very different results, from a precision of 0.95 for
the “jura” dataset to an accuracy of 0.40 for the “sf1”. It is important to underline
that, “enb” dataset is the only one having two targets from the beginning and it is the
one with the biggest number of examples. In our opinion, that may explain the reason
why our proposed model works so well with respect to it.

Table 4.6 describes the obtained accuracy, precision and recall results for the
synthetic collection of data described in Table 4.5. It is easy to notice that, the
achieved results are not homogeneous but, on the contrary, tend to have various values
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Dataset Accuracy Precision Recall

jura
y1 & y2 0.60 1 0.60
y1 & y3 0.60 0.92 0.61
y2 & y3 0.60 0.95 0.61

enb 0.99 0.95 0.97
andro 0.70 0.64 1

sf1
y1 & y2 0.40 0.40 0.88
y1 & y3 0.63 0.60 0.94
y2 & y3 0.63 0.62 0.98

Table 4.4: Accuracy, precision and recall values of the set of data described in Table
4.3.

from case to case. Specifically, the accuracy varies from the lowest value of 0.40 for
“id 13” and “id 39” to the highest value of 0.850 for “id 4”; the precision value range is
between 0.10 for “id 24” and 0.980 for “id 5”; recall value goes from worst result of 0.40

of “id 39” and best result of 0.99 of “id 32”. Therefore, to get a general view on the
reasons of such diversity of the results, we decided to plot the dataset having the best
outcome values and the dataset with the worst corresponding results. Specifically, we
focused on dataset “500s15f3t1g0.01py1-y1+y2-y1+y3”, i.e., “id 4”, corresponding to one
of the best results, and on dataset “500s15f3t2g0.05py1y2y3”, i.e., “id 24”, that presents
one of the lowest values. It is evident that, in Figure 4.4(a) points are very much
correlated with each other, lying almost along a straight line. On the contrary, Figure
4.4(b) shows mostly uncorrelated or weakly correlated points, located randomly in the
plane. Our proposed model seems to obtain good results when dealing with highly
correlated inputs; when uncorrelated data are considered, the proposed multi-output
Support Vector Machine would appear not to perform well.

It is important to stress that, during the implementation phase of our method, we
struggled finding existing multi-task classification dataset. Precisely for this reason, we
were forced to use only four set of real data, i.e., “jura”, “enb”, “andro”, “sf1”, that do
not exactly fit the purposes we aimed to tackle, and 40 synthetic dataset. Therefore,
as we specified above, we had to carry on several pre-processing techniques in order
to be able to use such sets of data in our proposed model. Moreover, it should be
noted that, our main goal was to analyse the proposed method for inter correlated
multi-task dataset. Hence, it is fair to emphasize that, the aim of the implementation
phase was to demonstrate the feasibility of the method rather than obtain competitive
and ambitious results.
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Dataset Features Group Noise Target 1 Target 2 Target 3
id 1 15 2 10% y1 y1 + y2 y1 + y3

