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Abstract

Process algebras and agent-based models have proven to be effective methods for studying biologi-
cal systems. Our research employs such techniques to investigate the behaviours that characterise
biological macromolecules and reveal the global properties of biochemical processes resulting from
local molecular interactions. This dissertation consists of two parts. In the first one, we use formal
methods, such as the Calculus of Communicating Systems, to demonstrate the existence of a con-
gruence level at which the folding of RNA molecules is behaviourally equivalent to that of proteins.
This finding allows us to hypothesise the role that RNA functional complexity played during the evo-
lutionary process that led proteins to emerge as the primary catalysts in modern cells. We also rely
on such a representation to model how an error in the genetic code–i.e., a mutation–can propagate
through each step of the synthesis of a new protein, ultimately affecting its folded conformation. We
formally prove that the different complexity of RNA and protein folding results in significantly dis-
similar impacts that a single nucleotide mutation can have on the structures of proteins compared
to those of RNAs. In the second part of this manuscript, we describe an agent-based approach that
we specially designed to investigate the global behaviour of long-distance electrodynamic interac-
tions among biomolecules. Agents are software entities that can perceive their environment and
operate on it autonomously. Using agent-oriented programming, we created a software replica of
glycolysis–the metabolic process that provides energy to cells through glucose oxidation. The abil-
ity of agents to reproduce molecular behaviours makes it possible to study biochemical processes
in a virtual environment and interpret them as the result of underlying molecular interactions. Fur-
thermore, the generated agent interaction matrix can be filtered using topological data analysis,
allowing us to investigate the role of 2-simplex formation in biochemical reactions. Our goal is
to understand how specific types of molecular interactions influence glycolysis effectiveness, par-
ticularly in cancer cells. The two parts that make up our work represent the main phases of the
engineering life cycle for the simulation of enzyme behaviour; they are intended as the preliminary
steps in the development of a computational framework able to contribute to cancer studies per-
formed on experimental data. This research sheds new light on how biomolecules interact and lays
the groundwork for in silico personalised and precision medicine.
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Résumé

Les algèbres de processus et les modèles à base d’agents se sont révélés être des méthodes efficaces
pour étudier les systèmes biologiques. Notre recherche utilise de telles techniques pour étudier les
comportements qui caractérisent les macromolécules biologiques et révéler les propriétés globales
des processus biochimiques résultant des interactions moléculaires locales. Cette thèse se compose
de deux parties. Dans la première, nous utilisons des méthodes formelles, telles que le calcul des
systèmes communicants, pour prouver l’existence d’un niveau de congruence auquel le repliement
de l’ARN est comportementalement équivalent à celui des protéines. Cette découverte nous permet
d’émettre l’hypothèse du rôle que la complexité fonctionnelle de l’ARN a joué au cours du proces-
sus évolutif qui a conduit les protéines à émerger en tant que catalyseurs primaires dans les cel-
lules modernes. Nous nous appuyons également sur une telle représentation pour modéliser com-
ment une erreur dans le code génétique – c’est-à-dire une mutation – peut se propager à chaque
étape de la synthèse d’une nouvelle protéine, affectant finalement sa conformation repliée. Nous
démontrons formellement que la complexité différente du repliement de l’ARN et des protéines
entraîne un impact significativement différent qu’une seule mutation de nucléotide peut avoir sur
les structures des protéines par rapport à celles des ARN. Dans la seconde partie de ce manuscrit,
nous décrivons une approche à base d’agents que nous avons spécialement conçue pour étudier le
comportement global des interactions électrodynamiques à longue distance entre les biomolécules.
Les agents sont des entités logicielles capables de percevoir leur environnement et d’y opérer de
manière autonome. À l’aide d’une programmation orientée agent, nous avons créé une réplique
logicielle de la glycolyse – le processus métabolique qui fournit de l’énergie aux cellules par l’oxy-
dation du glucose. La capacité des agents à reproduire des comportements moléculaires permet
d’étudier des processus biochimiques dans un environnement virtuel et de les interpréter comme le
résultat d’interactions moléculaires sous-jacentes. De plus, la matrice d’interaction d’agent générée
peut être filtrée à l’aide de l’analyse topologique de données, ce qui nous permet d’étudier le rôle
de la formation de 2-simplexes dans les réactions biochimiques. Notre objectif est de comprendre
comment des types spécifiques d’interactions moléculaires influencent l’efficacité de la glycolyse,
en particulier dans les cellules cancéreuses. Les deux parties qui composent notre travail représen-
tent les principales phases du cycle de vie de l’ingénierie pour la simulation du comportement en-
zymatique ; elles sont conçues comme les étapes préliminaires du développement d’un cadre infor-
matique capable de contribuer aux études sur le cancer réalisées sur des données expérimentales.
Cette recherche apporte un nouvel éclairage sur l’interaction des biomolécules et jette les bases
d’une médecine in silico personnalisée et de précision.
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Introduction

Our understanding of biological systems is often hampered by the complexity of the underlying
molecular interactions, which blurs the relationships that link basic phenomena to a process
as a whole when investigated from a top-down perspective. To use Aristotle’s words, “in the
case of all things which have several parts and in which the totality is not, as it were, a mere
heap, but the whole is something besides the parts, there is a cause” [7]. If we take a reductionist
approach, this cause may remain hidden. We can undoubtedly acquire relevant knowledge about
each considered structure by recursively decomposing a complex biological system down to its
primary elements. However, the behaviour of the entire system is understandable only if we are
able to grasp its global properties [4, 53]. According to this view, sophisticated biological functions
originate from simple local rules that govern how the system’s basic components interact.

This dissertation builds on such premises to examine the behaviours that characterise bio-
logical macromolecules, ranging from the steps that lead some of them to a three-dimensional
conformation to the way they interact with one another. We use algebraic modelling to provide a
formal definition of the local interactions carried out by nucleotides in an RNA molecule and
amino acids in a protein’s polypeptide chain; identifying their collective properties in the ex-
pression of a fully functional macromolecule reveals congruences and dissimilarities, which, in
some cases, can be associated with genetic pathologies. We also analyse the global behaviour of
long-distance electrodynamic interactions in metabolic pathways through a specifically designed
agent-based approach. Experimental evidence proves that random encounters and short-range
potentials might not be sufficient to explain the high efficiency of biochemical reactions in living
cells [45, 81, 95]. However, while the latest in vitro studies are limited by present-day technology,
agent-based simulations provide an in silico support to the outcomes hitherto obtained and
elucidate behaviours not yet well understood. The core idea of our work is to show how algebraic
and agent-based methods are well suited to uncover complex phenomena in biological systems
and shed new light on the interpretation of genetic diseases.

The following sections provide a brief overview and contextualisation of the topics covered
in the remainder of this dissertation, which is divided into two main parts: the first focuses on
the algebraic models of RNAs and proteins, while the second describes our agent-based study
on biomolecular interactions. Although these two approaches can be related to each other (as
shown in Chapter 4), we separate them to help the reader distinguish the work conducted mainly
within the context of the University of Camerino (Part I) from the results of the collaboration
with the Aix-Marseilles University (Part II).
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2 INTRODUCTION

Algebraic Modelling of RNA and Proteins

The relationship between structure and function is a relevant topic in biology, whose investi-
gation received a significant contribution from different computational approaches [13, 27, 69,
73, 89]. In particular, formal languages and graph grammars have been successfully applied
in modelling the properties that correlate the functions expressible by RNA molecules and the
specific substructures involved in their folding [68, 96]. The latter plays a fundamental role in
this analysis because it allows a linear biopolymer to reach a three-dimensional conformation
(by forming hydrogen bonds between nonconsecutive monomers).

In this manuscript, we push that idea further and prove that the complexity of RNA functions
can be traced back to the inner potentiality of each nucleotide to interact with others in the
same sequence. This result is obtained by comparing the folding of RNA with that performed
by proteins to identify an abstraction level at which these two classes of molecules show the
same structural and functional complexity. We refer to this level as the congruence level; its
characterisation is possible due to the expressiveness of process algebras [1], through which we
model the folding of both RNA and proteins.

During the second half of the last century, the investigation of the reasons for the existence
of such similar molecules led to the formulation of the RNA world hypothesis: RNA might be
a “fossil” of an RNA world that existed on Earth before modern cells appeared, in which RNA
fulfilled the roles of both DNA and proteins [44]. This theory is still highly debated, as, beyond
their similarities, proteins and RNAs show profound structural differences that affect how they
perform their functions [93]. In the first part of this dissertation, we formally compare the folding
process of proteins with that of RNAs. We focus our study on the interactions carried out by the
elementary units that make up RNAs and proteins, describing the whole folding as the resulting
behaviour of such interactions; by highlighting their fundamental properties, we aim to identify
clues to the validity of the RNA world hypothesis.

We then concentrate on a class of pathologies that impact the folding process. This part
of our study starts with a formal description of how such pathologies originate as an error in
the genetic code (a mutation, in biological terms) and can propagate through each step of gene
expression, affecting both RNA and protein structures. We model how the mutation of even
a single nucleotide (point mutation) can alter the final conformation of a protein while it is
harmless to the structure of RNAs; we also show that a well-known genetic disease, sickle cell
anaemia, can be considered a global behaviour of both amino acid and nucleotide interactions.

We finally take another step forward by hypothesising the biological functions that charac-
terise the congruence level mentioned above and further exploring the applicability of process
algebras to describe its properties. The resulting models will ultimately form the basis for an
agent-based simulation [57]. Agents are discrete software elements whose interactions corre-
spond to those performed by the components of the modelled system fairly faithfully to the
actual behaviour of a biological process [75]. In process algebras, processes are concurrent, au-
tonomous, and reactive; all these properties are also shared by agents, making process algebras
suitable specification languages for agent-based systems.
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Agent-based Modelling and Simulation of Biomolecular
Interactions

The second part of this manuscript describes an agent-based simulator developed to study the
molecular interactions that characterise metabolic pathways and analyse their global proper-
ties [22]. We simulated complete enzymatic reactions by modelling the involved molecules
(enzymes, metabolites, and complexes) as autonomous and interactive agents.

In vitro studies show that a biological macromolecule behaves like an oscillating dipole,
and long-range forces can be activated between two resonant molecular systems because a
charge that oscillates at high frequency (in the range of 1010 −1011 Hz) is not affected by Debye
screening [45, 81]. We aim to provide an in silico validation to these experiments through
agent-based simulations, where each molecule is represented by an agent able to perceive
the environment and the cognate partners with which it can interact. A similar result may be
obtained through a molecular dynamics model; however, this method often places the analysis
at the atomic level, and related simulations require a priori knowledge of a large number of
experimental parameters. Instead, agent-based models and simulations allow the study to be
conducted at an abstraction level that can be represented with a reasonably small amount of
empirical data without loss of accuracy when reproducing a macromolecular behaviour. We
explore the simulator’s ability to deal with the long-distance electrodynamic interactions that
shape the behaviour of biomolecular systems, thus allowing us to analyse their effect on the
evolution of a metabolic pathway, such as yeast glycolysis.

However, understanding and representing as a whole the agent dynamics characterising a
reaction made by a large number of molecules still constitutes a considerable challenge. For
this reason, we define a new visualisation paradigm based on the concept of interaction-as-
perception: whenever a molecule perceives a cognate partner, a potential link between the two is
established. In this way, we can derive the graph of perceptions at each simulation time step;
on those graphs, we apply the topological data analysis to capture the 3-body interactions by
interpreting 2-simplices–convex hulls of three points–as observable structures. We use 2-simplex
formation as a valid semantic to represent the global dynamics of the system.

Organisation of the Manuscript

Each of the two main parts of this manuscript is correlated with an introductory chapter (Chap-
ters 1 and 5, respectively), which describes the basic biological and theoretical concepts needed
to better understand our study and the methodology adopted. The following chapters go into
detail on the results we have obtained.



4 INTRODUCTION

The first part comprises Chapters 1 to 4:

- In Chapter 1, we provide some basic knowledge on gene expression and RNA and protein
folding; we also introduce the formal methods adopted for modelling these biological
processes: Calculus of Communicating Systems (CCS), labelled transition systems (LTSs),
and Hennessy-Milner logic (HML).

- In Chapter 2, we take advantage of CCS and LTS to model the folding of both RNA and
proteins and demonstrate how it is possible to formally define a level of abstraction in
which such processes show behavioural equivalence (congruence level). Its definition
allows us to hypothesise some of the reasons that led the evolution of life to form proteins
and use them as the main catalysts in biological processes.

- Chapter 3 analyses a class of pathologies that affect the folding processes to study how the
dissimilarities between the structural components of proteins and RNAs cause different
responses to an alteration of the correct folding pathway.

- In Chapter 4, we explore the expressiveness of CCS in modelling the functions representing
the behaviour of non-coding RNA molecules, intended as a characterisation of the congru-
ence level defined in Chapter 2. Based on these results, we propose a suitable methodology
to generate an algebraic specification for agent-based simulations.

The second part of this manuscript consists of Chapters 5 to 7:

- Chapter 5 introduces the fundamental steps of glycolysis and the agent-based simulator,
Orion, we developed for studying this process in terms of molecular interactions.

- Chapter 6 describes how we adapted Orion to simulate long-distance molecular interac-
tions in metabolic reactions and analyse how they affect glycolysis efficiency.

- In Chapter 7, we take a step forward by using agent-based simulations to reproduce three-
body dynamics in a biochemical reaction, thus visualising and understanding its global
behaviour; this is possible by applying the interaction-as-perception paradigm.



Introduction (en français)

Notre compréhension des systèmes biologiques est souvent entravée par la complexité des
interactions moléculaires sous-jacentes, qui brouille les relations reliant les phénomènes de
base à un processus dans son ensemble lorsqu’il est étudié dans une perspective descendante
(top-down). Pour reprendre les mots d’Aristote, « Il y a une cause à l’unité de ce qui a plusieurs
parties dont la réunion n’est point une sorte de monceau, de tout ce dont l’ensemble est quelque
chose indépendamment des parties » [6]. Si nous adoptons une approche réductionniste, cette
cause peut rester cachée. On peut sans doute acquérir des connaissances pertinentes sur chaque
structure considérée en décomposant récursivement un système biologique complexe jusqu’à
ses éléments primaires. Cependant, le comportement de l’ensemble du système n’est com-
préhensible que si nous sommes capables de saisir ses propriétés globales [4, 53]. Selon ce point
de vue, fonctions biologiques sophistiquées proviennent de règles locales simples qui régissent
la manière dont les composants de base du système interagissent.

Cette thèse s’appuie sur ces prémisses pour examiner les comportements qui caractérisent
les macromolécules biologiques, allant des étapes qui conduisent certaines d’entre elles à une
conformation tridimensionnelle à la façon dont elles interagissent les unes avec les autres. Nous
utilisons la modélisation algébrique pour fournir une définition formelle des interactions locales
réalisées par les nucléotides dans une molécule d’ARN et les acides aminés dans la chaîne
polypeptidique d’une protéine ; l’identification de leurs propriétés collectives dans l’expression
d’une macromolécule pleinement fonctionnelle révèle des congruences et des dissemblances,
qui, dans certains cas, peuvent être associées à des pathologies génétiques. Nous analysons
également le comportement global des interactions électrodynamiques à longue distance dans
les voies métaboliques grâce à une approche à base d’agents spécifiquement conçue. Des
preuves expérimentales montrent que les rencontres aléatoires et les potentiels à courte portée
pourraient ne pas être suffisants pour expliquer la grande efficacité des réactions biochimiques
dans les cellules vivantes [45, 81, 95]. Cependant, alors que les dernières études in vitro sont
limitées par la technologie actuelle, les simulations à base d’agents fournissent un support in
silico aux résultats obtenus jusqu’à présent et élucident des comportements pas encore bien
compris. L’idée centrale de notre travail est de montrer comment les méthodes algébriques et à
base d’agents sont bien adaptées pour découvrir des phénomènes complexes dans les systèmes
biologiques et apporter un nouvel éclairage sur l’interprétation des maladies génétiques.
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6 INTRODUCTION (EN FRANÇAIS)

Les sections suivantes fournissent un bref aperçu et une contextualisation des sujets abordés
dans le reste de cette thèse, qui est divisée en deux parties principales : la première se concentre
sur les modèles algébriques des ARN et des protéines, tandis que la seconde décrit notre étude
à base d’agents sur interactions biomoléculaires. Bien que ces deux approches puissent être
liées l’une à l’autre (comme le montre le Chapitre 4), nous les séparons pour aider le lecteur à
distinguer les travaux menés principalement dans le cadre de l’Université de Camerino (Part I)
des résultats de la collaboration avec l’Université d’Aix-Marseille (Part II).

Modélisation algébrique de l’ARN et des protéines

La relation entre structure et fonction est un sujet pertinent en biologie, dont l’étude a reçu
une contribution significative de différentes approches informatiques [13, 27, 69, 73, 89]. En
particulier, les langages formels et les grammaires de graphes ont été appliqués avec succès pour
modéliser les propriétés qui corrèlent les fonctions exprimables par les molécules d’ARN et les
sous-structures spécifiques impliquées dans leur repliement [68, 96]. Cette dernière joue un
rôle fondamental dans cette analyse, car elle permet à un biopolymère linéaire d’atteindre une
conformation tridimensionnelle (en formant des liaisons hydrogène entre des monomères non
consécutifs).