id 2 15 2 1% y1 y1 + y2 y1 + y3

id 3 30 2 1% y1 y2
1 + y2

2 y2
1 + y2

3

id 4 15 1 1% y1 y1 + y2 y1 + y3

id 5 15 1 10% y1 y2
1 y3

1

id 6 15 1 1% y1 y2
1 y3

1

id 7 15 1 10% y1 y2
1 + y2

2 y2
1 + y2

3

id 8 15 1 1% y1 y2
1 + y2

2 y2
1 + y2

3

id 9 15 1 10% y1 y2 y3

id 10 15 1 5% y1 y2 y3

id 11 15 1 5% y1 y1 + y2 y1 + y3

id 12 15 1 5% y1 y2
1 y3

1

id 13 15 1 5% y1 y2
1 + y2

2 y2
1 + y2

3

id 14 15 1 5% y1 y2 y3

id 15 15 2 1% y1 y2
1 y3

1

id 16 15 2 10% y1 y2
1 y3

1

id 17 15 2 1% y1 y2
1 + y2

2 y2
1 + y2

3

id 18 15 2 10% y1 y2
1 + y2

2 y2
1 + y2

3

id 19 15 2 1% y1 y2 y3

id 20 15 2 10% y1 y2 y3

id 21 15 2 5% y1 y1 + y2 y1 + y3

id 22 15 2 5% y1 y2
1 y3

1

id 23 15 2 5% y1 y2
1 + y2

2 y2
1 + y2

3

id 24 15 2 5% y1 y2 y3

id 25 30 1 1% y1 y1 + y2 y1 + y3

id 26 30 1 10% y1 y1 + y2 y1 + y3

id 27 30 1 1% y1 y2
1 y3

1

id 28 30 1 10% y1 y2
1 y3

1

id 29 30 1 1% y1 y2
1 + y2

2 y2
1 + y2

3

id 30 30 1 10% y1 y2
1 + y2

2 y2
1 + y2

3

id 31 30 1 1% y1 y2 y3

id 32 30 1 10% y1 y2 y3

id 33 30 1 5% y1 y1 + y2 y1 + y3

id 34 30 1 5% y1 y2
1 y3

1

id 35 30 1 5% y1 y2
1 + y2

2 y2
1 + y2

3

id 36 30 1 5% y1 y2 y3

id 37 30 2 1% y1 y1 + y2 y1 + y3

id 38 30 2 10% y1 y1 + y2 y1 + y3

id 39 30 2 1% y1 y2
1 y3

1

id 40 30 2 1% y1 y2
1 + y2

2 y2
1 + y2

3

Table 4.5: A general overview of the proposed synthetic dataset consisting of 40
cases, each one containing 500 examples. Each row represents a specific set of data.
The second column defines the number of features; the third column represents the
generating group; the forth column provides the percentage of instances effected by
noise; the last three columns describe how the given targets are built. Every considered
dataset is defined by three target values.
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(a) Plot of the dataset
500s15f3t1g0.01py1-y1+y2-y1+y3

(b) Plot of the dataset 500s15f3t2g0.05py1y2y3

Figure 4.4: Figure (a) plots dataset “500s15f3t1g0.01py1-y1+y2-y1+y3”, i.e., “id
4”, corresponding to one of the best obtained results. Figure (b) plots dataset
“500s15f3t2g0.05py1y2y3”, i.e., “id 24”, corresponding to one of the worst obtained
results. As is evident, in (a) a very strong correlation between points is present; on
the contrary, (b) shows points scattered in the plan, leading to strongly uncorrelated
inputs.



Conclusions

This thesis work had the primary objective to tackle and report the theory behind
kernel learning, particularly in relation to supervised learning algorithms.

To this end, we started defining what is meant by the term Machine Learning and
how it developed in the course of time, while paying strong attention to the pivotal
events which are still a key feature of such research field. After that, basic properties
and learning rules at the basis of the three main Machine Learning types of learning are
considered, with a specific focus on the motivation and background concepts at their
base. Subsequently, particular attention is given to the common thread of this work:
kernel methods. Kernel methods define a set of Machine Learning techniques all having
in common the use of positive definite kernel functions. In this way, initially defined
linear models may be employed in tackling non-linearly separable dataset, making
use of a Reproducing Kernel Hilbert Space, consequently without forsaking the many
advantages linked to the use of linear estimators, both from analytic and computational
points of view. Since, by definition, kernel methods are opposed to linear models, a
good portion of this thesis work was dedicated to outline both these Machine Learning
key categories, paying special attention to their respective most popular and known
algorithms. Moreover, we defined the theory behind two extensions of classical kernel
based methods: Multiple Kernel Learning and Infinite Kernel Learning. Specifically,
we started from the hypothesis of each of the two approaches and, later, we proposed
two practical examples in the context of Support Vector Machines, respectively in the
case of using a finite set of predefined base kernel functions and possibly infinitely
many kernels. Finally, this thesis concluded with a thorough description of two novel
results, both based on the idea of employing more than one kernel function to improve
the model obtained.

Chapter 1 has set the stage for everything that follows. We started describing a
timeline of the most important Machine Learning related events, both from a theoretical
and a more practical point of view. After that, we described the three classical Machine
Learning methods, i.e., supervised learning, unsupervised learning and reinforcement
learning, analyzing the different learning strategies each corresponding method must
follow. In addiction, an in-depth analysis of kernel methods is given: starting from
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the notion of Hilbert space, the formal definition of positive definite kernel is given,
together with its basic properties and a substantial number of well-known and used
examples. After that, the Moore-Aronszajn Theorem is presented, showing that each
positive definite kernel function is uniquely connected to a Reproducing Kernel Hilbert
Space. Finally, the Mercer’s theorem is introduced, showing an alternative way to
describe feature maps, based on the notion of integral operator of a kernel function.

In Chapter 2 linear learning algorithms are tackled. As in the previous chapter, a
division between the three main Machine Learning categories was made. Specifically,
first linear classification methods were described: starting from the notion of separating
hyperplane, a description of the most popular and longer used linear classification
algorithms was given. In particular, Perceptron, Support Vector Machine and Logistic
Regression algorithms were tackled, describing their learning rule. After that, classical
Linear Regression method was considered and the least mean square method was used
to obtain the best regression parameters. Finally, the Linear Discriminant Analysis
method was considered in the context of linear unsupervised learning, underlying the
similarities and differences existing between such method and Support Vector Machine
algorithm.

Chapter 3 outlined various kernel learning methods together with their compu-
tational techniques. As regard to supervised learning algorithms, Support Vector
Machines and Gaussian Processes were considered, describing the corresponding kernel
based problems thoroughly. Moreover, the kernel Principal Component Analysis al-
gorithm was considered, extending the well-known unsupervised technique to kernel
learning. After that, ample space was given to the problem of considering more than
one kernel function. Specifically, Multiple Kernel Learning was described, dwelling on
a Multiple Kernel Support Vector Machine formulation. Then, Infinite Kernel Learning
algorithm was considered, still giving a detailed description of the corresponding Infinite
Kernel Support Vector Machine.

Finally, Chapter 4 presented two of the most significant obtained results. First, a
novel method called “Infinite Kernel Extreme Learning Machine” was described. The
concept behind it was to merge together a pre-existing supervised learning algorithm,
called Extreme Learning Machine, together with the idea of using a combination
of possibly infinitely many kernel function. Specifically, after a description of the
original method was given, an overview on the original paper that inspired us on the
implementation of the proposed method was proposed. Finally, the proposed model was
tackled, leading to an original two-step algorithm. The method was tested on 20 dataset
and the achieved outcomes were outlined in a table, describing the obtained accuracy,
precision and recall values with respect to both the training and the test set. Then, the
second result called “Multi-Kernel Covariance Terms in Multi-Output Support Vector
Machines” was proposed. Here, the basic idea was to use an existing multi-task kernel
structure implemented for Gaussian Processes in a novel multi-task Support Vector
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Machine framework. Again, first special attention was given to a description of the
paper that inspired us. After that, the proposed result was described, with particular
care on the necessary calculations leading to the obtained novel framework. Lastly, our
proposed model was tested on four real open-source dataset and on 20 synthetic dataset.
The obtained results were described, analysing the achieved accuracy, precision and
recall values, stressing out the strengths as well as the limitations of our proposed
method.
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Appendix A

MatLab codes

Infinite Kernel ELM

Infinite Kernel Learning algorithm

function [Ks, beta, mu, alpha, theta, lambda] = IKELMmain(X, y, C, opts)
%
% Infinite Kernel Learning algorithm
%
% Usage:
%
% [Ks, beta, mu, alpha, lambda] = IKELMmain(X, y, C, opts)
%
% Input:
%
% X trainig set
% y training labels (vector of dimension L)
% subproblem_func function handle for the subproblem
% C regularing constant
%
% Optional Input:
%
% opts − struct with the following possible fields (with
% default values)
% .maxiter (100) − Maximum number of iterations. One
% iteration is the evaluation of the subproblem and
% the masterproblem
% .maxiter_ipopt (100) − Maximum number of iterations of
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132 APPENDIX A. MATLAB CODES

% IPopt to solve the master problem
% .mkl_eps (1e−4) − Precision for the MKL objective
% .svm_eps (1e−8) − Precision of the SVM solver
% .decay_eps (1e−5) − Weights below this value are
% pruned away
% .objective_eps (1e−5) − Convergence threshold. If
% the relative decrease of the objective value is
% below this threshold, the program is stopped
%
% Output:
%
% Ks the set of kernels
% beta coefficients for the kernels . The final kernels
% is a linear combination of the kernels in Ks with
% coefficients beta
% alpha, lambda optimal alpha dual variables for the subproblem
%
% Compute distances in each dimension separately
%
D = zeros(size(X,1),size(X,1),size(X,2));
for k = 1:size(X,2)