Dans ce manuscrit, nous poussons cette idée plus loin et prouvons que la complexité des
fonctions de l’ARN peut être attribuée à la potentialité interne de chaque nucléotide à interagir
avec d’autres dans la même séquence. Ce résultat est obtenu en comparant le repliement de
l’ARN avec celui effectué par les protéines pour identifier un niveau d’abstraction auquel ces
deux classes de molécules présentent la même complexité structurale et fonctionnelle. Nous
appelons ce niveau le niveau de congruence ; sa caractérisation est possible grâce à l’expressivité
des algèbres de processus [1], à travers lesquelles nous modélisons le repliement de l’ARN et des
protéines.

Au cours de la seconde moitié du siècle dernier, l’enquête sur les raisons de l’existence de
telles molécules similaires a conduit à la formulation de l’hypothèse du monde à ARN (« RNA
world ») : l’ARN pourrait être un « fossile » d’un monde d’ARN qui existait sur Terre avant l’ap-
parition des cellules modernes, dans lequel l’ARN remplissait en même temps les rôles d’ADN et
de protéines [44]. Cette théorie est encore très débattue, car, au-delà de leurs similitudes, les
protéines et les ARN présentent de profondes différences structurelles qui affectent la façon dont
ils remplissent leurs fonctions [93]. Dans la première partie de cette thèse, nous comparons
formellement le processus de repliement des protéines avec celui des ARN. Nous concentrons
notre étude sur les interactions réalisées par les unités élémentaires qui composent les ARN et
les protéines, décrivant l’ensemble du repliement comme le comportement résultant de ces
interactions ; en mettant en évidence leurs propriétés fondamentales, nous visons à identifier
des indices sur la validité de l’hypothèse du monde à ARN.

Nous nous concentrons ensuite sur une classe de pathologies affectant le processus de re-
pliement. Cette partie de notre étude commence par une description formelle de la façon dont
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ces pathologies proviennent d’une erreur dans le code génétique (une mutation, en termes
biologiques) et peuvent se propager à chaque étape de l’expression génique, affectant à la fois
les structures de l’ARN et des protéines. Nous modélisons comment la mutation d’un seul
nucléotide (mutation ponctuelle) peut altérer la conformation finale d’une protéine alors qu’elle
est inoffensive pour la structure des ARN ; nous montrons également qu’une maladie génétique
bien connue, la drépanocytose, peut être considérée comme un comportement global des
interactions des acides aminés et des nucléotides.

Nous faisons enfin un autre pas en avant en supposant les fonctions biologiques qui car-
actérisent le niveau de congruence mentionné ci-dessus et en explorant plus avant l’applica-
bilité des algèbres de processus pour décrire ses propriétés. Les modèles résultants formeront
éventuellement la base d’une simulation à base d’agents [57]. Les agents sont des éléments
logiciels discrets dont les interactions correspondent à celles réalisées par les composants du
système modélisé assez fidèlement au comportement réel d’un processus biologique [75]. Dans
les algèbres de processus, les processus sont concurrents, autonomes et réactifs ; toutes ces
propriétés sont également partagées par les agents, ce qui fait des algèbres de processus des
langages de spécification appropriés pour les systèmes à base d’agents.

Modélisation à base d’agents et simulation des interactions
biomoléculaires

La seconde partie de ce manuscrit décrit un simulateur à base d’agents développé pour étudier
les interactions moléculaires qui caractérisent les voies métaboliques et analyser leurs propriétés
globales [22]. Nous avons simulé des réactions enzymatiques complètes en modélisant les
molécules impliquées (enzymes, métabolites et complexes) comme des agents autonomes et
interactifs.

Des études in vitro montrent qu’une macromolécule biologique se comporte comme un
dipôle oscillant et que des forces à longue portée peuvent être activées entre deux systèmes
moléculaires résonnants. Cela se produit parce qu’une charge qui oscille à haute fréquence (de
l’ordre de 1010 −1011 Hz) n’est pas affecté par l’écrantage de Debye [45, 81]. Notre objectif est
de fournir une validation in silico à ces expériences par le biais de simulations à base d’agents,
où chaque molécule est représentée par un agent capable de percevoir l’environnement et les
partenaires apparentés avec lesquels il peut interagir. Un résultat similaire peut être obtenu
grâce à un modèle de dynamique moléculaire ; cependant, cette méthode place souvent l’analyse
au niveau atomique et les simulations associées nécessitent la connaissance a priori d’un grand
nombre de paramètres expérimentaux. Au lieu de cela, les modèles et les simulations à base
d’agents permettent de mener l’étude à un niveau d’abstraction qui peut être représenté avec
une quantité raisonnablement petite de données empiriques sans perte de précision lors de la
reproduction d’un comportement macromoléculaire. Nous explorons la capacité du simulateur
à traiter les interactions électrodynamiques à longue distance qui façonnent le comportement
des systèmes biomoléculaires, nous permettant ainsi d’analyser leur effet sur l’évolution d’une
voie métabolique, telle que la glycolyse de la levure.
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Cependant, comprendre et représenter dans son ensemble la dynamique des agents carac-
térisant une réaction faite par un grand nombre de molécules constitue encore un défi consid-
érable. Pour cette raison, nous définissons un nouveau paradigme de visualisation fondé sur le
concept de interaction-comme-perception : chaque fois qu’une molécule perçoit un partenaire
apparenté, un lien potentiel entre les deux est établi. On peut ainsi dériver le graphe des per-
ceptions à chaque pas de temps de simulation ; sur ces graphes, nous appliquons l’analyse des
données topologiques pour capturer les interactions à 3-corps en interprétant les 2-simplexes –
coques convexes de trois points – comme des structures observables. Nous utilisons la formation
des 2-simplexes comme sémantique valide pour représenter la dynamique globale du système.

Organisation du manuscrit

Chacune des deux parties principales de ce manuscrit est corrélée à un chapitre d’introduction
(Chapitres 1 et 5, respectivement), qui décrit les concepts biologiques et théoriques de base
nécessaires pour mieux comprendre notre étude et la méthodologie adoptée. Les chapitres
suivants détaillent les résultats que nous avons obtenus.

La première partie comprend les chapitres 1 à 4 :

- Dans le chapitre 1, nous fournissons quelques connaissances de base sur l’expression
des gènes et le repliement de l’ARN et des protéines ; nous introduisons également les
méthodes formelles adoptées pour modéliser ces processus biologiques, précisément
le calcul des systèmes communicants (CCS, Calculus of Communicating Systems), les
systèmes de transition étiquetés (LTS, Labelled Transition Systems) et la logique Hennessy-
Milner (HML, Hennessy-Milner Logic).

- Dans le chapitre 2, nous utilisons CCS et LTS pour modéliser le repliement de l’ARN et des
protéines, et démontrer comment il est possible de définir formellement un niveau d’ab-
straction dans lequel de tels processus montrent équivalence comportementale (niveau
de congruence). Sa définition nous permet d’émettre des hypothèses sur certaines des
raisons qui ont conduit l’évolution de la vie à former des protéines et à les utiliser comme
principaux catalyseurs dans les processus biologiques.

- Chapitre 3 analyse une classe de pathologies qui affectent les processus de repliement pour
étudier comment les dissemblances entre les composants structurels des protéines et des
ARN provoquent différentes réponses à une altération de la voie de repliement correcte.

- Au chapitre 4, nous explorons l’expressivité du CCS dans la modélisation des fonctions
représentant le comportement des molécules d’ARN non codantes, conçues comme une
caractérisation du niveau de congruence défini au chapitre 2. Sur la base de ces résultats,
nous proposons une méthodologie appropriée pour générer une spécification algébrique
pour les simulations à base d’agents.
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La deuxième partie de ce manuscrit comprend les chapitres 5 à 7 :

- Le chapitre 5 présente les étapes fondamentales de la glycolyse et le simulateur à base
d’agents, Orion, que nous avons développé pour étudier ce processus en termes d’interac-
tions moléculaires.

- Le chapitre 6 décrit comment nous avons adapté Orion pour simuler les interactions
moléculaires à longue distance dans les réactions métaboliques et analyser comment elles
affectent l’efficacité de la glycolyse.

- Dans le chapitre 7, nous faisons un pas en avant en utilisant des simulations à base d’agents
pour reproduire la dynamique à trois corps dans une réaction biochimique, visualisant et
comprenant ainsi son comportement global ; cela est possible en appliquant le paradigme
interaction-comme-perception.





Part I

Algebraic Models





Chapter 1

Background and Methods for Part I

1.1 Introduction

This chapter is intended to provide the reader with the basic concepts, biological and theoretical,
needed to comprehend the models described in Part I of this manuscript.

Section 1.2 gives an overview of the processes that underpin protein folding and gene ex-
pression; we also introduce the RNA world hypothesis, discussed in Chapter 2. Finally, we
briefly describe haemoglobin, a protein that we analyse in Chapter 3 to model the behaviour of
sickle-cell anaemia. The content of this section is mainly based on well-established biological
and biochemical knowledge [2, 65, 119].

In Section 1.3, we describe the key formalisms at the basis of our modelling approaches. We
cover the fundamentals of Calculus of Communicating Systems, labelled transition systems,
and Hennessy-Milner logic; we also introduce the concept of software agent, which is used in
Chapter 4, even though we go into detail about agent-based modelling and simulation in the
second part of this manuscript.

This chapter contains no original content, except for section 1.3.5, where we show how
the models of the dissertation’s first and second parts can be linked together in a consistent
discourse.

1.2 Fundamentals of Molecular Biology

1.2.1 The structure of DNA and the replication process

A deoxyribonucleic acid (DNA) consists of two strands of nucleotides, molecules made of a sugar-
phosphate group covalently linked to a nucleobase (or simply, base). The sugar of a nucleotide
is composed of five carbon atoms, each identified by a number followed by a prime mark (e.g.,
5’-carbon). Two nucleotides in the same DNA strand are linked through a covalent bond between
the sugar’s 3′-hydroxyl (-OH) group of one of them and the 5′-phosphate (-PO4) of the other.

13
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Only the base differs in each nucleotide and can be one of four possible types: adenine (A),
guanine (G), cytosine (C) or thymine (T). Adenine and guanine are two-rings bases (purines),
while cytosine and thymine are single-ring bases (pyrimidines).

The two nucleotide strands of a DNA molecule are held together by hydrogen bonds, con-
necting the bases of one strand to those of the other. Adenine always pairs with thymine, while
guanine always pairs with cytosine (that is, a purine always pairs with a pyrimidine); they are
often called Watson-Crick base pairs. A detail important for the models provided in the subse-
quent chapters is that, in this coupling process, adenine and thymine–or uracil in ribonucleic
acids (RNAs), as we will see later–pair through two hydrogen bonds, while guanine and cytosine
form three hydrogen bonds. As a consequence of this complementary base pairing, each strand
of a DNA molecule contains a sequence of nucleotides that is exactly complementary to the se-
quence of the other strand. DNA strands run antiparallel to each other (i.e., oriented in opposite
polarities), twisted into a double helix (Figure 1.1).

Figure 1.1 – Schematic representation of the DNA double helix and its hydrogen bonds in the base
pairing of adenine (A) with thymine (T) and guanine (G) with cytosine (C). Adapted from
©Richard Wheeler (User:Zephyris) / Wikimedia Commons / CC BY-SA 3.0.

https://commons.wikimedia.org/wiki/User:Zephyris
https://en.wikipedia.org/wiki/DNA#/media/File:DNA_Structure+Key+Labelled.pn_NoBB.png
https://creativecommons.org/licenses/by-sa/3.0


1.2. FUNDAMENTALS OF MOLECULAR BIOLOGY 15

The information of a DNA strand is encoded in the sequence of its nucleotides; differences in
nucleotide order determine different biological messages expressed by DNA.

The possibility of nucleotide base pairing also allows the DNA strands to be used as templates
for generating completely new DNA molecules in a process called DNA replication. Like many
others in cells, this process is performed by an enzyme, a molecule acting as a catalyst by helping
complex reactions occur. The replication process is carried out by the DNA polymerase enzyme
and starts from a defined sequence of nucleotides, the replication origin (Figure 1.2).

While the replication process proceeds, the DNA polymerase monitors and corrects possible
errors in the base paring from the original to the new strand (proofreading). However, some errors
can be left uncorrected, causing a so-called mismatch: a mispaired nucleotide. For this reason, a
specific complex of molecules has the function of mismatch repairing. If a replication mistake
escapes this additional control, the new DNA strand will present a mutation, a permanent change
of its sequence that can alter a fundamental process called gene expression.

Figure 1.2 – Replication of a DNA nucleotide sequence carried out by the DNA polymerase. The strand
taken as a template to generate the new one is accessed by unwinding the DNA double helix
(a process performed by the helicase enzyme). DNA replication produces two new double
helices, each made of one of the pre-existing strands twisted with the new strand through
complementary base pairing. Image accessed free and adapted from ©OpenStax Anatomy
and Physiology [14] / CC BY 4.0.

https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
https://creativecommons.org/licenses/by/4.0
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1.2.2 Gene expression

Genes are specific sequences of nucleotides that contain the instructions for producing functional
molecules–proteins or RNAs–and collectively form the organism’s genome. The process that
converts the information encoded in the nucleotide sequence of a gene into the related functional
product is defined as gene expression.

In this context, RNA molecules can be the intermediate or final product of the process. RNA is
a linear molecule similar to DNA; however, it shows some differences. For a better understanding
of the following chapters, it is important to consider that:

• RNA is composed of adenine, guanine, and cytosine bases, like DNA, but it contains uracil
(U) instead of thymine (T). However, a uracil base behaves similarly to thymine and can
base-pair with adenine.

• An RNA molecule is single-stranded, meaning that it can fold on itself and form three-
dimensional structures. As we elaborate on in the remainder of this section, such a property
allows some type of RNA molecules to carry out complex functions in cells (Figure 1.3).

RNAs are made through transcription, a process performed by an enzyme called RNA poly-
merase [117]; it uses one of the two strands of DNA as a template to build the RNA molecule
through base pairing; the resulting product is called the transcript. The transcription process
starts from a sequence of nucleotides defined as the promoter and continues until the RNA
polymerase reaches another group of nucleotides, the terminator or stop site.

Most of the genes in a DNA molecule represent the instructions for synthesising proteins, a
class of molecules that carry out fundamental activities in living cells. A protein is a sequence
of amino acids; these organic compounds thus constitute the protein’s primary elements (or
monomers), determining its three-dimensional conformation and, consequently, its functions.

The role of RNA is often placed in the middle of the gene expression process since the genetic
information is transcribed into the nucleotide sequence of an RNA molecule that, in turn, is
translated into the amino acid sequence of a protein; in this case, the RNA molecule is defined as
messenger RNA or mRNA). Some genes, however, encode the information to generate ultimately
a molecule of RNA, which performs itself the required functions in the cell. This class of RNAs is
sometimes called functional or non-coding RNAs (ncRNAs) and includes important molecules
like ribosomal RNAs, transfer RNAs and microRNAs.

In eukaryotic cells, before being translated, mRNA must undergo three RNA processing steps:
capping, polyadenylation, and splicing [92]. In particular, the last step is performed by the
spliceosome, complex machinery partly composed of RNA (small nuclear RNA), which removes
from the RNA nucleotide chain the non-coding sequences (or introns) while assembling the
coding ones (exons)–see Figure 1.4.
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Figure 1.3 – (a) Differences between the double helix of DNA and the structure of RNA, which is single-
stranded and contains the base uracil (U) instead of thymine (T). (b) Driven by a base pairing
process similar to that of DNA, the linear sequence of RNA nucleotides (primary structure)
folds into three-dimensional conformations, which determine and affect its function inside
the cell. (c) Example of planar (secondary) and three-dimensional (tertiary) structures
of RNA; specifically, we show the folding of tRNA, whose peculiar spatial arrangement
makes it able to bind an amino acid and contribute to the synthesis of a protein during the
translation process of gene expression. Images accessed free and adapted from ©OpenStax
Microbiology [87] / CC BY 4.0.

https://openstax.org/books/microbiology/pages/1-introduction
https://openstax.org/books/microbiology/pages/1-introduction
https://creativecommons.org/licenses/by/4.0
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Figure 1.4 – Removal of the non-coding sequences (introns) from the transcript, performed by the
spliceosome to generate a coding mRNA molecule (made of exons), which is ready to un-
dergo the translation process of gene expression. Image accessed free and adapted from
©OpenStax Anatomy and Physiology [14] / CC BY 4.0.

After the transcription of a DNA sequence into an mRNA molecule, the latter undergoes the
translation process [61], which synthesises a new protein (Figure 1.5).

As we said, a protein is made of amino acids. In the aminoacidic sequences of proteins, we
can identify 20 different types of these organic compounds (see Table 1.1). However, in both DNA
and their RNA transcripts, genes are composed of 4 different types of nucleotides–A, T (or U),
C, and G. During the translation process, they are read three by three (in groups called codons);
therefore, the genetic code associates 64 combinations of three nucleotides to 20 possible amino
acids, with the obvious redundancy: the same amino acid is coded for by more than one triplet
of nucleotides, as shown in Table 1.2.

https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
https://creativecommons.org/licenses/by/4.0
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Table 1.1 – List of the 20 amino acids identifiable in proteins and the abbreviations used in this
manuscript.