D (:,:, k) = dist_euclid(X(:,k),X(:,k)) ;
end
%
% Calculate an initial starting point
%
Ks = [ ];
[Ks, mu] = Kernel_Init(X, D, opts);
%
% Set initial values for beta
%
beta = ones(length(mu)+3,1)/(length(mu)+3);
%
% Determine best kernels and their best combination
%
[Ks, beta, mu, alpha, theta, lambda] = Inf_Kernel_Problem(X, y, K, beta,

mu, D, C, opts);
end
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Initial Kernels

function [K, mu] = Kernel_Init(X, D, opts)
%
% Construct initial kernels
% There are 3 polynomial kernels and Gaussian kernels with parameters mu
%
K = [ ];
K (:,:,1) = X∗X’;
K (:,:,2) = (X∗X’).^2;
K (:,:,3) = (X∗X’).^3;
non_exp = 3;
scales = linspace(opts.range_mu(1),opts.range_mu(2)/10,opts.exp_kern);
nFact = size(D,3);
for k = 1:opts.exp_kern

K (:,:, non_exp+k) = exp(−scales(k)∗sum(D,3)/nFact);
end
mu = scales’;
end

Infinite Kernel problem

function [Ks, beta, mu_values, alpha, theta, lambda] = Inf_Kernel_Problem(X,
y, Ks, beta_init, mu_values, D, C, opts)
%
% Infinite Kernel problem solver
%
exit = −1;
outer_iter = 0;

while exit < 0
fprintf(’ beta = ’);
disp(beta_init’);
fprintf(’ mu = ’);
disp(mu_values’);

%
% Increase outer iterations count
%
outer_iter = outer_iter + 1;
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%
% Determine best values for beta multipliers
%
[beta, alpha, theta, lambda] = Best_Convex_Combination(X, y, Ks,

beta_init, C, opts);

%
% Set up the auxiliary data
%
options.auxdata = {alpha, D};

%
% Define functions
%
funcs. objective = @outer_prob_objective;
funcs.gradient = @outer_prob_gradient;
funcs.hessian = @outer_prob_Hessian;
funcs. hessianstructure = @outer_prob_Hessian_struct;
funcs. constraints = @outer_prob_constraints;
funcs.jacobian = @outer_prob_jacobian;
funcs. jacobianstructure = @outer_prob_jac_struct;

%
% Set options
%
options. lb = opts.range_mu(1);
options.ub = opts.range_mu(2);
options.ipopt.mu_strategy = ’adaptive’;
options.ipopt.print_level = 0;
options.ipopt. tol = opts.outer_tol;
options.ipopt.max_iter = opts.outer_max_iter;
options.ipopt.derivative_test = ’second−order’;

%
% Call ipopt
%
mu_init = mu_values(length(mu_values));
f_init = −outer_prob_objective(mu_init, options.auxdata);
[mu,info] = ipopt_auxdata(mu_init, funcs, options);
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f_final = −outer_prob_objective(mu, options.auxdata);
fprintf(’ ∗∗∗ outer problem initial value = %g \t final value = %g %g\n’,

f_init, f_final , f_final−lambda);
fprintf(’ new value of mu = %f \n’, mu);

%
% Check outer loop convergence or add new Kernels
%
if outer_iter > opts.outer_max_iter

exit = 1;
end
if f_final − lambda < opts.outer_tol

fprintf(" Outer loop convergence %g \n", f_final − lambda);
exit = 0;

end

if exit < 0
%
% Calculate new Ks
%
F = size(beta,1);
nFact = size(D, 3);
Ks (:,:, F+1) = exp(−mu∗sum(D, 3)/nFact);
mu_values = [mu_values;mu];
beta_init = beta;
beta_init(F+1) = 0;

end
end
fprintf(’ beta = ’);
disp(beta’);
fprintf(’ mu = ’);
disp(mu_values’);

end

function f = outer_prob_objective(mu, auxdata)
%
% Objective function for outer problem
%
[alpha,D] = deal(auxdata{:});
f = outer_function(mu, alpha, D);
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end

function df = outer_prob_gradient(mu, auxdata)
%
% Gradient function for outer problem
%
[alpha,D] = deal(auxdata{:});
[ foo, df ] = outer_function(mu, alpha, D);

end

function H = outer_prob_Hessian(mu, sigma, lambda, auxdata)
%
% Hessian function for outer problem
%
[alpha,D] = deal(auxdata{:});
[ foo, dfoo, H] = outer_function(mu, alpha, D);
H = sparse(H);

end

function H = outer_prob_Hessian_struct(auxdata)
%
% Hessian structure for outer problem
%
H = sparse(1);

end

function [f, df , H] = outer_function(mu, alpha, D)
%
% Calculate outer objective function, gradient and Hessian
%
% Calculate objective function
%
nFact = size(D, 3);
K1 = exp(−mu∗sum(D, 3)/nFact);
f = −0.5∗alpha’∗K1∗alpha;
if nargout > 1

%
% Calculate gradient with respect to mu
%
K2 = exp(−mu∗sum(D, 3)/nFact).∗(−sum(D, 3)/nFact);
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df = −0.5∗alpha’∗K2∗alpha;
if nargout > 2

%
% Calculate Hessian
%
K3 = exp(−mu∗sum(D, 3)/nFact).∗(sum(D, 3)/nFact).^2;
H = −0.5∗alpha’∗K3∗alpha;

end
end

end

Multi-Kernel Covariance Terms in Multi-Output SVM

Kernel matrix function

function [K] = KernelMatrix(X)
%
% Compute the Kernel matrices according to Melkumyan, Ramos Multi−Kernel

Gaussian Processes
%
% Input values:
% X the training set
%
% Output Value:
% K the tensor of kernels
% K (.,., p,k) gives the element in position (p,k) of the kernel matrix K

%
% Compute norm(x^i, x^j), i, j = 1, .. l
%
l = size(X,1);
for i=1:l

D(i, i ) = 0.0;
for j=i+1:l

D(i, j) = norm(X(i,:)−X(j,:));
D(j, i ) = D(i, j) ;

end
end
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K = [ ];

for i=1:2
for j=1:2

%
% Compute Kernel Squared Exponential − Squared Exponential
% formula (21) in Melkumyan, Ramos Multi−Kernel Gaussian Processes
%
if i==1 && j==1

l1 = 2;
l2 = 2;
den = l1∗l1+l2∗l2;
factor = sqrt((2∗l1∗l2)/den);
K (:,:, i , j)=zeros(size(D));
K (:,:, i , j)= factor∗exp(−D.^2/den);

end
%
% Compute Kernel Matern − Matern
% formula (15) in Melkumyan, Ramos Multi−Kernel Gaussian Processes
%
if i==2 && j==2

l1=1.1;
l2=2;
sigma=2∗sqrt(l1∗l2)/(l1^2−l2^2);
factor1=−sqrt(3)∗D/l1;
factor2=−sqrt(3)∗D/l2;
K (:,:, i , j)=sigma∗(l1∗exp(factor1)−l2∗exp(factor2));

end
%
% Compute Kernel Squared Exponential − Matern
% formula (14) in Melkumyan, Ramos Multi−Kernel Gaussian Processes
%
if i~=j

lm = 1.1;
lse = 1.5;
lambda = sqrt(3)∗lse/(2∗lm);
factor = sqrt(lambda)∗(pi/2)^(1/4)∗exp(lambda∗lambda);
K (:,:, i , j) = factor∗(2∗cosh(sqrt(3)∗D/lm) − exp(sqrt(3)∗D/lm).∗

erf(lambda+D/lse) ...
− exp(−sqrt(3)∗D/lm).∗erf(lambda−D/lse));
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end
end

end
end

Constraint Matrix function

function [Aeq] = ConstraintMatrix(Y)
%
% Compute the Linear Constraint matrix
%
% Input values:
% Y training labels
%
% Output Value:
% Aeq Linear Constraint matrix
%

m = size(Y,2);
N= size(Y,1);
Aeq= [ ];
d=zeros(1,N);
for i=1:m

if i==1
Aeq(i ,:)=[Y(:,i) ’ zeros(1,m∗N−N)];

elseif i==m
Aeq(i ,:)=[zeros(1,m∗N−N) Y(:,i)’];

else
Aeq(i ,:)=[repmat(d,1,i−1) Y(:,i)’ repmat(d,1,N∗m−i∗N)];

end
end
end

Objective function

function [f, gradf]= objectiveFunction(theta, K, Y)
%
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% Compute the objective function according to notes
%
% Input Values:
% theta is a column vector given by all the rows of lambda, lambda(i,k)==

theta((k−1)∗N+i)
% K kernel matrix
% Y training labels
%
% Output Values:
% f Lagrangian function to be optimized
% gradf Gradient of f
%

%N number of data equal to the number of rows (= columns) of K
N=size(K,1);