Name Abbreviation

Alanine Ala
Arginine Arg
Asparagine Asn
Aspartic acid Asp
Cysteine Cys
Gycine Gly
Glutamic acid Glu
Glutamine Gln
Histidine His
Isoleucine Ile
Leucine Leu
Lysine Lys
Methionine Met
Phenylalanine Phe
Proline Pro
Serine Ser
Threonine Thr
Tryptophan Trp
Tyrosine Tyr
Valine Val

Table 1.2 – Genetic code table. It represents the association of each of the 20 amino acids plus the stop
signal of the translation process (all listed in the last row) with the related group of matching
codons.

aga uua agc
agg uug agu

gca cga gga cua cca uca aca gua
gcc cgc ggc aua cuc ccc ucc acc guc uaa
gcg cgg gac aac ugc gaa caa ggg cac auc cug aaa uuc ccg ucg acg uac gug uag
gcu cgu gau aau ugu gag cag ggu cau auu cuu aag aug uuu ccu ucu acu ugg uau guu uga

Ala Arg Asp Asn Cys Glu Gln Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val STOP
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The messenger RNA translation is mediated by an ncRNA molecule, the transfer RNA (or
tRNA), which can bind an amino acid; in addition, it contains a triplet of nucleotides comple-
mentary to one of the codons in the mRNA chain that matches with its carried amino acid. This
process does not happen spontaneously, but it is performed by large molecular complexes called
ribosomes. They move along the mRNA and join, by forming a covalent bond (peptide bond),
the amino acid held by a tRNA to the last one in the growing amino acid chain of the protein.
Ribosomes start the translation process at a specific nucleotide triplet, AUG, and end when they
reach one of the three possible stop codons: UAA, UAG, or UGA.

Figure 1.5 – Expression of the DNA sequence of a gene into the amino acid chain of a protein. In
the transcription process, the RNA polymerase (not shown) reads the DNA string and
generates a complementary mRNA molecule, while the subsequent translation, performed
by ribosomes with the aid of tRNAs, takes the mRNA nucleotide sequence as a template
to produce the protein. Adapted from ©NHS National Genetics and Genomics Education
Centre / Wikimedia Commons / CC BY 2.0.

http://www.genomicseducation.hee.nhs.uk
http://www.genomicseducation.hee.nhs.uk
https://commons.wikimedia.org/wiki/File:Basic_diagram_of_locations_of_gene_expression.jpg
https://creativecommons.org/licenses/by/2.0
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In Chapter 3, we describe gene expression thoroughly to analyse the differences in RNA and
protein structural complexity; this study is carried out through the definition of a comprehensive
gene expression model based on process algebras.

1.2.3 Protein structure and folding

An amino acid is an organic compound made of a central carbon atom bound to a carboxyl group
(–COOH), an amino group (–NH2), and a side carbon chain (also called R group). The R group
characterises each amino acid and distinguishes it from the others. For the aim of the model
proposed in the following chapters, it is important to know that amino acid side chains can be
water-soluble (hydrophilic) or water-insoluble (hydrophobic). Amino acids bind to each other
through peptide bonds, thus constituting the backbone of a protein (see Figure 1.6).

Figure 1.6 – Amino acids are linked through covalent bonds (peptide bonds) in the linear sequence
that represents the primary structure of a protein. Each peptide bond forms between the
carboxyl group (–COOH) of an amino acid and the amino group (–NH2) of another. The R
group determines the specific behaviour of an amino acid in relation to its environment
(e.g., hydrophobic/hydrophilic properties). Adapted from ©CNX OpenStax / Wikimedia
Commons / CC BY 4.0.

The linear sequence of amino acids that compose a protein (primary structure) goes through
a folding process; it creates recurring structural patterns (secondary structures), such as helices or
sheets of amino acids, until it forms a complex three-dimensional molecule (tertiary structure).

https://openstax.org/books/microbiology/pages/1-introduction
https://commons.wikimedia.org/wiki/File:OSC_Microbio_07_04_primary.jpg
https://commons.wikimedia.org/wiki/File:OSC_Microbio_07_04_primary.jpg
https://creativecommons.org/licenses/by/4.0
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In many cases, the final conformation of a protein results from the aggregation of more than one
folded polypeptide chain (quaternary structure).

During the folding process, the hydrophobic amino acid side chains are pushed away from
water, grouping in the protein’s interior. In this way, some side chains are buried, while others are
exposed, generating an “inside” and an “outside” of the protein. The structure is also stabilised by
hydrogen bonds between the carboxyl group of one amino acid and the amino group of another.

The resulting three-dimensional conformation has the following main properties:

• it exists under the most thermodynamically stable conditions (lowest Gibbs free energy);

• it is stabilised primarily by disulphide bonds and non-covalent interactions;

• it is associated with the functions expressible by a protein.

In other words, the linear sequence of a protein influences how it folds up into a three-
dimensional structure–stabilised by non-covalent interactions–that, in turn, determines the
functions of the protein (see Figure 1.7).

1.2.4 RNA folding and non-coding functions

RNA molecules tend to fold into a three-dimensional form, similarly to proteins. In this case, the
hydrogen bonding between complementary bases leads the process. Moreover, base-stacking
interactions push the molecule to assume a helical conformation (see Figure 1.3).

In addition to conventional Watson-Crick base pairs (see Section 1.2.1), RNA helices often
contain non-canonical (non-Watson-Crick) base pairs. The most common are GU and GA pairs,
but there are more than 20 different types identified in RNAs, including base triples [80].

RNAs can adopt complex three-dimensional structures to carry out non-coding functions,
such as biological catalysis. In this case, they are also known as ribozymes and, like protein
enzymes, have binding sites for a substrate and a co-factor needed for the catalytic process.

Investigating the similarities between RNAs and proteins is the “leitmotif” of Part I of this
manuscript. In particular, in Chapter 2, we examine the existence of a congruence level in which
these two types of molecules are able to perform functions of the same complexity. The provided
results are interpreted as supporting the validity of the RNA world hypothesis. In Chapter 4, we
push forward such findings by characterising, through formal models, the functions carried out
by ribozymes.

1.2.5 RNA world

The majority of the molecules involved in the various stages of gene expression are proteins
(e.g., RNA polymerases) or are composed in part of proteins (e.g., ribosomes). Therefore, nucleic
acids are required to direct the synthesis of proteins, and proteins are required to synthesise
nucleic acids; we might wonder how this system of interdependent components could have
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Figure 1.7 – Four levels of complexity of the structures determining the final conformation of a pro-
tein. In particular, we show the folding process of haemoglobin, a molecule discussed
in Section 1.2.6 and Chapter 3. The reduction of the Gibbs free energy and the forma-
tion of non-covalent interactions (e.g., hydrogen bonds and hydrophobic interactions)
push the unfolded sequence of amino acids (primary structure) to form α-helices and
β-sheets (secondary structures). The same forces drive these amino acid patterns to arrange
in three-dimensional polypeptide chains (tertiary structures), whose composition deter-
mines the quaternary structure that characterises some classes of molecules. Adapted from
©OpenStax College / Wikimedia Commons / CC BY 3.0.

https://openstax.org/books/anatomy-and-physiology/pages/2-5-organic-compounds-essential-to-human-functioning
https://commons.wikimedia.org/wiki/File:225_Peptide_Bond-01.jpg
https://creativecommons.org/licenses/by/3.0
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arisen. One hypothesis is that an RNA world existed on Earth before modern cells appeared, and
RNA, which today mostly serves as an intermediate between genes and proteins, performed both
the functions of storage for the genetic information and of biological catalyst [44, 93]. Only when
modern cells appeared these two functions were separated, and DNA became the carrier of the
genetic information, while proteins took the role of the main catalyst in cellular processes.

This hypothesis may be supported by the existence of RNA molecules that catalyse important
reactions in cells (the ribozymes, as we discussed before); moreover, the sequence of genes of
DNA is copied in an mRNA molecule during the transcription process, meaning that RNA is still
able to store the genetic information. Viruses are examples of organisms in which the entire
genome may be exclusively in the form of RNA (RNA viruses).

However, the necessity of reducing errors in the replication process and carrying out more
complex functions in cells led, at a certain point in the evolution of life, to the formation of the
two specialised structures we can observe today. In Chapter 2, we support this idea with the aid
of algebraic models.

1.2.6 Haemoglobin and anaemias

An important type of protein is haemoglobin, which is found in erythrocytes (red blood cells);
their function is to carry oxygen from the lungs to the body’s tissues and return carbon dioxide
from the tissues back to the lungs.

It is composed of four protein subunits (called globins), each consisting of two α-chains and
two β-chains, allowing haemoglobin to bind four oxygen molecules [70]. In the binding process,
a fundamental role is plaid by an iron-containing compound called heme, which is embedded in
each globin (see Figures 1.7 and 1.8).

We are interested specifically in this molecule because, in Chapter 3, we use it as a case
study to observe, through the definition of formal models, the effect of a mutation on the folding
process of proteins compared to that of RNAs.

Indeed, a single nucleotide change (point mutation) in the β-globin gene may produce
valine (Val) instead of glutamic acid (Glu) in the amino acid sequence of the β-subunit (Glu6Val
mutation, which results in the HbS disease). If a single point mutation of this type may not be
harmful, inheriting two copies of the mutant β-globin gene will cause sickle-cell anaemia. The
necessity of the hydrophobic amino acid to be shielded from water pushes valine to bind into
the hydrophobic pocket of another haemoglobin molecule, forming, in this way, the fibrous
precipitates which characterise sickle-cell disease. This process causes the red blood cells to
assume a typical sickle shape, which cannot move easily into vessels and may obstruct the
normal blood flow; such a behaviour has the consequence of reducing the flux of oxygen through
the body [19].

In Chapter 3, we deeply analyse sickle-cell anaemia as a global behaviour resulting from the
interactions occurring during the gene expression.
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Figure 1.8 – Structure of haemoglobin with its two α and two β subunits highlighted; the corresponding
four iron-containing heme groups are also shown. Adapted from ©OpenStax College /
Wikimedia Commons / CC BY 3.0.

Figure 1.9 – Comparison of normal and sickle-shaped red blood cells and their different behaviours in
blood vessels. Adapted from ©User:Diana grib / Wikimedia Commons / CC BY-SA 4.0.

https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
https://commons.wikimedia.org/wiki/File:1904_Hemoglobin.jpg
https://creativecommons.org/licenses/by/3.0
https://commons.wikimedia.org/wiki/File:Risk-Factors-for-Sickle-Cell-Anemia_(1)2.jpg
https://creativecommons.org/licenses/by-sa/4.0


26 1. BACKGROUND AND METHODS FOR PART I

1.3 Introduction to the Algebraic Modelling of Biological Systems

This section presents the formal methods through which we define the models proposed in this
manuscript. The description is mainly based on Aceto et al. (2007) [1].

1.3.1 Calculus of Communicating Systems

Most of the models we provide in the following chapters are based on Milner’s Calculus of Com-
municating Systems (CCS) [77]. It is a process algebra consisting of a collection of constructors
for building a new process description from existing ones, representing them as systems that
exhibit behaviour and interact via synchronised communication. A process can be viewed as
a black box with a name and a set of communication channels; an input or output action on
the channel w is indicated using the labels w or w, respectively. In this manuscript, if a label w is
defined, the existence of w is implied.

In our models, we use the following process constructors. Let P, Q be processes:

• action prefixing: if w is an action, w.P is a process that begins by performing the action w
and behaves like P thereafter;

• choice operator: P + Q is a process that may behave like P or Q;

• parallel composition: P|Q describes a system in which P and Q run in parallel, proceeding
independently or communicating via complementary channels;

• restriction: if L is a set of labels, then P \ L is a process in which the scope of the labels in L
is restricted to P; this means that those labels can only be used to indicate channels for
communications within P.

CCS syntax

Given
A the set of channel names,
A = {w | w ∈ A} the set of complementary names,
L = A∪A the set of labels,
Act = L∪ {τ} the set of actions, where τ is an unobservable action,
K the set of process names (constants),

the set E of the CCS expression is given by the following grammar:

P,Q ::= K | α.P | ∑
i∈I

Pi | P |Q | P[f ] | P\L′ (1.1)

where
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• K is a process name in K ;

• α is an action in Act;

• I is a possibly infinite index set;

• f : Act → Act is a relabelling function satisfying the following constraints:

– f (τ) = τ

– f (w) = f (w) for each label w;

• L′ is a set of labels from L.

The behaviour of each process constant K ∈ K is given by a defining equation K def= P, where P ∈ E .

CCS structural operational semantics (SOS)

α ∈ Act and w ∈ L′,

α.P
α−→P

Action prefixing (1.2)

P j
α−→P′

j∑
i∈I Pi

α−→P′
j

where j ∈ I Summation (1.3)

P
α−→P′

P|Q
α−→P′|Q

Parallel composition (rule 1) (1.4)

Q
α−→Q′

P|Q
α−→P|Q′ Parallel composition (rule 2) (1.5)

P
w−→P′ Q

w−→Q′

P|Q
τ−→P′|Q′ Parallel composition (rule 3) (1.6)

P
α−→P′

P \ L′ α−→P′ \ L′
where α ∉ L′ Restriction (1.7)

P
α−→P′

P[ f ]
f (α)−−−→P′[f ]

Relabelling (1.8)

P
α−→P′

K α−→P′ where K def= P Constant definition (1.9)
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A rule of the SOS states that, to establish that the transitions placed below the solid line of
the equation can be carried out, we must first prove the possibility of performing the transitions
placed above the solid line; they represent the premises of the rule. If there is no premise (as in
Equation 1.2), we consider this rule to be an axiom.

1.3.2 Labelled transition systems

The biological processes described in this manuscript have been modelled as the result of sub-
processes that proceed along a path made of discrete states. This aspect is often highlighted
through labelled transition systems (LTSs) [62]; they consist of a set of processes, a set of actions
and a transition relation → such that, if a process P can perform an action α and become a
process P′, we write P

α−→P′ [1].
Formally, a labelled transition system (LTS) is a triple (Proc, Act,{

α−→ | α ∈ Act}), where

• Proc is a set of states (or processes);

• Act is a set of actions (or labels);

•
α−→⊆ Proc×Proc is a transition relation, for every α ∈ Act.

If P becomes P′ after a sequence ω of actions, we write P
ω=⇒P′.

The LTSs in this manuscript have been generated through the automated tool CAAL - Con-
currency Workbench, Alborg Edition [3]. In these cases, an output or input action on the
communication channel w is represented with the labels ′w or w, respectively.

1.3.3 Strong bisimilarity

A binary relation R over the set of states of an LTS is a bisimulation iff whenever s1 R s2 and w ∈ L:

• if s1
w−→ s′1, then there is a transition s2

w−→ s′2 such that s′1 R s′2;

• if s2
w−→ s′2, then there is a transition s1

w−→ s′1 such that s′1 R s′2.

Two states s and s′ are bisimilar, written s ∼ s′, iff there is a bisimulation that relates them.
The relation ∼ will be referred to as strong bisimulation equivalence or strong bisimilarity.

1.3.4 Hennessy-Milner logic

In Chapters 2 and 4, we model some biochemical properties of RNA and proteins through
Hennessy-Milner formulae [54, 63]. In Chapter 3, we use a similar approach to represent nu-
cleotide and amino acid sequences.

Hennessy-Milner logic is a multimodal logic, i.e., it involves modal operators parametrised
by actions. The set M of Hennessy-Milner formulae over the set of actions Act is given by the
following abstract syntax:

F ,G ::= tt | ff |F ∧ G |F ∨ G | 〈α〉F | [α]F (1.10)
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where α ∈ Act, tt and ff are used to denote respectively “true” and “false” [1]. The meaning of a
formula in M is given by characterising the collection of processes that satisfy it. Intuitively, this
can be described as follows:

• all processes satisfy tt ;

• no process satisfies ff ;

• a process satisfies F ∧G (respectively, F ∨G) iff it satisfies both F and G (respectively,
either F or G);

• a process satisfies 〈α〉F for some α ∈ Act iff it affords a α-labelled transition leading to a
state satisfying F ;

• a process satisfies [α]F for some α ∈ Act iff all of its α-labelled transitions lead to a state
satisfying F .

As for the LTSs, in the HML formulae analysed with CAAL, an output or input action on the
channel α is indicated using the labels ′α or α, respectively.

Given �F� the set of all the processes that satisfyF , a process PÍF iff P ∈ �F�. If the formulae
F and G are satisfied by exactly the same processes, that is, if �F� = �G�, we write F ≡G.

In this manuscript,
F ≡∧

n
G iff F ≡G∧·· ·∧G︸ ︷︷ ︸

n

(1.11)

Regarding the set definitions we provide in Chapter 3, we adopt the following conventions:

N+ =N0\{0}; (1.12)

let A ⊆ Act, ε be the empty string, A0 = {ε}, A1 = A, and

Ai+1 = {αβ | α ∈ Ai , β ∈ A, ∀ i > 0}, then:

A∗ = ⋃
i≥0

Ai and A+ = A∗A.

(1.13)

1.3.5 From algebraic to agent-based models

Agents are systems able to perceive changes in the environment and react to them. Formally, a
reactive agent is defined by the 6-tuple 〈E ,Per, Ac, see, acti on,do〉, where
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• E is the set of all states for the environment;

• Per is a partition of E (representing the perception of the environment from the agent’s
point of view);

• Ac is a set of actions;

• see: E → Per ;

• acti on: Per → Ac;

• do: Ac ×E → E .

An agent observes the environment (see), selects the appropriate action (acti on), and acts
(do) on the environment itself [42].

Figure 1.10 – Schematic representation of the modelling approach proposed in our work. Experimental
data retrieved from in vivo and in vitro studies on proteins and RNAs provide the basic
information and knowledge upon which we constructed the CCS models of their respective
folding processes. At the structural level, these models correlate the interactions between
the elementary units of proteins and RNAs (amino acids and nucleotides, respectively) to
their three-dimensional conformations. Discovering an abstraction level in which the two
kinds of folding processes are bisimilar gives us the perspective needed to identify a class
of functions of the same complexity, which proteins and RNAs can equally perform; as
clarified in Chapter 2, it also yields new knowledge on the biological domain. In Chapter 4,
we outline an algebraic specification of this class of functions, which is intended to be the
basis of an agent-based model, ultimately resulting in the related computer simulation.
Image reproduced from a co-authored work, conducted and published as part of the PhD
project [67] ©2020 Springer Nature Switzerland AG.
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In an agent-based simulation, agent interactions correspond to those performed by the
components of the modelled system, quite faithfully to the actual behaviour of a biological
process [75]. In process algebras, processes are concurrent, autonomous and reactive; all these
properties are also shared by agents populating a multiagent environment, making process
algebras suitable specification languages for agent-based systems.

A schematic representation of the transition from the biological domain (experimental data)
to agent-based simulations via process-based models is provided in Figure 1.10. Agent-based
models and simulations of molecular interactions are described and discussed in Part II of this
manuscript.





Chapter 2

Process Calculi May Reveal the
Equivalence Underlying RNA and
Proteins*

2.1 Introduction

Ribonucleic acids (RNAs) and proteins are two classes of molecules that have drawn the interest
of different scientific disciplines because of their fundamental roles in many biological processes.
Discovering the qualitative information underlying the relationship between their structures and
functions requires a thorough understanding of their folding. Indeed, from their linear sequence
to their three-dimensional conformation, RNAs and proteins follow a similar path; the shapes
they reach in this way allow them to perform comparable catalytic and structural tasks.

Investigating the reasons for the existence of such similar molecules led to the formulation of
the RNA world hypothesis: RNA might be a “fossil” of an RNA world that existed on Earth before
modern cells appeared, in which RNA fulfilled the roles of both DNA and proteins. This theory is
still highly debated [44, 93]; indeed, beyond their similarities, proteins and RNAs show profound
structural differences, which affect the way they perform their functions.

This chapter aims to provide a formal description of the folding process of proteins compared
to that of RNAs; by highlighting their key properties, our purpose is to identify clues to the validity
of the RNA world hypothesis. We focus our study on the interactions among monomers–the
elementary units that compose RNA and protein linear sequences–and describe the whole folding
process as the resulting behaviour of these interactions.

*This chapter is derived from a co-authored work, conducted and published as part of the PhD project:
Maestri, S., Merelli, E., 2019. “Process calculi may reveal the equivalence lying at the heart of RNA and proteins”.
Scientific Reports 9, 559. CC BY 4.0. https://doi.org/10.1038/s41598-018-36965-1. S.M. implemented the
method, performed the research and wrote the paper. E.M. supervised the research. Both the authors designed and
reviewed the paper.
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2.2 Results

The definition of the models we propose in this chapter is based on the idea that all the com-
ponents involved in a system, and the communication media themselves, can be formally
represented as processes. This approach has been applied to study biological systems by mod-
elling entire molecules [13, 89]; however, it can be extended to analyse their substructures–or
even their elementary units–and the interactions they perform.

The specification language that better suits our modelling of RNA and protein folding is
the Calculus of Communicating Systems (CCS), proposed by Milner in 1989 [77]; thanks to
this process algebra, it is possible to define the congruence of the folding processes in terms
of behavioural equivalence and perform the model checking with the aid of automated tools
(see Section 1.3.3 on page 28 for an introduction to these modelling and verification methods).
Moreover, the whole folding process can be modelled as the result of sub-processes that proceed
along a path made of discrete states; we capture this property by means of labelled transition
systems (LTSs) [62].

We want to point out that some aspects that contribute to the folding process and can be
relevant from a biological point of view are not included in our models. For example, we do
not consider the role of helping molecules, such as the modulation performed by Mg2+ on
the RNA folding or the contribution of molecular chaperones to protein folding [49, 51]. This
decision is motivated by the idea of describing the folding process as behaviour resulting solely
from the interactions among nucleotides and amino acids (in their respective strands) and the
informational content carried by each of them. If, on the one hand, such an approach leads us
to define an abstraction of the actual folding mechanisms, on the other, it allows us to formally
prove the existence of distinguishing features of these processes that might be the basis of the very
existence of both RNAs and proteins in cells. We want to prove that the inner potentiality of each
monomer to interact with the others (in the same sequence) is the main property that determines
the different structural complexity ultimately reachable by the two kinds of molecules.

To demonstrate this statement, we start by defining the models of the folding process as
a sequence of folding steps, each contributing a new non-covalent interaction between two
monomers. Because the folding process relies mainly upon the formation of weak and non-
covalent interactions in both RNAs and proteins, the stabilisation function performed by covalent
bonds (such as disulphide bridges between Cys residues) is negligible for our model definition.

We classify non-covalent interactions into three main categories:

• hydrogen bonds;

• electrostatic interactions (ionic and van der Waals);

• hydrophobic and hydrophilic interactions.

Hydrogen bonds can be considered electrostatic interactions, but due to their unique prop-
erties and central role in the folding process, they are categorised separately.

Even if the non-covalent interactions taken into account are the same for RNAs and proteins,
the rules that allow two nucleotides to interact differ from those that govern the interplay of two
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amino acids. Hence, we need to define two different models, one for each class of molecules. The
highlighted differences affect the whole folding process and cause our models to show different
traces, namely different sequences of transitions in their respective LTSs.

However, the expressiveness of process algebras allows us to identify an abstraction level in
which these two processes show a congruence relation called strong bisimilarity; this means that
they afford the same traces and that all the states they reach in such traces are equivalent [1]. At
this specific level of abstraction, the two folding processes form structures with the same com-
plexity, thus capable of expressing identical functions. If such an abstraction level corresponded
to the actual folding process of RNAs and proteins, there would exist two different classes of
molecules showing the same behaviour.

Our results concern the RNA world hypothesis due to the interpretation of the behavioural
equivalence of RNA and protein folding under specific restrictions (as in Theorem 2.1). According
to the RNA world hypothesis, in the early stages of cell evolution, RNA might have performed
both structural and catalytic activities; as the complexity of cells increased, there was a need
for molecules able to carry out more complex tasks. Our models show that cells cope with this
necessity by forming molecules–namely proteins–whose elementary units perform interactions
more complex than those of nucleotides. Towards the RNA world hypothesis, such molecules
might be evolved, similarly to RNAs, as linear sequences of monomers able to fold up into
three-dimensional structures, driven by free energy reduction.

2.2.1 Folding step

A folding step represents an iteration that allows the non-deterministic choice between one of the
possible sub-processes describing the behaviour of the non-covalent interactions. It ensures that
each of its sub-process complies with specific restrictions on its input and that the interaction
has a negative free-energy change. The latter, denoted by ∆G and modelled with the ΔþG process,
can be negative (ndg), positive (pdg), or zero (zdg); a negative ∆G is an essential condition for an
interaction to be performed. To capture the distinctive properties of RNA and protein folding
beyond the common features described above, our model considers two folding step processes.
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Definition 2.1 (Folding Step). The RNA folding step and the protein folding step processes,
denoted by Fs

rna and Fs
p, respectively, are defined by the following CCS equations:

RNA folding step Protein folding step

Fs
rna

def= ub.I1n+ub.I2n+srsr.I1n+
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

groupþ 1þ

drdr.I1n+srdr.I1n+tpb.I1n;

I1n
def= ub.ΔþGIe

b
+srsr.ΔþGIe

b
+drdr.ΔþGIe

b
+

srdr.ΔþGIe
b
+tpb.ΔþGIe

b
;

I2n
def= ub.ΔþGPb2 +ub.ΔþGIh

b
+srsr.ΔþGPb3+

drdr.ΔþGPb3 +srdr.ΔþGPb3 ;

ΔþGIe
b

def= ndg.Ie
b;

ΔþGIh
b

def= ndg.Ih
b ;

ΔþGPb2

def= ndg.Pb2;

ΔþGPb3

def= ndg.Pb3;

∣∣∣∣∣∣∣∣∣∣∣∣∣

Fs
p

def= aa.I1aa+aa.ΔþGIh
aa

;

I1aa
def= aa.ΔþGIe

aa
+aa.ΔþGPaa ;

ΔþGIe
aa

def= ndg.Ie
aa;

ΔþGIh
aa

def= ndg.Ih
aa;

ΔþGPaa

def= ndg.Paa;

Pb2
def= hb.B1b2;

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

groupþ 2þ

B1b2
def= hb.B2b2;

B2b2
def= hb.B3b2 +srsr.Fs

rna+drdr.Fs
rna+

srdr.Fs
rna;

B3b2
def= srdr.Fs

rna;

Pb3
def= hb.B1b3;

B1b3
def= hb.B2b3 +tpb.Fs

rna;

B2b3
def= hb.B3b3 +tpb.Fs

rna;

B3b3
def= tpb.Fs

rna;

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Paa
def= aa1fnh.NHaa1+

aa1fco.COaa1;

NHaa1
def= aa2fco.COaa2;

COaa1
def= aa2fnh.NHaa2;

COaa2
def= hb.Baa;

NHaa2
def= hb.Baa;

Baa
def= paa.Fs

p;

Ie
b

def= ii.Fs
rna+vdwi.Fs

rna;
∣∣∣∣∣∣∣∣∣∣
groupþ 3þ

Ih
b

def= hbi.Irna;

Irna
def= bb.S;

S
def= sb.Fs

rna.

∣∣∣∣∣∣∣∣∣∣
Ie

aa
def= ii.Fs

p+vdwi.Fs
p;

Ih
aa

def= hlsc.Op+hbsc.Ip;

Op
def= esc.Fs

p;

Ip
def= bsc.Fs

p.
(2.1)

The meanings of every subprocess and action label are provided in Tables 2.1 and 2.2, respec-
tively.
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Table 2.1 – Symbols used to denote the processes in Equation 2.1. The process name transliterations
are necessary to construct the related LTS representations through the CAAL concurrency
workbench [3], as shown throughout this chapter.

Process\State Transliteration Description

NHaa1 AA1NH first amino acid’s free amino group

COaa1 AA1CO first amino acid’s free carboxyl group

NHaa2 AA2NH second amino acid’s free amino group

COaa2 AA2CO second amino acid’s free carboxyl group

Ie
aa AAEI electrostatic interaction between amino acids

ΔþGIe
aa

AAEIDG ∆G of an AAEI

Ih
aa AAHI hydrophobic/hydrophilic interaction of an amino acid

ΔþGIh
aa

AAHIDG ∆G of an AAHI

Baa AAHB hydrogen bonding between two amino acids

I1aa AAI1 non-specific amino acid interaction

Paa AAP amino acid pairing

ΔþGPaa AAPDG ∆G of an AAP

Ie
b BEI electrostatic interaction between bases

ΔþGIe
b

BEIDG ∆G of a BEI

BXb2(X = 1,2,3) BHBX (X = 1, 2, 3) hydrogen bonding between two bases

Ih
b BHI hydrophobic interaction of bases

ΔþGIh
b

BHIDG ∆G of a BHI

Pb2 BP base pairing

ΔþGPb2 BPDG ∆G of a BP

IXn(X = 1,2) NIX (X = 1, 2) non-specific nucleotide interaction

Fs
p PFS protein folding step

Ip PI protein inside

Op PO protein outside

Fs
rna RNAFS RNA folding step

Irna RNAI RNA inside

S S base stacking

BXb3(X = 1,2,3) TBHBX (X = 1, 2, 3) hydrogen bonding between three bases

Pb3 TBP triple base pairing

ΔþGPb3 TBPDG ∆G of a TBP
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Table 2.2 – Action labels used in Equation 2.1.

Action label Description

aa amino acid

aa1fco first amino acid’s free carboxyl group

aa1fnh first amino acid’s free amino group

aa2fco second amino acid’s free carboxyl group

aa2fnh second amino acid’s free amino group

bb buried bases

bsc buried side chain

dr double-ring base (purine)

esc exposed side chain

hb hydrogen bond

hbsc hydrophobic side chain

hbi hydrophobic interaction

hlsc hydrophilic side chain

ii ionic interaction

ndg ∆G < 0

paa paired amino acids

pdg ∆G > 0

sb stacked bases

sr single-ring base (pyrimidine)

tpb base triple

ub unpaired base

vdwi van der Waals interaction

zdg ∆G = 0
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Both Fs
rna and Fs

p are structured in sub-processes that can be clustered in three main groups:

• groupþ 1þ determines the type of the elementary units involved in the current folding step,
the interaction that is going to be established between them, and if its ∆G is negative;

• groupþ 2þ describes the formation of one or more hydrogen bonds between two units (un-
paired or already paired);

• groupþ 3þ models the behaviour of ionic, van der Waals, and hydrophobic interactions.

In this first phase of our model definition, which aims to remain as faithful as possible to the
biological folding process, the groupþ 2þ of sub-processes carries out the important task of limiting
the maximum number of elementary units that can be linked by hydrogen bonds as well as the
number of hydrogen bonds that can be generated between two units.

The hydrogen bond formation (in both Watson-Crick and Wobble base pair) is modelled
generalising this process as an interaction between a purine (adenine or guanine) and a pyrimi-
dine (uracil and cytosine) or between two paired bases and a third base (in this case, a generic
purine or pyrimidine). Since purines are double-ring bases, they are labelled dr; pyrimidines,
conversely, are single-ring bases and hence labelled sr. The base pairing is symmetric, thus
srdr= drsr.

Regarding the number of hydrogen bonds in a base pair, our models allow them to be at least
two and at most three. Conversely, the hydrogen bonds that link an unpaired base to a group of
two already paired bases must be from one to three. We introduce these constraints because
base pairs with a single hydrogen bond can be classified as variants of those linked by two, and
the number of hydrogen bonds found in a base triplet is three to six [80].

In contrast with the base pairing of nucleotides, only a single hydrogen bond is allowed
between two amino acids; however, there is no limitation in the length of a sequence of amino
acids linked to one another via hydrogen bonds.

A complete description of the conventions adopted and the choices made to derive the two
models from the biological folding processes can be found in Appendix A.

To construct the whole RNA and protein folding processes, the RNA folding step (Fs
rna) and

protein folding step (Fs
p) processes are placed in parallel composition with the process ΔþG, which

represents the free energy variation during folding.

Definition 2.2 (RNA and protein folding). Let Fs
rna and Fs

p be the processes defined in Equa-
tion 2.1 and ndg, pdg, and zdg be action labels representing the folding step free-energy change
(negative, positive, or zero, respectively). The RNA and protein folding processes, denoted by
Frna and Fp, respectively, are defined as follows:

Frna
def= (Fs

rna|ΔþG) \ {ndg,pdg,zdg};

Fp
def= (Fs

p|ΔþG) \ {ndg,pdg,zdg};

where ΔþG def= pdg.ΔþG + ndg.ΔþG + zdg.ΔþG.

(2.2)
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(a)

(b)

Figure 2

As an example, if the attacker chooses the transition RNAFS ub�! NI1 on the RNAFS LTS, the defender has no available
transition on the PFS LTS to respond.

This first verification proves that a modelisation strictly faithful to the biological folding leads us to define processes whose

behaviours are not equivalent.

We might therefore wonder if there is an abstraction level at which the two folding processes would show a behavioural

equivalence. As it will be proved in this article, this level of abstraction can actually be defined. Its construction, however,
requires a generalisation of the weak-interaction processes and the imposition of some limitations to the “expressiveness” of the
protein folding process.

Higher abstraction level model
The first of the two aforementioned modifications can be achieved by:

• redefining nucleotides and the amino acids as general elementary units, which can be paired or unpaired;

• abstracting from the specificity of each pairing process by no longer taking into account the number of hydrogen bonds
formed between two (or three) paired units;

• generalising the hydrophobic interactions to their key feature of burying the hydrophobic molecules while exposing the
hydrophilic ones (no longer considering the stacking process typical of the hydrophobic interactions of nucleotides).

These adjustments to the model do not affect the main property of each weak interaction, therefore the model is still faithful
to the biological process. However they are not sufficient to obtain a behavioural equivalence between the folding processes of
RNAs and proteins.

6/13

Figure 2.1 – Labelled transition systems of the Fs
rna process (a), transliterated RNAFS, and of the Fs

p
process (b), transliterated PFS, generated with the CAAL web-based concurrency work-
bench [3]. Each process and label represented in the LTSs is described in Tables 2.1 and 2.2.

2.2.2 Bisimilarity equivalence

The verification that two processes of the proposed models are bisimilar (i.e., if they show
the same behaviour) is based on bisimulation games, namely game characterisations of the
bisimilarity. Informally, we can define a bisimulation game as a sequence of rounds in which
the LTSs of two processes are compared. The game explores the LTSs by pairs of states (called
configurations).

Starting from an initial configuration, two players–an attacker and a defender–try to perform
in turn a transition based on one of the two LTSs; the game is begun by the attacker, who decides
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which transition of the initial configuration to perform (and hence which of the two LTSs to
explore). The choice made in each turn determines the configuration explored in the next one by
the other player. A finite play of the game is lost by the player who cannot make a move from
the current configuration. If the play is infinite (as in the case in which a cycle is detected), the
defender is considered to win because the attacker cannot distinguish the behaviour of the two
processes.