%m number of outputs, theta is a column vector of N∗m components
m=size(theta,1)/N;

s=0;
t=0;

for k=1:m
for p=1:m

for i=1:N
for j=1:N
%case for k=p => auto covarinace terms
%s=s+(lambda(i,k)∗lambda(j,k)∗Y(i,k)∗Y(j,k))∗K(i,j,1);
s=s+(theta((k−1)∗N+i)∗theta((k−1)∗N+j)∗Y(i,k)∗Y(j,k))∗K(i,j,p,p);
end

end
end

end

for k=1:m
for p=1:m

for i=1:N
for j=1:N

%case where k=p => cross covariance terms
%t=t+(lambda(i,p)∗lambda(j,k)∗Y(i,p)∗Y(j,k))∗K(i,j,2);
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t=t+(theta((p−1)∗N+i)∗theta((k−1)∗N+j)∗Y(i,p)∗Y(j,k))∗K(i,j,k,
p);

end
end

end
end

v=sum(theta);
%
%Negative of the Lagrangian function to be minimized
%
f=1/4∗(s+t)−v;
%
%Gradient of the objective function
%
if nargout>1

gradf= zeros(N,m);
for i=1:N

for k=1:m
factor1=0;
factor2=0;
factor4=0;
factor5=0;
%lambda(i,k)==theta((k−1)∗N+i)
for j=setdiff (1:N,i)

for p=1:m
factor1=factor1+theta((k−1)∗N+j)∗Y(i,k)∗Y(j,k)∗K(i,j,p,p);
end

end
for j=1:N

for p=setdiff(1:m,k)
factor2=factor2+theta((p−1)∗N+j)∗Y(j,p)∗Y(i,k)∗K(j,i,k,p);
end

end
factor3=theta((k−1)∗N+i)∗(Y(i,k)^2)∗K(i,i,k,k);
for p=1:m

factor4=factor4+theta((k−1)∗N+i)∗(Y(i,k)^2)∗K(i,i,p,p);
end
for j=setdiff (1:N,i)

factor5=factor5+theta((k−1)∗N+j)∗Y(j,k)∗Y(i,k)∗K(j,i,k,k);
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end
gradf( i ,k)=1/2∗factor1+1/2∗factor2+1/2∗factor3+1/2∗factor4+1/2∗

factor5−1;
end

end
gradf=gradf(:);

end
end



Appendix B

Semi-infinite programming
reduction to finite problems

Let us consider the problem of solving the general optimization problem given by
the following formulation

max
x∈X

f(x)

s.t. g(x, y) ≤ 0, ∀y ∈ Y,
(B.1)

with X ⊂ Rn and Y ⊂ Rm. Hence, f : Rn −→ R is the function to be optimized
subject to a system of constraint expressed by function g : Rn × Rm −→ R. Problem
(B.1) takes the name of semi-infinite programming (SIP) deriving it from the fact that
X indicates a finite number of variables x = (x1, . . . , xn)T ∈ X, while set Y is an
infinite set, corresponding to an infinite number of constraints.

Let
F = {x | g(x, y) ≤ 0, y ∈ Y }

denote the feasible set of Problem (B.1). Let Ȳ ⊂ Y be a subset of finite dimension
of the set Y , i.e., |Ȳ | < ∞, and let us consider the following problem achieved by
replacing feasible set F with

F̄ = {x | g(x, y) ≤ 0, y ∈ Ȳ }

in (B.1)

max
x∈X

f(x)

s.t. x ∈ F̄ .
(B.2)

Namely, we wish to approximate the semi-infinite programming problem described in
(B.1) by imposing only finitely many constraints. As a direct consequence, we wish to
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understand whether or not Problems (B.1) and (B.2) are comparable with each other,
specifically if they share the same optimum solution.

As described in [Hettich and Kortanek, 1993], this is not always the case, and,
therefore, Problem (B.1) may not generally be approximated by its finite formulation
given in (B.2). The following result holds.

Theorem 12. Consider the problem

max
x∈X

f(x)

s.t. g(x, y) ≤ 0, ∀y ∈ Y,
(B.3)

with X ⊂ Rn and Y ⊂ Rm. For convenience let us indicate

v(P ) = max{f(x), such that x ∈ Y P } with

Y P = {x, such that g(x, y) < 0, y ∈ Y } ⊂ Rn.