Two states are strongly bisimilar if and only if the defender has a universal winning strategy
(i.e., he can always win the game, regardless of how the attacker selects his moves) in the strong
bisimulation game that starts from the configuration made up of such states.

If we try to prove the behavioural equivalence of the Fs
rna and Fs

p processes, we can observe,
from the LTSs in Figure 2.1, that the bisimulation game ends after only one move, regardless of
the choice made by the attacker, with the defeat of the defender.

As an example, if the attacker chooses the transition RNAFS
ub−→NI2 on the LTS of RNAFS, the

defender has no available transition on the LTS of PFS to respond.
This first verification proves that a model strictly faithful to biological folding leads us to

define processes whose behaviours are not equivalent.

2.2.3 High abstraction level model

We might wonder if there is an abstraction level at which the two folding processes would show
a behavioural equivalence. As proved in the remainder of this chapter, this level of abstraction
can actually be defined. Its construction, however, requires generalising the non-covalent
interactions and imposing some limitations on the expressiveness of the protein folding process.

The first of the two modifications mentioned above can be achieved by:

• redefining nucleotides and amino acids as general elementary units, which can be paired
or unpaired;

• abstracting from the specificity of each pairing process by no longer taking into account
the number of hydrogen bonds formed between two (or three) paired units;

• generalising the hydrophobic interactions to their key feature of burying the hydrophobic
molecules while exposing the hydrophilic ones (no longer considering the stacking process
typical of the hydrophobic interactions of nucleotides).

These adjustments to the model do not affect the key properties of each non-covalent inter-
action; therefore, the model is still fairly faithful to the biological process. However, they are also
not sufficient to obtain a behavioural equivalence between the folding processes of RNAs and
proteins: we still need to limit the proteins’ folding capability by reducing to three the number of
amino acids that can interact through hydrogen bonds (because in RNA we can form at most
base triples).

Based on these premises, we can define a folding step high abstraction function H , which
maps each folding step to its respective higher abstraction level described above.
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Definition 2.3 (Folding step high abstraction function). Given Fs
rna and Fs

p as in Equation 2.1
and a process P, we define the folding step high abstraction function H as follows:

H (P) =
{
Fs

rna, if P=Fs
rna

Fs
p, if P=Fs

p
(2.3)

where Fs
rna and Fs

p denote, respectively, the high abstraction RNA folding step and high abstraction
protein folding step processes, whose behaviours are given by the following defining equations:

High abstraction RNA folding step High abstraction protein folding step

Fs
rna

def= uu.I1n+pu.I1n+
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

groupþ 1þ

uu.ΔþGIh
n
+uu.I2n+

tpu.I1n;

I1n
def= uu.ΔþGIe

b
+pu.ΔþGIe

b
+

tpu.ΔþGIe
b
;

I2n
def= uu.ΔþGPb2 +pu.ΔþGPb3 ;

ΔþGIe
b

def= ndg.Ie
b;

ΔþGIh
n

def= ndg.Ih
n ;

ΔþGPb2

def= ndg.Pb2;

ΔþGPb3

def= ndg.Pb3;

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Fs
p

def= uu.I1aa+pu.I1aa+
uu.ΔþGIh

aa
+uu.I2aa+

tpu.I1aa;

I1aa
def= uu.ΔþGIe

aa
+pu.ΔþGIe

aa
+

tpu.ΔþGIe
aa

;

I2aa
def= uu.ΔþGPaa +pu.ΔþGPaa3 ;

ΔþGIe
aa

def= ndg.Ie
aa;

ΔþGIh
aa

def= ndg.Ih
aa;

ΔþGPaa

def= ndg.Paa;

ΔþGPaa3

def= ndg.Paa3;

Pb2
def= hb.BsrBsr+hb.BdrBdr+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

groupþ 2þ

hb.BsrBdr;

BsrBsr
def= pu.Fs

rna;

BdrBdr
def= pu.Fs

rna;

BsrBdr
def= pu.Fs

rna;

Pb3
def= hb.Ub3;

Ub3
def= tpu.Fs

rna.

∣∣∣∣∣∣∣∣∣∣∣∣∣

Paa
def= hb.NC+hb.CN;

NC def= pu.Fs
p;

CN def= pu.Fs
p;

Paa3
def= hb.Uaa3;

Uaa3
def= tpu.Fs

p;

Ie
b

def= ii.Fs
rna+vdwi.Fs

rna;
∣∣∣∣∣∣∣∣∣∣
groupþ 3þ

Ih
n

def= hlc.Orna+hbc.Irna;

Orna
def= ec.Fs

rna;

Irna
def= bc.Fs

rna.

∣∣∣∣∣∣∣∣∣∣
Ie

aa
def= ii.Fs

p+vdwi.Fs
p;

Ih
aa

def= hlc.Op+hbc.Ip;

Op
def= ec.Fs

p;

Ip
def= bc.Fs

p.
(2.4)

The process symbols and action labels that are different from those in Equation 2.1 are described
in Tables 2.3 and 2.4, respectively. For a phased construction of the folding step high abstraction
models, see Appendix Section A.1.7.
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Table 2.3 – Processes of the folding step high abstraction models defined in Equation 2.4. The process
name transliterations are used in the model LTSs to perform the bisimulation game set up
to prove Theorem 2.1. The missing symbols are described in Table 2.1.

Process\State Transliteration Description

IXaa(X = 1,2) AAIX (X = 1, 2) non-specific amino acid interaction

C C amino acid’s carboxyl group

Bdr DR double-ring base (purine)

ΔþG FSDG folding step delta G

N N amino acid’s amino group

Ih
n NHI hydrophobic/hydrophilic interaction of a nucleotide

ΔþGIh
n

NHIDG ∆G of an NHI

Fs
p PFS protein folding step

Fs
rna RNAFS RNA folding step

Orna RNAO RNA outside

Bsr SR single-ring base (pyrimidine)

Paa3 TAAP triple amino acid pairing

ΔþGPaa3 TAAPDG ∆G of a TAAP

Uaa3 TAAU amino acid triple unit

Ub3 TBU base triple unit

Table 2.4 – Action labels specific to the folding step high abstraction models defined in Equation 2.4;
the remaining model labels are described in Table 2.2.

Action label Description

bc buried component

ec exposed component

hb hydrogen bonding

hbc hydrophobic component

hlc hydrophilic component

pu paired unit

tpu triple unit

uu unpaired unit
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The definition of these new models can be considered an important result since it is possible
to prove that, at this level of abstraction, RNA folding and protein folding show the same behaviour.

Theorem 2.1. Let Fs
rna = H (Fs

rna) and Fs
p = H (Fs

p), then Fs
rna and Fs

p are strongly bisimilar
(Fs

rna ∼ Fs
p).

Proof. The proof is provided via a bisimulation game. A winning strategy of the defender starts
from the pair of states (Fs

rna,Fs
p) of the model’s LTSs, transliterated (RNAFS,PFS) as in Figure 2.2.

The play, sown in Table 2.5, demonstrates that RNAFS ∼ PFS, i.e., that the two processes are
strongly bisimilar (see Section 1.3.3).

(a)

(b)

Figure 3

What we still need to do is limiting the folding capability of the proteins by reducing the number of amino acids that can
interact through hydrogen bonds to the number of three (the maximum number of nucleotides that can pair in RNAs).

Let H : P ! P be the function that maps each folding process to its respective abstraction level, as above defined. The
application of H to the models defined in the previous section results in a new representation of the folding processes of RNAs
and proteins, represented by the symbols Frna and Fp respectively (see Section 2 of the Supplementary Information for a
complete description).

The definition of these new models can be considered an important result since it is possible to prove that, at this level of

abstraction, the RNA folding process and the protein folding process show the same behaviour.

Theorem 1. If Frna = H(Frna) and Fp = H(Fp) then Frna and Fp are strongly bisimilar (Frna ⇠ Fp).

Proof. The proof is provided via a bisimulation game (see Table 1). A winning strategy of the defender starts from the pair of
states (F s

rna,F s
p) of the relative LTSs, transliterated (RNAFS,PFS) as in Figures 3a and 3b.

As proved by Milner5, given two processes P and Q, such that P ⇠ Q, the following two rules are true:

P|R ⇠ Q|R and R|P ⇠ R|Q, for each process R

P\L ⇠ Q\L, for each set of labels L,

The Frna and Fp folding processes, likewise Frna and Fp, are defined as

7/13

Figure 2.2 – Labelled transition systems of the Fs
rna process (a), transliterated RNAFS, and of the Fs

p
process (b), transliterated PFS, generated with the CAAL web-based concurrency work-
bench [3]. Subprocesses and labels shown in the LTSs are described in Tables 2.1, 2.2, 2.3
and 2.4.
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Round Current configuration Attacker Defender

Round 1 (RNAFS,PFS) RNAFS
uu−→ NI2 PFS

uu−→ AAI2

Round 2 (NI2,AAI2) NI2
uu−→ BPDG AAI2

uu−→ AAPDG

Round 3 (BPDG,AAPDG) BPDG
ndg−−→ BP AAPDG

ndg−−→ AAP

Round 4 (BP,AAP) BP
hb−→ SRDR AAP

hb−→ CN

Round 5 (SRDR,CN) SRDR
pu−→ RNAFS CN

uu−→ PFS

Round 6 (RNAFS,PFS) A cycle has been detected Defender wins

Table 2.5 – Winning strategy of the defender in the strong bisimulation game that compares the
(Fs

rna,Fs
p), pair of processes, transliterated (RNAFS,PFS). The result of this play proves

that RNAFS∼PFS, i.e. that the two processes are strongly bisimilar.

Definition 2.4 (High abstraction RNA and protein folding). Let Fs
rna and Fs

p be the processes
generated from Fs

rna and Fs
p through H , and ndg, pdg, and zdg be action labels representing

the folding step free-energy change (as in Definition 2.2). The high abstraction RNA folding and
high abstraction protein folding processes, denoted by Frna and Fp, respectively, are defined as
follows:

Frna
def= (Fs

rna|ΔþG) \ {ndg,pdg,zdg};

Fp
def= (Fs

p|ΔþG) \ {ndg,pdg,zdg};

where ΔþG def= pdg.ΔþG + ndg.ΔþG + zdg.ΔþG.

(2.5)

Theorem 2.2. Frna and Fp are strongly bisimilar (Frna ∼ Fp).

Proof. As proved by Milner [77], given two processes P and Q, such that P∼Q, the following two
rules hold:

P | R∼Q | R and R | P∼R | Q , for each process R

P \ L ∼Q \ L, for each set of labels L.

Therefore, based on Theorem 2.1 and Definition 2.4,Frna and Fp are strongly bisimilar.

Proof to Theorem 2.2 can also be obtained with the aid of an automated tool; in Figure 2.3,
we show the results of the bisimulation game performed with CAAL concurrency workbench on
the processes Frna and Fp, transliterated RNAFOLDING and PFOLDING, respectively.
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Figure 2.3 – Bisimulation game performed with CAAL concurrency workbench [3]; it shows that the Frna
and Fp processes, transliterated RNAFOLDING and PFOLDING, respectively, are strongly
bisimilar, as the checkmark on the “Status” column indicates.

Through the construction of the folding step high abstraction function H , we have formally
demonstrated the existence of an abstraction level at which the folding processes of RNAs and
proteins show the same behaviour and hence can generate three-dimensional structures of the
same complexity; we refer to this abstraction level as RNA and protein congruence level.

2.3 Discussion

Starting from the models of RNA and protein folding, we have demonstrated how it is possible to
formally define an abstraction level at which the two processes show behavioural equivalence. We
have formally proved how it is possible to reach such an equivalence by reducing the complexity
of the structures expressible through protein folding. This result can be interpreted as a clue that,
at a point in the early evolution of life on Earth, proteins emerged to meet the need for molecules
that could more effectively carry out the functions performed by RNA molecules and cope with
more complex tasks. Nevertheless, we are well aware that we leave many questions unanswered
regarding the RNA world theory, such as what role RNA would have played in storing genetic
information; but it is not the objective of this manuscript to provide definitive proof of the theory
mentioned above. However, we are equally convinced that our work lays a solid foundation for
further developments in this direction.

Thanks to our models, we can infer the complexity of a biological structure, and hence of
its function, based on the properties of its elementary components. In the case of RNAs and
proteins, the distinguishing features of their respective folding processes have been identified
and modelled only based on the known properties of the interactions that pair nucleotides (in
RNAs) and amino acids (in proteins).

2.4 Conclusions

Due to its expressiveness, CCS turned out to be suitable for defining models based on the
approach proposed throughout this chapter. The use of process algebras to describe molecular
interactions can highlight the relationship between the complexity of the functions carried out
by a biological entity and the type of interactions tying the elementary units that compose its
structure.

This idea could be extended to the definition of predictive models of many other classes of
biological molecules and processes by considering all the fundamental dynamics characterising
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a biological system. For example, in Chapter 3, we define formal models of the entire gene
expression process to study gene mutations that cause protein misfolding [32, 46].

Differently from the approach proposed in Part II of this manuscript, this chapter does
not describe a simulation-based tool, but rather a theoretical way to acquire new knowledge
about the studied systems. However, we have not aimed to define a new theory but a new
methodology to understand biological behaviours by analysing the complexity of the interactions
characterising living systems. Moreover, our work can be placed in the context of the topological
analysis of the folding process [68, 73, 96].

Although the results proposed in the present chapter are based on the construction of
algebraic models through process calculi, they actually provide us with factual knowledge. We
believe that mathematics is not about human activity or phenomena; it is about extracting and
formalising ideas and their manifold consequences [98].





Chapter 3

An Algebraic Approach to the Study of
Protein Misfolding

3.1 Introduction

Formal methods have long been adopted in computer science for software specification and
design; in recent years, they have also been effectively applied to model biological systems,
especially with the aim of analysing the interactions occurring among their components [13, 20,
24, 27, 37].

Following this idea, in Chapter 2, we modelled the folding processes of ribonucleic acids
(RNAs) and proteins in terms of the interactions performed by their monomeric units. For
that purpose, we leveraged the expressivity of Milner’s Calculus of Communicating Systems
(CCS) [77], which allowed us to formally define a congruence level where such biological processes
are bisimilar, namely showing equivalent behaviours. This abstraction level was obtained by
reducing the complexity of the protein folding process and, thus, of the structures it can express.

We propose a type of investigation that, although strongly theoretical, has proven capable of
providing new knowledge on the modelled processes; it also brought a different perspective on
biological behaviours that, while well-known, have been studied mainly through experimental
approaches. However, outside the congruence level, RNAs and proteins exhibit remarkable
differences, both structural and functional, whose algebraic properties are yet to be explored.

This chapter goes a step further in addressing this issue by using CCS and Hennessy-Milner
logic (HML) [54, 63] to model the processes that express genetic information in the form of
RNA and protein structures and compare the folded conformations of the generated molecules.
We focus on a class of pathologies that affect the folding process to study how they operate, in
RNAs and proteins, on structural components of different complexity; specifically, we formally
describe how the mutation even of a single nucleotide in a gene (point mutation) can alter the
final conformation of a protein, while it is harmless for the structure of RNAs.

49
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This analysis involves a formal description of how such pathologies, which originate as errors
in the genetic code, might propagate through each step of gene expression, evading the cell’s
error detection and affecting both RNA and protein sequences. The adopted approach relies on
a model of gene expression that is specifically defined over the transformations undergone by
the informational content; it highlights the possible paths (correct or wrong) the information can
follow from the DNA of a gene to the ribonucleotide sequence of an RNA molecule and, finally,
to the amino acids of a protein’s polypeptide chain.

We use sickle-cell anaemia, a well-known haemoglobin disease, as a case study to investigate
such properties.

3.2 Results

3.2.1 Process-based models of gene expression

A gene is a deoxyribonucleic acid (DNA) string that codes for a functional product, which we
consider to be a protein. In fact, other types of molecules can be generated, such as ribozymes,
which carry out catalytic functions similar to those of proteins (see Section 1.2.4). Although this
chapter aims to compare the process that generates both RNA and proteins, we will consider
only the coding role of RNA.

The expression of a gene is carried out by three main processes: transcription, RNA processing,
and translation. In what follows, we provide an algebraic model for each of them: through CCS,
we represent their behaviour, whose constraints are specified with the aid of HML (see Section 1.3
for details on these two specification techniques). We remark that the models we are going to
describe are strictly theoretical and aimed at capturing the core informational properties of the
processes contributing to the expression of a gene. Based on these premises, we abstract DNAs
and RNAs as nucleotide strings, while proteins are strings of amino acids.

As the first step in modelling gene expression, we thus introduce the set of nucleotides

N = {a,c,g,t,u} (3.1)

where each letter, in our process-based settings, is an action label that stands, respectively, for
adenine, cytosine, guanine, thymine, and uracil. From the biological perspective, these are the
bases that characterise and identify each nucleotide. Since a DNA sequence should not contain
uracil, while RNA does not have thymine bases, it is useful to consider the following two subsets
of N :

Ndna = N − {u} = {a,t,c,g} (3.2)

Nrna = N − {t} = {a,u,c,g} (3.3)
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Transcription

As the first process involved in gene expression, the gene transcription takes the DNA sequence
of a gene as a template to produce an RNA molecule (transcript). Each gene codes for a specific
protein; therefore, the transcript must contain a copy of such definite information. The process
is mainly carried out by a molecular complex called RNA polymerase (RNApol) [117].

In this perspective, a gene is a string of nucleotides enclosed between the labels p and t,
respectively denoting the transcription process’s promoter and terminator. More precisely, the p
label generalises the system of nucleotide sequences (e.g., TATA and CAAT boxes) and proteins
(e.g., general transcription factors) that allows the transcription to initiate at the beginning of the
gene; similarly, the t label indicates the end of the gene.

Although a gene could be intuitively represented as a string of N+
dna, which is the non-empty

set of all possible strings of the alphabet Ndna, a mutation1 may lead to the substitution of a
thymine base with uracil. Therefore, we consider a gene as a string in N+.

Definition 3.1 (Gene). Given the sets Ng = N ∪ {p,t} and

G = {γ | ∃ δ= "p" γ "t", δ ∈ N+
g , γ ∈ N+, gmi n ≤ |γ| ≤ gmax , gmi n , gmax ∈N+} (3.4)

a g ene is a string γ ∈G .

The length of the string γ, denoted by |γ|, is bounded by the two parameters gmi n and gmax ,
which abstract, respectively, the minimum and maximum numbers of nucleotides of a gene
that are experimentally retrievable or axiomatically defined. In our setting, gmi n and gmax are
purely theoretical, and their actual values are not considered in the models. "p" and "t" denote
the strings containing only the label p and t, respectively; the string δ is thus represented by a
concatenation of strings, meaning that it is constructed by joining a series of strings together,
end-to-end, without gaps. This approach to parameter and string definition will be taken as
implicit in the rest of this chapter.

The transcription process T converts a string γ ∈ G to a sequence of action labels in N+
rna

representing the transcript.

Definition 3.2 (RNA transcript). Given Nt = Nrna ∪ {3,5} and

T = {θ | ∃ χ= "5" θ "3", χ ∈ N+
t , θ ∈ N+

rna, gmi n ≤ |θ| ≤ gmax } (3.5)

an RNA transcript is a string θ ∈ T .

The string θ is bounded in its length by gmi n and gmax ∈N+ because it has the same number
of nucleotides as the source gene. 5 and 3 are not natural numbers but labels denoting, respec-
tively, the 5’ and 3’ end of the transcript. They are called that way because they indicate the

1Mutations may occur due to hereditary diseases or during the replication process, that is, the process that
duplicates a DNA strand.
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extremities of the transcript; precisely, the terminus that exposes the phosphate group of the
last nucleotide’s fifth carbon, in the first case, and the terminus ending with the third carbon’s
hydroxyl group, in the second case. We made them explicit to provide entry and end points to
the subsequent processing phase of the gene expression model.

The T process starts from the p label and proceeds (working on one nucleotide at a time) until
it reaches the t label. We thus model an RNApol molecule as the process RNApol that takes as
input a nucleotide (a,t,c, or g) and produces as output the base-pairing with its complementary
ribonucleotide (u,a,g,c, respectively), adding the latter to the sequence of the transcript. When
a mispairing occurs, non-complementary bases are associated in a base pair. A proofreading
process R takes the base pairs generated by RNApol and, in case of mispairing, provides the correct
nucleotide that has to be added to the transcript; however, R can make mistakes and leave a
mispairing uncorrected [110]. The sets of the canonical base pairs B and that of the mispaired
bases M contain the following action labels:

B = {au, cg , ta, gc}, M = {ac, tg , ca, gu} (3.6)

Definition 3.3 (Transcription). Let G be the process that initiates the expression of a gene
(namely, a string of labels γ ∈G). Given the set of action labels LT = N ∪B ∪M ∪ {3,5,p,t}, for

each γ, the transcription process T, such that G
γ=⇒T, is defined as follows:

T
def=p.5.RNApol;

RNApol
def= a.At +t.Tt +c.Ct +g.Gt +t.3.0;

At
def= au.R+ac.R;

Tt
def= ta.R+ tg .R;

Ct
def= cg .R+ ca.R;

Gt
def= gc.R+ gu.R;

R
def= au.Ur +ac.Ur + ta.Ar + tg .Ar + cg .Gr + ca.Gr + gc.Cr + gu.Cr+

ac.Cr + tg .Gr + ca.Ar + gu.Ur ;

Ar
def= a.RNApol;

Ur
def= u.RNApol;

Cr
def= c.RNApol;

Gr
def= g.RNApol;

(3.7)

where

• At , Tt , Ct , Gt , and Ut are states describing the behaviour of the RNApol process when it takes
the corresponding nucleotide as input: this behaviour is defined by the non-deterministic
choice between the correct base-pairing and a mispairing;



3.2. RESULTS 53

• Ar , Tr , Cr , Gr , and Ur are states indicating which output will be provided accordingly to the
choice made by the R (proofread) process; the labels in the first row of the R definition
show the proper base-pairing (including error corrections), while the second row contains
the cases in which the proofreading process does not recognise a mispairing.

The meaning of the process names and action labels used in this and the following CCS defining
equations are provided in Tables 3.2 and 3.3.

Since considering specific transcript lengths is beyond the scope of this chapter, we generalise
them as determined by the |γ| value of each string γ ∈ G . Therefore, based on the algebraic
definition of the T process, we can provide the following specification.

Given the set of labels L ′
T = {3,5,b1,b2,b1b2 ,p,t}, where b1 ∈ N , b2 ∈ Nrna, and b1b2 ∈ B ∪M ,

for each string γ ∈G ,

T Í 〈p〉〈5〉T
T ≡∧

|γ|
B∧〈t〉〈3〉tt

B ≡ 〈b1〉〈b2〉〈b1b2〉〈b1b2〉〈b2〉tt

(3.8)

where b1 represents the nucleotide read by the RNApol subprocess, and b1b2 is the base pair

provided as output. The R subprocess takes this base pair as input, and generates b2 as the
(possibly) correct nucleotide that has to be added to the θ string. By definition, this means that:

RNApol Í T (3.9)

However, without losing generality, the length constraint can be relaxed through the use of
recursion, obtaining the following specification:

RNApol Í Tr

Tr ≡ 〈b1〉〈b2〉〈b1b2〉〈b1b2〉(〈b2〉tt∧〈b2〉Tr ∧〈b2〉〈t〉〈3〉tt)
(3.10)

Compared to the T -like formulae, Tr , as the similar formulae that will be defined for RNA
processing and translation, is better suited to the case where the number of nucleotides to take
into account are directly provided by a DNA sequence considered as a case study (as it will be
clarified in Section 3.2.2).

Processing

The transcript can be an intermediary in the synthesis of a protein (in this case, it is called
mRNA, standing for messenger RNA) or be itself the final product of the gene expression (that
is, a functional RNA or non-coding RNA). However, before an RNA molecule can be considered
mature (and hence carries out its purpose), it must undergo different RNA processing steps,
depending on its type [92].
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Two processing steps occur only on transcripts destined to become mRNA molecules:

• the capping process, in which an atypical guanine nucleotide (with a methyl group attached)
is added to the 5′ end of the RNA molecule;

• the polyadenylation process, which appends a poly-A tail (formed by a series of repeated
adenine nucleotides) to the RNA’s 3′ end.

A third step, also common in various types of non-coding RNA, is called RNA splicing and
removes the non-coding intervening sequence (introns) from the ribonucleotide chain of the
transcript; as a result of this process, the transcript is converted into an uninterrupted sequence
of coding portions of the gene (exons). In RNA molecules, an intron is identified by two starting
and two ending nucleotides, gu and ag, respectively; however, not all gu and ag nucleotide
motifs indicate an intron’s starting and ending points. The actual splicing involves the complex
molecular machinery called spliceosome, but, to capture how the informational content changes
during the process, we can model its behaviour as the extraction of a set of label substrings from
a string θ ∈ T ; each of them starts with the nucleotide string "gu" and ends with "ag". The
possibility that not all strings of this kind identify the boundaries of an intron is modelled, in the
processing process P, through non-deterministic choices.

Definition 3.4 (Intron and Exon). Let

I = {φ | φ= "gu" ι "ag", φ ∈ T, ι ∈ N+
rna, jmi n ≤ |φ| ≤ jmax , jmi n , jmax ∈N+} and

E = {ζ | ζ ∈ T \I , emi n ≤ |ζ| ≤ emax , emi n ,emax ∈N+},
(3.11)

an intron is a string φ ∈ I , while an exon is a string ζ ∈ E .

Definition 3.5 (mRNA). Given the set

R = {ρ | ρ = "c" ζ1 . . . ζk "a", ζi ∈ E , i ∈ {1, ...,k},rmi n ≤ k ≤ rmax , rmi n ,rmax ∈N}, (3.12)

an mRNA is a string ρ ∈ R.

rmi n ,rmax are, respectively, the minimum and maximum theoretical number of exons in the
modelled mRNA molecule. The c label represents the cap of the mature mRNA, while the a label
its poly-A tail.
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Definition 3.6 (RNA Processing). Given the set of labels LP = N ∪ {3,5,c,a}, for each string θ ∈ T ,

the processing process P, such that T
θ=⇒P, is defined as:

P
def= 5.Pc;

Pc
def= c.S;

S def= a.As +u.Us +c.Cs +g.Gs +g.I<+3.Pa;

As
def= a.S;

Us
def= u.S;

Cs
def= c.S;

Gs
def= g.S;

I<
def= u.S;

S
def= a.S+a.I>+u.S+c.S+g.S;

I>
def= g.S;

Pa
def=a.0;

(3.13)

where

• the process Pc represents the addition of the cap (c label) to the 5′ end (5 label) of the
transcript; similarly, the process Pa reproduces the polyadenylation of the RNA molecule.

• S is the process that models the spliceosome behaviour, which begins by looking for a g
label that may start an intron (until it reaches the 3 label).

– As , Cs , Gs , and Us are states through which the S process provides as output every
nucleotide that is not the start of an intron;

– I< is a state that captures the case in which a g label followed by a u label represents
the starting string of an intron φ; I> determines that an a label followed by a g label
signals the end of φ.

– S is the process that reproduces the actual splicing by reading, one at a time, the
nucleotides of an intron without producing them as output (i.e., by removing them
from the sequence of the mRNA ρ ∈ R).

Given the set of labels L ′
P = {3,5,b,c}, with b ∈ Nrna, for each θ ∈ T ,

PÍ 〈5〉〈c〉P
P ≡∧

|θ|
S∧〈3〉〈a〉tt

S ≡∧
|ζ|
E ∧∧

|φ|
〈b〉tt

E ≡ 〈b〉〈b〉tt

(3.14)

where ζ ∈ E and φ ∈ I .



56 3. ALGEBRAIC STUDY OF PROTEIN MISFOLDING

In the first part of the S formula, the S (spliceosome) subprocess looks for an intron φ: the
subformula E allows each nucleotide b that belongs to an exon ζ to be left unchanged (the label
b produced as output). When the start of an intron φ is identified, each nucleotide read is not
produced as an output; this behaviour continues for |φ| nucleotides. After that, the process looks
for another exon up to the label 3. The main subprocess S, therefore, is such that:

SÍS (3.15)

By relaxing the length constraints, it also satisfies the Sr formula, that is:

SÍSr

Sr ≡ 〈b〉〈b〉Sr ∧〈g〉〈u〉E
E ≡ 〈b〉E ∧〈a〉(〈g〉tt∧〈g〉Sr )

(3.16)

where {g,u} ⊂ Nrna. It is possible to note that not imposing a length on the string θ (and its
introns and exons) forces the formula describing the S behaviour to explicitly take into account
the recognition of the "gu" and "ag" substrings of θ.

Translation

The last step of the gene expression is the translation process, which converts the information
contained in the nucleotide sequence of a mature mRNA into the amino acid sequence of a
protein [61]. The set of the twenty amino acid labels is the following:

A = {ala,asp,arg,asn,cys,gln,glu,gly,his,ile,
leu,lys,met,phe,pro,ser,thr,trp,tyr,val}

(3.17)

Definition 3.7 (Protein). Let

P = {ψ |ψ ∈ A+, pmi n ≤ |ψ| ≤ pmax , pmi n , pmax ∈N+}, (3.18)

a protein is a string ψ ∈ P .

pmi n , pmax are, respectively, the minimum and maximum theoretical length, in amino acids,
of a protein ψ.

The translation is performed by a molecular complex called ribosome, which, based on the
genetic code (see Table 3.1), associates one of the 20 amino acids with each triplet of nucleotides
(called codon) of the mRNA sequence. Over the set Nrna, containing four nucleotides, we can
obtain 64 triplets; hence each amino acid can be associated with more than one codon.

The translation process L begins from a start codon ("aug", which also codes for the trans-
lation initiator methionine imet) and terminates when the ribosome reaches one of the three
possible stop codons ("uaa","uag", and "uga" triplets).

The model represents the ribosome as the process R, which scans the string ρ ∈ R one nu-
cleotide at a time, starting from the cap (c label) and looking for an "aug" codon. When it finds
this starting substring, it begins to produce as output an amino acid for each codon it reads until
it reaches a stop codon.
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Definition 3.8 (Coding substring). Given λ,λ′ ∈ N∗
rna, ρ ∈ R, and

C = {ξ | ρ = "c" λ "aug" ξ σ λ′ "a", σ ∈ {"uaa","uag","uga"},

ξ= κ1 . . . κn , n ∈N+, |κ| = 3, cmi n ≤ |ξ| ≤ cmax , cmi n ,cmax ∈N+},
(3.19)

a coding substring of ρ is a string ξ ∈C .

cmi n ,cmax are, respectively, the minimum and maximum theoretical number of nucleotides
of a coding string. The set definition also specifies that each coding string is made of triplets of
nucleotides κ, representing its codons.

Definition 3.9 (Translation). Given the set of labels LL = Nrna ∪ A∪ {c,imet,s}, for each string

of labels ρ ∈ R, the translation process L, such that P
ρ=⇒L, is defined as follows:

L
def= c.R;

R def= u.R+c.R+a.U.+g.R;

U.
def= u.G.+c.R+a.R+g.R;

G.
def= u.R+c.R+a.R+g.C.;

C.
def= imet.C;

C
def=

u.(u.(u.PHE+c.PHE+a.LEU+g.LEU)+c.(u.SER+c.SER+a.SER+g.SER)+
a.(u.TYR+c.TYR+a.Cä+g.Cä)+g.(u.CYS+c.CYS+a.Cä+g.TRP))+
c.(u.(u.LEU+c.LEU+a.LEU+g.LEU)+c.(u.PRO+c.PRO+a.PRO+g.PRO)+
a.(u.HIS+c.HIS+a.GLN+g.GLN)+g.(u.ARG+c.ARG+a.ARG+g.ARG))+
a.(u.(u.ILE+c.ILE+a.ILE+g.MET)+c.(u.THR+c.THR+a.THR+g.THR)+
a.(u.ASN+c.ASN+a.LYS+g.LYS)+g.(u.SER+c.SER+a.ARG+g.ARG))+
g.(u.(u.VAL+c.VAL+a.VAL+g.VAL)+c.(u.ALA+c.ALA+a.ALA+g.ALA)+
a.(u.ASP+c.ASP+a.GLU+g.GLU)+g.(u.GLY+c.GLY+a.GLY+g.GLY))+
a.Cä;

ALA def= ala.C; ARG def= arg.C;

ASN def= asn.C; ASP def= asp.C;

CYS def= cys.C; GLY def= gly.C;

GLU def= glu.C; GLN def= gln.C;

HIS def= his.C; ILE def= ile.C;

LEU def= leu.C; LYS def= lys.C;

MET def= met.C; PHE def= phe.C;

PRO def= pro.C; SER def= ser.C;

THR def= thr.C; TRP def= trp.C;

TYR def= tyr.C; VAL def= val.C;

Cä
def= s.0;

(3.20)
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where

• R is the process that models the behaviour of the ribosome; it starts by looking for the first
a of a start codon and proceeds via the following subprocesses/states.

– The states U. and G. allow to identify a start codon ("aug") and then initiate the
actual translation; the first step of this process is performed by the C. process (where
C stands for “code”), in which the translation initiator methionine imet, associated
with the start codon, is produced as output.

– The C process performs the actual translation of each codon to the related amino
acid until it reaches a stop codon ("uaa","uag","uga" substrings) or the poly-A tail
(a label). Each stop codon leads to the Cä process, which ends the translation and
produces as output the stop label s.

Table 3.1 – Genetic code table. It represents the association of each of the 20 amino acid labels (plus
the stop label s) with the related group of matching codon strings.

"aga" "uua" "agc"
"agg" "uug" "agu"

"gca" "cga" "gga" "cua" "cca" "uca" "aca" "gua"
"gcc" "cgc" "ggc" "aua" "cuc" "ccc" "ucc" "acc" "guc" "uaa"
"gcg" "cgg" "gac" "aac" "ugc" "gaa" "caa" "ggg" "cac" "auc" "cug" "aaa" "uuc" "ccg" "ucg" "acg" "uac" "gug" "uag"
"gcu" "cgu" "gau" "aau" "ugu" "gag" "cag" "ggu" "cau" "auu" "cuu" "aag" "aug" "uuu" "ccu" "ucu" "acu" "ugg" "uau" "guu" "uga"

ala arg asp asn cys glu gln gly his ile leu lys met phe pro ser thr trp tyr val s

The model contemplates the possibility that the ribosome finds no stop codons and reaches
the 3′ end of the mRNA molecule, signalled by the poly-A tail sequence [40]; however, handling
this event is beyond this model’s scope.