Assume the following conditions are satisfied:

1. Y is a compact set;

2. The objective function f : x 7→ f(x) is concave;

3. Constraint function g : (x, y) 7→ g(x, y) is convex with respect to x (f and g(·, y)

are finite over Rn);

4. Optimum solution f∗ of Problem (B.3) is finite;

5. For every set of n + 1 elements y0, y1, . . . , yn ∈ Y there exists a vector x̃ ∈ X
such that g(x̃, yi) < 0, for every i = 0, . . . , n.

Then, a set Tn = {y1, . . . , yn} ⊂ Y exists, such that the two following conditions are
true.

(a) v(P ) = v(P (Tn));

(b) Multipliers µi ≥ 0, i = 1, . . . , n, exist such that the following condition holds

v(P ) = sup

{
f(x)−

n∑
i=1

µig(x, yi), x ∈ Rn
}

;

where P (Tn) defines the approximate problem given by

v(P (Tn)) = max{f(x), such that x ∈ P (Tn)} with

P (Tn) = {x, such that g(x, y) < 0, y ∈ Tn} ⊂ Rn.
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Duality

Consider the following nonlinear minimization problem

min
x∈Rn

f(x)

s.t. g(x) ≤ 0,

h(x) = 0,

(C.1)

with f : Rn −→ R, g : Rn −→ Rm and h : Rn −→ Rp.
The Lagrangian associated with Problem (C.1) is a function L : Rn×Rm×Rp −→ R

defined as
L(x, λ, µ) = f(x) + λTg(x) + µTh(x), (C.2)

with vectors λ and µ called Lagrangian multipliers. The dual function is given by

θ(λ, µ) = min
x∈Rn

L(x, λ, µ),

and the corresponding dual problem is defined as

max
λ,µ

θ(λ, µ)

s.t. λ ≥ 0.
(C.3)

Theorem 13. Weak Duality
Let us consider the pair of problems described in (C.1) and (C.3). Let x̄ be a feasible
solution for the primal minimization Problem (C.1) and λ̄, µ̄ be a feasible solution for
the dual maximization Problem (C.3). Then

θ(λ̄, µ̄) ≤ f(x̄).

Proof. We have that

θ(λ̄, µ̄) = min
x∈Rn

{
f(x) + λ̄Tg(x) + µ̄Th(x)

}
≤ f(x̄) + λ̄Tg(x̄) + µ̄Th(x̄)

≤ f(x̄),
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where the equality follows from the definition of the Lagrangian dual function and
the second inequality is a direct consequence of the feasibility of point x̄.

Therefore, from the Weak Duality Theorem, the objective value at any feasible
solution to the dual Problem (C.3) is a lower bound for the objective value at any
feasible solution to the primal Problem (C.1).

Now, let us define
p∗ = min

x
f(x)

and
d∗ = max

λ,µ
θ(λ, µ).

We call duality gap the non-negative number given by p∗ − d∗.

Definition C.0.1. Slater’s condition
Given the convex problem

min
x

f(x)

s.t. g(x) ≤ 0,

h(x) = 0,

(C.4)

with f : Rn −→ R convex and continuously differentiable, g : Rn −→ Rm convex
and continuously differentiable and h : Rn −→ Rp linear functions. Problem (C.4)
satisfies Slater’s condition if there exists a strictly feasible point, namely if the following
condition is verified.

∃ x̂ ∈ D : g(x̂) < 0, h(x̂) = 0,

where D is the domain of the problem, i.e., the intersection of the domains of all the
functions involved.

We have than that the following result holds.

Theorem 14. Strong Duality
Let us consider the convex primal problem defined in (C.4). If it satisfies the Slater’s
condition, i.e., if there exists an x̂ such that x̂ is strictly feasible, then the duality gap
is zero, namely

p∗ = d∗.

Again, let us consider the convex minimization problem (C.4). The corresponding
Karush-Kuhn-Tucker (KKT) conditions are

1. ∇f(x) +
∑m
i=1 λi∇gi(x) +

∑p
j=1 µj∇hj(x) = 0 (stationarity condition);

2. gi(x) ≤ 0, for all i = 1, . . . ,m and hj(x) = 0, for every j = 1, . . . , p (primal
feasibility condition);
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3. λi ≥ 0, for all i = 1, . . . ,m (dual feasibility condition);

4.
∑m
i=1 λigi(x) = 0 (complementary slackness condition).