Although recognising the last nucleotide of a stop codon could immediately interrupt the
translation process (through the nil process 0), we define the Cä subprocess to make the model
clearer and easier to read.

Let ξ be a coding substring of ρ ∈ R, L ′
L = {b, a,c,imet,a,u,g}, where b ∈ Nrna, and a ∈ A; for

each ρ ∈ R,

LÍ 〈c〉L
L≡ 〈b〉L∧〈a〉〈u〉〈g〉〈imet〉C
C ≡∧

|ξ|
3

A

A≡ 〈b1〉〈b2〉〈b3〉〈a〉tt

(3.21)

where b represents the base of each nucleotide read before the R subprocess reaches the "aug"
codon; after that, the formula C describes how the process translates each codon it encounters
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until it generates a protein of |ξ|
3 amino acids. The labels b1, b2, and b3 represent the three bases

of a codon, while a is the corresponding amino acid in the set A. By definition,

RÍL (3.22)

and, if we relax the length constraint:

RÍLr

Lr ≡ 〈b〉Lr ∧〈a〉〈u〉〈g〉〈imet〉C
C ≡ 〈b1〉〈b2〉〈b3〉(〈a〉tt∧〈a〉C)∧〈u〉〈a〉〈a〉〈s〉tt

∧〈u〉〈a〉〈g〉〈s〉tt∧〈u〉〈g〉〈a〉〈s〉tt

(3.23)

Similarly to the formula that specifies the S process, if we do not impose a specific length for
the coding string ξ, the resulting formula must explicitly check when the process is required to
terminate (in this case, by identifying one of the three stop codons).

We can summarise the model of gene expression through the process G, defined as a cycle
that synthesises multiple proteins starting from the same gene γ ∈G . Due to alternative splicing,
a single gene can code for several slightly different protein variants [17].

Definition 3.10 (Gene expression). Given the processes T,P,L, as defined above, and the label
strings γ ∈G , θ ∈ T, ρ ∈ R, and ψ ∈ P , we define gene expression the process G such that

G
γ=⇒T

θ=⇒P
ρ=⇒L

ψ=⇒G (3.24)

Maintaining the approach adopted up to this point, the model of the G process is strictly
focused on the informational content of a gene and considers other aspects, such as the timing
associated with the expression of protein variants, as negligible.

From the above models, it can be guessed that modifying a single nucleotide of a gene can
change the corresponding codon and, in turn, the amino acid produced in the translation process
(missense mutation); in the remainder of this chapter, we will represent how a mutated codon
can code for an amino acid that affects the structure of the related protein.

3.2.2 Formal description of HBB gene expression

The process definitions provided in the previous subsection can be applied to analyse, from a
theoretical perspective, the effects of a point mutation on the expression of RNAs and proteins.
As a case study, we take the HBB gene, which codes for one of the β subunits of the haemoglobin
molecule. Haemoglobin is an essential protein of erythrocytes (red blood cells), formed by
four subunits called globins; precisely, they are two α-globins and two β-globins, allowing
haemoglobin to bind four oxygen molecules [70].

Before considering the gene mutation, we define a model of its correct expression; it is based
on the HBB gene’s DNA sequence derived from an HBB transcript variant (1742 nucleotides) [82],
which we retrieved from the National Center for Biotechnology Information (NCBI) AceView
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Table 3.2 – Meaning and transliteration of the symbols representing the processes\states used in Defi-
nitions 3.3, 3.6, and 3.9.

Process\State Transliteration Description

A A adenine states
ALA ALA alanine
ARG ARG arginine
ASN ASN asparagine
ASP ASP aspartic acid
C C cytosine states
Pc CAPPING capping
CYS CYS cysteine
G G guanine states
GLY GLY gycine
GLU GLU glutamic acid
GLN GLN glutamine
HIS HIS histidine
ILE ILE isoleucine
I< INTRONSTART intron starting state
I> INTRONEND intron ending state
LEU LEU leucine
LYS LYS lysine
MET MET methionine
PHE PHE phenylalanine
Pa POLYAD polyadenylation
PRO PRO proline
P PROCESSING processing
R PROOFREAD proofreading
R RIBOSOME ribosome
RIh HIRIBOSOME modified version of R (Eq. 3.36)
RNApol RNAPOL RNA polymerase
SER SER serine
S SPLICE intron removal
S SPLICEOSOME spliceosome
U. STARTCODON1 start-codon’s a found (looking for u)
G. STARTCODON2 start-codon’s u found (looking for g)
T T thymine states
THR THR threonine
T TRANSCRIPTION transcription
C TRANSLATE codon - amino acid association
L TRANSLATION translation
C. TSTART start-codon’s g found
Cä TSTOP end of translation
TRP TRP tryptophan
TYR TYR tyrosine
U U uracil states
VAL VAL valine
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Table 3.3 – Description of the action labels in Definitions 3.3, 3.6, and 3.9.

Action label Description

a adenine

ala alanine

arg arginine

asn asparagine

asp aspartic acid

c cytosine

c transcript cap

cys cysteine

5 RNA 5’ end

g guanine

gly glycine

glu glutamic acid

gln glutamine

his histidine

ile isoleucine

imet translation initiator methionine

leu leucine

lys lysine

met methionine

phe phenylalanine

pro proline

p transcription promoter

a poy-A tail

ser serine

s end of translation

t tymine

t transcription terminator

thr threonine

3 RNA 3’ end

trp tryptophan

tyr tyrosine

u uracil

val valine
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website [115]. Due to the theoretical setting of our approach, we choose this sequence for no
other reason but to show how our model can represent the expression of an actual gene.

In what follows, we colour the exon coding regions in green, the introns in blue, while in red
we highlight the codon that codes for the sixth glutamic acid (Glu 6) of the amino acid sequence
produced by the HBB gene. This amino acid is the one affected by the mutation that we will
model in the next subsection.

The HBB gene sequence is provided in Appendix B, along with its complete gene expression
model. The adopted approach consists of applying the “relaxed” formulae introduced in the
previous subsection to the HBB nucleotide sequence. As an example, we show the formula based
on Equation 3.10 that is satisfied by the T process.

Example 3.1. (Transcription of the HBB gene) By extending Equation 3.10 to the whole tran-
scription process T, we obtain that:

T Í 〈p〉〈5〉Tr

Tr ≡ 〈b1〉〈b2〉〈b1b2〉〈b1b2〉(〈b2〉tt∧〈b2〉Tr ∧〈b2〉〈t〉〈3〉tt)
(3.25)

We apply Equation 3.25 to formally describe the HBB gene transcription on the basis of its DNA
sequence; the latter is represented as the γhbb string of Appendix Equation B.1.

T Í
〈p〉〈5〉〈g〉〈gc〉〈gc〉〈c〉〈c〉〈cg〉〈cg〉〈g〉〈c〉〈cg〉〈cg〉〈g〉〈g〉〈gc〉〈gc〉〈c〉〈a〉〈au〉〈au〉〈u〉〈c〉〈cg〉〈cg〉〈g〉
〈a〉〈au〉〈au〉〈u〉〈g〉〈gc〉〈gc〉〈c〉〈t〉〈ta〉〈ta〉〈a〉〈a〉〈au〉〈au〉〈u〉〈g〉〈gc〉〈gc〉〈c〉
...
〈a〉〈au〉〈au〉〈u〉 〈c〉〈cg〉〈cg〉〈g〉〈t〉〈ta〉〈ta〉〈a〉〈c〉〈cg〉〈cg〉〈g〉 〈c〉〈cg〉〈cg〉〈g〉
...
〈g〉〈gc〉〈gc〉〈c〉〈t〉〈ta〉〈ta〉〈a〉〈t〉〈ta〉〈ta〉〈a〉〈a〉〈au〉〈au〉〈u〉〈c〉〈cg〉〈cg〉〈g〉〈t〉〈ta〉〈ta〉〈a〉〈a〉〈au〉
〈au〉〈u〉〈c〉〈cg〉〈cg〉〈g〉〈a〉〈au〉〈au〉〈u〉〈t〉〈ta〉〈ta〉〈a〉〈a〉〈au〉〈au〉〈u〉〈t〉〈3〉tt;

(3.26)

The result ofT onδhbb = "p"γhbb"t" is the stringχhbb = "5" θhbb "3", where θhbb is the transcript
string of Appendix Equation B.4.

3.2.3 Formal description of the Glu6Val mutation

Starting from the model of the correct HBB gene expression, it is possible to formalise how a
point mutation can go through each of its steps by evading error detection.

We propose here a model for the Glu6Val mutation, which causes sickle-cell anaemia; a
haemoglobin molecule with this mutation is referred to as HbS. In HbS disease, a point-mutation
in the β-globin gene produces a subunit in which the Glu 6 is changed to valine (Val 6). Such a
mutation creates a hydrophobic patch on the surface of the haemoglobin molecule that fits into
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a hydrophobic pocket of another one and forms fibrous precipitates; this process produces the
characteristic sickle shape of the affected red blood cells [19].

Since this pathology is hereditary, the mutation is already present in the DNA sequence and
thus is treated by the cell as correct information. However, we chose this specific mutation
because the aim of our analysis is not simply to describe the behaviour of the expression of a
mutation but to formally demonstrate, via the CCS models and the related HML formulae, how it
differently affects the folding process of proteins and RNAs.

To maintain the readability of the formulae, we base the subsequent description on the string
γ′hbs , containing the first exon coding region (coloured in green) and the first intron (coloured in
blue) of the mutant HBB gene γhbs ; similarly to what shown in Appendix B, our approach can be
effectively extended to the entire gene sequence.

γ′hbs = "taccacgtagactgaggacacctcttcagacggcaatgacgggacaccccgttccacttgcacc
tacttcaaccaccactccgggacccgtccaaccatagttccaatgttctgtccaaattcctctggttatct
ttgacccgtacacctctgtctcttctgagaacccaaagactatccgtgactgagagagacggataaccaga
taaaagggtgggaatc"

(3.27)
The mutated nucleotide (from t to a) is underlined in the above string and in the following
formulae.

As a first step, we show how the sub-formulae of the whole HbS formula, describing the
Glu6Val mutation, are satisfied by the main processes of gene expression.

Transcription

RNApol Í
〈t〉〈ta〉〈ta〉〈a〉〈a〉〈au〉〈au〉〈u〉〈c〉〈cg〉〈cg〉〈g〉〈c〉〈cg〉〈cg〉〈g〉〈a〉〈au〉〈au〉〈u〉
〈c〉〈cg〉〈cg〉〈g〉〈g〉〈gc〉〈gc〉〈c〉〈t〉〈ta〉〈ta〉〈a〉〈a〉〈au〉〈au〉〈u〉〈g〉〈gc〉〈gc〉〈c〉〈a〉〈au〉〈au〉〈u〉
〈c〉〈cg〉〈cg〉〈g〉〈t〉〈ta〉〈ta〉〈a〉〈g〉〈gc〉〈gc〉〈c〉〈a〉〈au〉〈au〉〈u〉〈g〉〈gc〉〈gc〉〈c〉〈g〉〈gc〉〈gc〉〈c〉
〈a〉〈au〉〈au〉〈u〉〈c〉〈cg〉〈cg〉〈g〉〈a〉〈au〉〈au〉〈u〉〈c〉〈cg〉〈cg〉〈g〉〈c〉〈cg〉〈cg〉〈g〉〈t〉〈ta〉〈ta〉〈a〉
〈c〉〈cg〉〈cg〉〈g〉〈t〉〈ta〉〈ta〉〈a〉
...
〈g〉〈gc〉〈gc〉〈c〉〈t〉〈ta〉〈ta〉〈a〉〈c〉〈cg〉〈cg〉〈g〉〈c〉〈cg〉〈cg〉〈g〉〈a〉〈au〉〈au〉〈u〉
...
〈g〉〈gc〉〈gc〉〈c〉〈a〉〈au〉〈au〉〈u〉〈a〉〈au〉〈au〉〈u〉〈t〉〈ta〉〈ta〉〈a〉〈c〉〈cg〉〈cg〉〈g〉tt

(3.28)

The RNApol process converts the incorrect adenine (a), of the mutated codon in the DNA strand,
to uracil (u) in the nucleotide sequence of the transcript θhbs . As a result, the substring θ′hbs ,
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containing the first exon coding region and the first intron of θhbs , appears as follows:

θ′hbs = "auggugcaucugacuccuguggagaagucugccguuacugcccuguggggcaaggugaacgugg
augaaguugguggugaggcccugggcagguugguaucaagguuacaagacagguuuaaggagaccaauaga
aacugggcauguggagacagagaagacucuuggguuucugauaggcacugacucucucugccuauuggucu
auuuucccacccuuag"

(3.29)
We highlight in orange the starting and ending substrings of the intron ("gu" and "ag").

Processing

SÍ
〈a〉〈a〉〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈c〉〈c〉〈a〉〈a〉〈u〉〈u〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈a〉〈a〉〈c〉〈c〉〈u〉〈u〉
〈c〉〈c〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈a〉〈a〉〈g〉〈g〉〈a〉〈a〉〈a〉〈a〉〈g〉〈g〉〈u〉〈u〉〈c〉〈c〉〈u〉〈u〉
〈g〉〈g〉〈c〉〈c〉〈c〉〈c〉〈g〉〈g〉〈u〉〈u〉〈u〉〈u〉〈a〉〈a〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈c〉〈c〉〈c〉〈c〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉
〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈g〉〈g〉〈g〉〈g〉〈c〉〈c〉〈a〉〈a〉〈a〉〈a〉〈g〉〈g〉〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈a〉〈a〉〈a〉〈a〉〈c〉〈c〉
〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈a〉〈a〉〈u〉〈u〉〈g〉〈g〉〈a〉〈a〉〈a〉〈a〉〈g〉〈g〉〈u〉〈u〉〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈u〉〈u〉
〈g〉〈g〉〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈a〉〈a〉〈g〉〈g〉〈g〉〈g〉〈c〉〈c〉〈c〉〈c〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈g〉〈g〉〈c〉〈c〉
〈a〉〈a〉〈g〉〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈u〉〈a〉〈u〉〈c〉〈a〉〈a〉〈g〉〈g〉〈u〉〈u〉〈a〉〈c〉〈a〉〈a〉〈g〉〈a〉〈c〉〈a〉〈g〉〈g〉〈u〉
〈u〉〈u〉〈a〉〈a〉〈g〉〈g〉〈a〉〈g〉〈a〉〈c〉〈c〉〈a〉〈a〉〈u〉〈a〉〈g〉〈a〉〈a〉〈a〉〈c〉〈u〉〈g〉〈g〉〈g〉〈c〉〈a〉〈u〉〈g〉〈u〉〈g〉
〈g〉〈a〉〈g〉〈a〉〈c〉〈a〉〈g〉〈a〉〈g〉〈a〉〈a〉〈g〉〈a〉〈c〉〈u〉〈c〉〈u〉〈u〉〈g〉〈g〉〈g〉〈u〉〈u〉〈u〉〈c〉〈u〉〈g〉〈a〉〈u〉〈a〉
〈g〉〈g〉〈c〉〈a〉〈c〉〈u〉〈g〉〈a〉〈c〉〈u〉〈c〉〈u〉〈c〉〈u〉〈c〉〈u〉〈g〉〈c〉〈c〉〈u〉〈a〉〈u〉〈u〉〈g〉〈g〉〈u〉〈c〉〈u〉〈a〉〈u〉
〈u〉〈u〉〈u〉〈c〉〈c〉〈c〉〈a〉〈c〉〈c〉〈c〉〈u〉〈u〉〈a〉〈g〉tt

(3.30)

The mutated nucleotide u is part of an exon; therefore, it is not removed from the RNA sequence
by the spliceosome process S, resulting in the following ρ′

hbs substring of the mature mRNA ρhbs :

ρ′
hbs = "auggugcaucugacuccuguggagaagucugccguuacugcccuguggggcaaggugaacgugg

augaaguugguggugaggcccugggcag"
(3.31)

The start codon "aug" is represented in orange. To avoid dealing with excessively long formulae,
in what follows, we consider the substring ρ′′

hbs made of the first thirteen codons of ρ′
hbs (start

codon included), that is, those substring triplets that are close to the mutated "gug" codon:

ρ′′
hbs = "auggugcaucugacuccuguggagaagucugccguuacu"

(3.32)

Translation

RÍ
〈a〉〈u〉〈g〉〈imet〉〈g〉〈u〉〈g〉〈val〉〈c〉〈a〉〈u〉〈his〉〈c〉〈u〉〈g〉〈leu〉〈a〉〈c〉〈u〉〈thr〉〈c〉〈c〉〈u〉
〈pro〉〈g〉〈u〉〈g〉〈val〉〈g〉〈a〉〈g〉〈glu〉〈a〉〈a〉〈g〉〈lys〉〈t〉〈c〉〈t〉〈ser〉〈g〉〈c〉〈c〉〈ala〉〈g〉〈u〉
〈u〉〈val〉〈a〉〈c〉〈u〉〈thr〉tt

(3.33)
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The Glu6Val acts as a missense mutation, converting the "gag" codon that codes for glutamic
acid (glu) to the "gug" codon, which instead codes for valine (val).