Theorem 15. Let us consider the convex Problem (C.4) and assume that the strong
duality condition holds, i.e., the duality gap is zero. Then x∗, λ∗ and µ∗ are respectively
primal and dual solutions if and only if x∗, λ∗ and µ∗ satisfy the Karush-Kuhn-Tucker
conditions.

Proof. (⇒) Let x∗, λ∗ and µ∗ be respectively primal and dual solutions of Problems
(C.4) and (C.3) with duality gap equal to zero. Clearly primal and dual feasibility
conditions hold. Moreover, we have

f(x∗) = θ(λ∗, µ∗)

= min
x

{
f(x) +

m∑
i=1

λ∗i gi(x) +

p∑
j=1

µ∗jhj(x)

}

≤ f(x∗) +

m∑
i=1

λ∗i gi(x
∗) +

p∑
j=1

µ∗jhj(x
∗)

≤ f(x∗).

(C.5)

Hence, all the inequalities stated in Equation (C.5) are actually equalities. Therefore,
the following conditions are verified.

· Point x∗ minimizes Lagrangian function L(x, λ∗, µ∗), which leads to

∇f(x∗) +

m∑
i=1

λ∗i∇gi(x∗) +

p∑
j=1

µ∗j∇hj(x∗) = 0;

·
∑m
i=1 λ

∗
i gi(x

∗) = 0, namely

λ∗i gi(x
∗) = 0, ∀i = 1, . . . ,m.

Hence, x∗, λ∗ and µ∗ satisfy the Karush-Kuhn-Tucker conditions.
(⇐) Let us suppose that there exist x∗, λ∗ and µ∗ satisfying the Karush-Kuhn-Tucker
conditions. Then, we have

θ(λ∗, µ∗) = f(x∗) +

m∑
i=1

λ∗i gi(x
∗) +

p∑
j=1

µ∗jhj(x
∗)

= f(x∗),

where the first equality is a consequence of stationary condition, since function f(x) +∑m
i=1 λ

∗
i gi(x) +

∑p
j=1 µ

∗
jhj(x) is convex so any stationary point corresponds to a

minimum point. The second equality comes from complementary slackness condition.
Hence x∗, λ∗ and µ∗ are respectively primal and dual solutions.
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Again, let us consider the convex Problem (C.4) and the corresponding Lagrangian
function

L(x, λ, µ) = f(x) + λTg(x) + µTh(x).

Then, the Wolfe dual problem corresponding to (C.4) is given by

max
x,λ,µ

L(x, λ, µ)

s.t. ∇xL(x, λ, µ) = 0,

λ ≥ 0.

(C.6)

Proposition 16. Let x∗ be a global solution for primal Problem (C.4) with corre-
sponding Lagrangian multipliers equal to λ∗ and µ∗. Then x∗, λ∗ and µ∗ are a global
solution for Problem (C.6) and the duality gap is zero.

Proof. By Theorem 15, point (x∗, λ∗, µ∗) satisfies the Karush-Kuhn-Tucker condition.
As a direct consequence, (x∗, λ∗, µ∗) is a feasible point for Problem (C.6). Moreover,

L(x∗, λ∗, µ∗) = f(x∗) + (λ∗)Tg(x∗) + (µ∗)Th(x∗)

= f(x∗),

since g(x∗)T(λ∗) = 0 by complementary slackness condition and h(x∗) = 0 by feasibility
condition. Therefore, the duality gap is zero. Moreover, let us consider generic λ ≥ 0

and µ ∈ Rp. As a consequence of the feasibility of the point x∗, we have that

L(x∗, λ∗, µ∗) = f(x∗) ≥ f(x∗) + λTg(x∗) + µTh(x∗)

= L(x∗, λ, µ).
(C.7)

Since f and g are convex, h is linear by assumption and λ is non-negative, L(·, λ, µ) is
convex in x and, for any feasible choice of (x, λ, µ) we have

L(x∗, λ, µ) ≥ L(x, λ, µ) +∇xL(x, λ, µ)T(x∗ − x)

= L(x, λ, µ),
(C.8)

where the equality comes from the first constraint of Problem (C.6). By combining
Equations (C.7) and (C.8), we obtain

L(x∗, λ∗, µ∗) ≥ L(x, λ, µ),

for every feasible choice of (x, λ, µ) for Problem (C.6). Therefore, (x∗, λ∗, µ∗) is a
global solution of Problem (C.6).
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