The amino acid sequence generated by the portion of the mutated HBB gene analysed in this
section is represented through the substring ψ′

hbs of the protein ψhbs :

ψ′
hbs = "imet val his leu thr pro val glu lys ser ala val thr" (3.34)

The translation initiator methionine is coloured in orange to indicate that it should be removed
to produce the mature protein.

Although intuitively understandable, we show that the R process satisfies equally the transla-
tion of the normal and mutated genes, that is:

RÍ
〈a〉〈u〉〈g〉〈imet〉〈g〉〈u〉〈g〉〈val〉〈c〉〈a〉〈u〉〈his〉〈c〉〈u〉〈g〉〈leu〉〈a〉〈c〉〈u〉〈thr〉〈c〉〈c〉〈u〉
〈pro〉〈g〉〈a〉〈g〉〈glu〉〈g〉〈a〉〈g〉〈glu〉〈a〉〈a〉〈g〉〈lys〉〈u〉〈c〉〈u〉〈ser〉〈g〉〈c〉〈c〉〈ala〉〈g〉〈u〉
〈u〉〈val〉〈a〉〈c〉〈u〉〈thr〉tt
∧
〈a〉〈u〉〈g〉〈imet〉〈g〉〈u〉〈g〉〈val〉〈c〉〈a〉〈u〉〈his〉〈c〉〈u〉〈g〉〈leu〉〈a〉〈c〉〈u〉〈thr〉〈c〉〈c〉〈u〉
〈pro〉〈g〉〈u〉〈g〉〈val〉〈g〉〈a〉〈g〉〈glu〉〈a〉〈a〉〈g〉〈lys〉〈u〉〈c〉〈u〉〈ser〉〈g〉〈c〉〈c〉〈ala〉〈g〉〈u〉
〈u〉〈val〉〈a〉〈c〉〈u〉〈thr〉tt

(3.35)

The verification that all the above-described formulae are satisfied by the related processes
has been performed with the model checking function of the CAAL concurrency workbench [3].
The results are shown in Figure 3.1 and prove that the provided models of gene expression can
satisfy both the formulae for the synthesis of the normal β-globin molecule and those of the HbS
mutation.
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Figure 3.1 – Verification performed via the CAAL web-based tool of the specifications provided for
the Glu6Val expression. The RNApol, S, and R processes are transliterated as RNAPOL,
SPLICEOSOME and RIBOSOME, respectively; we also point out that CAAL represents
the output action on a channel w using the label ′w instead of w. To not compromise the
readability of the figure, we limited (without losing in accuracy) the formula of the RNApol
process to the coding region of the HbS gene’s first exon. The checkmarks on the “Status”
column indicate that all the formulae are satisfied.
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3.3 Discussion

Through the Glu6Val model, it is possible to analyse how such a point mutation affects the folding
process in relation to the hydrophobic interactions.

To better understand this aspect, we can adjust the model of the translation process L to
focus on the type of side chain that characterises each amino acid. From this perspective, we can
distinguish two classes of side chains: hydrophobic and hydrophilic. Precisely, given the labels
hbsc and hlsc, representing, respectively, an amino acid with a hydrophobic side chain and one
with a hydrophilic side chain, we construct the process RIh by applying to the CCS specification
of the R subprocess of L the following transformations:

C.
def= imet.C; → C.

def= hbsc.C;

ALA def= ala.C; → ALA def= hbsc.C;

CYS def= cys.C; → CYS def= hbsc.C;

GLY def= gly.C; → GLY def= hbsc.C;

ILE def= ile.C; → ILE def= hbsc.C;

LEU def= leu.C; → LEU def= hbsc.C;

MET def= met.C; → MET def= hbsc.C;

PHE def= phe.C; → PHE def= hbsc.C;

PRO def= pro.C; → PRO def= hbsc.C;

TRP def= trp.C; → TRP def= hbsc.C;

VAL def= val.C; → VAL def= hbsc.C;

ARG def= arg.C; → ARG def= hlsc.C;

ASN def= asn.C; → ASN def= hlsc.C;

ASP def= asp.C; → ASP def= hlsc.C;

GLN def= gln.C; → GLN def= hlsc.C;

GLU def= glu.C; → GLU def= hlsc.C;

HIS def= his.C; → HIS def= hlsc.C;

LYS def= lys.C; → LYS def= hlsc.C;

SER def= ser.C; → SER def= hlsc.C;

THR def= thr.C; → THR def= hlsc.C;

TYR def= tyr.C; → TYR def= hlsc.C;

(3.36)

As proved through model checking (see Figure 3.2), RIh satisfies the following formulae derived
from Equation 3.35:

RIh Í
〈a〉〈u〉〈g〉〈hbsc〉 〈g〉〈u〉〈g〉〈hbsc〉 〈c〉〈a〉〈u〉〈hlsc〉 〈c〉〈u〉〈g〉〈hbsc〉
〈a〉〈c〉〈u〉〈hlsc〉 〈c〉〈c〉〈u〉〈hbsc〉 〈g〉〈a〉〈g〉〈hlsc〉 〈g〉〈a〉〈g〉〈hlsc〉
〈a〉〈a〉〈g〉〈hlsc〉 〈u〉〈c〉〈u〉〈hlsc〉 〈g〉〈c〉〈c〉〈hbsc〉 〈g〉〈u〉〈u〉〈hbsc〉
〈a〉〈c〉〈u〉〈hlsc〉tt

(3.37)

for the normal HBB gene;

RIh Í
〈a〉〈u〉〈g〉〈hbsc〉 〈g〉〈u〉〈g〉〈hbsc〉 〈c〉〈a〉〈u〉〈hlsc〉 〈c〉〈u〉〈g〉〈hbsc〉
〈a〉〈c〉〈u〉〈hlsc〉 〈c〉〈c〉〈u〉〈hbsc〉 〈g〉〈u〉〈g〉〈hbsc〉 〈g〉〈a〉〈g〉〈hlsc〉
〈a〉〈a〉〈g〉〈hlsc〉 〈u〉〈c〉〈u〉〈hlsc〉 〈g〉〈c〉〈c〉〈hbsc〉 〈g〉〈u〉〈u〉〈hbsc〉
〈a〉〈c〉〈u〉〈hlsc〉tt

(3.38)

for the HbS gene.
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Figure 3.2 – Verification performed through the CAAL web-based tool of the specifications provided for
expressing a portion of the correct HBB gene sequence (first row) and the Glu6Val mutation
(second row), described in terms of the hydrophobic/hydrophilic property of their amino
acids. The red boxes highlight the difference between the normal codon and the mutated
one. The RIh process is transliterated as HIRIBOSOME; we recall that CAAL represents the
output action on a channel w using the label ′w instead of w. The checkmarks on the “Status”
column indicate that the formulae are satisfied.

Therefore, the portion of the aminoacidic sequence of the haemoglobin β subunit can be
written in terms of the hydrophobic or hydrophilic property of each amino acid:

ψhi
hbb = "hbsc hbsc hlsc hbsc hlsc hbsc hlsc hlsc hlsc hlsc hbsc hbsc hlsc" (3.39)

for the normal HBB;

ψhi
hbs = "hbsc hbsc hlsc hbsc hlsc hbsc hbsc hlsc hlsc hlsc hbsc hbsc hlsc" (3.40)

in the case of the Glu6Val mutation.

Using the model of protein folding described in the previous chapter (Definition 2.1), it is
possible to formally describe how the expression of a gene can affect the conformation of a
protein.

Firstly, we recall how the hydrophobic interactions have been modelled in the Fs
p process

(protein folding step):

Fs
p

def= aa.I1aa+aa.ΔþGIh
aa

;

I1aa
def= aa.ΔþGIe

aa
+aa.ΔþGPaa ;

ΔþGIe
aa

def= ndg.Ie
aa;

ΔþGIh
aa

def= ndg.Ih
aa;

ΔþGPaa

def= ndg.Paa;
...

Ie
aa

def= ii.Fs
p+vdwi.Fs

p;

Ih
aa

def= hlsc.Op+hbsc.Ip;

Op
def= esc.Fs

p;

Ip
def= bsc.Fs

p

(3.41)
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where aa indicates an amino acid molecule, ndg represents the negative ∆G value of the process,
hlsc and hbsc stand, respectively, for hydrophilic and hydrophobic side chain, while esc and
bsc are the labels used to describe that a side chain is exposed to the environment or buried
inside in the hydrophobic core of the protein (see Tables 2.1 on page 37 and 2.2 on page 38 for
the meaning of each action label and process name). Now we can write an HML formula that
specifies the behaviour of the Fs

p process when applied to the amino acid sequences of ψhi
hbb

and ψhi
hbs . As shown in Figure 3.3, we can demonstrate through model checking that Fs

p actually
satisfies this kind of formula; that is:

Fs
p Í

〈aa〉〈ndg〉〈hbsc〉〈bsc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉〈aa〉〈ndg〉〈hlsc〉〈esc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉
〈aa〉〈ndg〉〈hlsc〉〈esc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉〈aa〉〈ndg〉〈hlsc〉〈esc〉〈aa〉〈ndg〉〈hlsc〉〈esc〉
〈aa〉〈ndg〉〈hlsc〉〈esc〉〈aa〉〈ndg〉〈hlsc〉〈esc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉
〈aa〉〈ndg〉〈hlsc〉〈esc〉tt
∧
〈aa〉〈ndg〉〈hbsc〉〈bsc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉〈aa〉〈ndg〉〈hlsc〉〈esc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉
〈aa〉〈ndg〉〈hlsc〉〈esc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉〈aa〉〈ndg〉〈hlsc〉〈esc〉
〈aa〉〈ndg〉〈hlsc〉〈esc〉〈aa〉〈ndg〉〈hlsc〉〈esc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉〈aa〉〈ndg〉〈hbsc〉〈bsc〉
〈aa〉〈ndg〉〈hlsc〉〈esc〉tt

(3.42)

Equation 3.42 proves that the hydrophobicity of an amino acid determines its position
on the inside or outside of a protein and, consequently, affects the latter three-dimensional
conformation. In addition, through Equations 3.28, 3.30, and 3.33 we can trace back this property
to the sequence of the originating gene; finally, Equations 3.35, 3.37, and 3.38 demonstrate that
the types of amino acids of the polypeptide chain, in terms of their hydrophobic properties, can
be affected by the modification of a single nucleotide of the related gene. Therefore, we formally
proved that a point mutation can modify the three-dimensional conformation of a protein.

In contrast, the folding of the mRNA generated by the HBB shows different behaviour because
each nucleotide interacts in the same way with water.

Summarising the CCS specification of the Fs
rna process (RNA folding step) of the RNA folding

model (see Definition 2.1), it is possible to note that each unpaired base is always buried and
stacked on top of another one:

Fs
rna

def= ub.I1n+ub.I2n+srsr.I1n+
drdr.I1n+srdr.I1n+tpb.I1n;

I1n
def= ub.ΔþGIe

b
+srsr.ΔþGIe

b
+drdr.ΔþGIe

b
+

srdr.ΔþGIe
b
+tpb.ΔþGIe

b
;

I2n
def= ub.ΔþGPb2 +ub.ΔþGIh

b
+srsr.ΔþGPb3+

drdr.ΔþGPb3 +srdr.ΔþGPb3 ;

ΔþGIe
b

def= ndg.Ie
b;

ΔþGIh
b

def= ndg.Ih
b ;

...

Ie
b

def= ii.Fs
rna+vdwi.Fs

rna;

Ih
b

def= hbi.Irna;

Irna
def= bb.S;

S
def= sb.Fs

rna

(3.43)
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where, referring in particular to the Ih
b (base hydrophobic interaction) subprocess, ub represents

an unpaired base, hbi stands for “hydrophobic interaction”, bb indicates that a base is buried
inside the RNA molecule, while sb that it is stacked parallel to another one.

As proved through model checking (see Figure 3.3), the Fs
rna process satisfies, for every couple of

unpaired bases, the following specification, which describes the behaviour of the hydrophobic
interaction during the RNA folding:

Fs
rna Í 〈ub〉〈ub〉〈ndg〉〈hbi〉〈bb〉 (3.44)

This means that, in relation to the hydrophobic interactions, a point mutation cannot significantly
affect the folding of RNA.

Figure 3.3 – Verification performed through CAAL of the specifications provided for the folding process
of the haemoglobin β subunit (first row) and for the related mRNA (second row); they are
described in terms of the hydrophobic interactions performed, respectively, by amino acids
and nucleotides. The Fs

p process is transliterated as PFS, while the Fs
rna process as RNAFS.

The checkmarks on the “Status” column indicate that the formulae are satisfied. The output
action on each channel w is represented trough the label ′w.

3.4 Conclusions

In this chapter, we model gene expression through a process-based approach. A pathology that
affects the folding process is then analysed, with the aid of CCS and Hennessy-Milner logic,
as behaviour resulting from the interactions between the monomeric units of proteins (amino
acids) and RNAs (nucleotides).

The second part of our study focuses on molecular hydrophobicity, which is critical in
proteins because each amino acid is specifically hydrophobic or hydrophilic. This property is
not equally valid for RNAs, in which the nucleotides interact almost in the same way with water,
even if different base stacking can have dissimilar energetic values [79].

In Chapter 2, we demonstrate that the distinctive interactions among amino acids lead pro-
teins to fold up into three-dimensional shapes more complex if compared to those characterising
RNAs. Due to the tight relationship between structure and function that exists in biological
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systems, these conformations allow proteins to perform more effectively most of the functions
carried out by non-coding RNAs. However, as proved through the models proposed in this chap-
ter, the greater complexity of proteins has the drawback of exposing them to some pathologies
that do not affect the simpler structure of RNAs.

Further studies in this direction will involve the analysis of other pathologies associated
with protein misfolding [46], particularly those responsible for ageing-related diseases (such as
Alzheimer’s and Parkinson’s) [39]. This kind of investigation may benefit from improving and
extending our models, especially by complementing the formal approaches described in this
chapter with other algebraic and computational methods, such as topological data analysis and
graph grammars [68, 73, 96, 98, 103].

Although the adopted approach is strictly theoretical, we propose it as an alternative stand-
point to observe biological systems. A process-based view of molecular structures and functions
can bring out congruence and dissimilarities difficult to detect through other computational
methods or experimental techniques; this perspective can thus inspire the investigation of
properties not yet considered in the current studies.





Chapter 4

Algebraic Characterisation of
Non-coding RNA*

4.1 Introduction

The relationship between structures and functions is an important topic in biology, and different
computational approaches, from process calculi to topological data analysis, have contributed
significantly to its study [13, 27, 69, 73, 89].

In particular, formal languages and graph grammars have been successfully applied in
modelling the properties that correlate the functions expressible by ribonucleic acid (RNA)
molecules and specific substructures involved in their folding process [68, 96]. In Chapter 2, we
pushed forward this approach and proved that the complexity of RNA functions can be traced
back to the inner potentiality of each nucleotide to interact with others in the same sequence.
This result has been obtained by comparing the RNA folding with that performed by proteins to
identify an abstraction level at which these two classes of molecules show the same structural
and functional complexity. We refer to this level as RNA and protein congruence level (or, simply,
congruence level). Reaching such a goal was possible thanks to the expressiveness of process
algebras [1], through which we modelled both RNA and protein folding.

In this chapter, we want to hypothesise the functions that characterise the congruence level
and further explore the applicability of process algebras in modelling the related biological pro-
cesses. The resulting models will form the basis of an agent-based simulation (see Section 1.3.5
on page 29).

*This chapter is derived from a co-authored work, conducted and published as part of the PhD project:
Maestri, S., Merelli, E., 2020. “Algebraic Characterisation of Non-coding RNA”, in: Cazzaniga, P., Besozzi, D., Merelli,
I., Manzoni, L. (Eds.), Computational Intelligence Methods for Bioinformatics and Biostatistics, Lecture Notes in
Computer Science. Springer International Publishing, Cham, pp. 145-158. ©2020 Springer Nature Switzerland AG.
https://doi.org/10.1007/978-3-030-63061-4_14. S.M. implemented the method, performed the research
and wrote the paper. E.M. supervised the research. Both the authors designed and reviewed the paper.
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The agent-based simulator mentioned in this chapter is designed to investigate the molec-
ular interactions that characterise metabolic pathways and to analyse the global properties
resulting from local interactions [22]. We simulated complete enzymatic reactions by modelling
the molecules involved (enzymes, metabolites, and complexes) as autonomous and interactive
agents. We will extensively discuss this agent-based method for simulating biomolecular inter-
actions in Part II of this manuscript. For this reason, the present chapter can be regarded as a
bridge between the two modelling approaches considered in this dissertation.

The RNA models we propose are algebraic specifications of new functionalities that will
enrich the simulator. We expect that, similarly to the results we obtained regarding metabolic
reactions, analysing the behaviour resulting from agents’ interactions will yield additional infor-
mation on the biological properties of RNAs.

4.2 Results

At the abstraction level we are exploring, the behavioural equivalence between RNAs and proteins
has been reached by reducing the complexity of protein folding (limiting the number of amino
acids that can interact through hydrogen bonds). This limitation also reduces the complexity
of the structures–hence of the functions–the folding process can express. The functions we
can represent at this level of abstraction belong to the non-coding RNA congruence class, that
is, the class of all the functions performed by non-coding RNAs (ncRNAs). The congruence
level introduced in Chapter 2 characterises the congruence relation that defines the ncRNA
congruence class, whose complete formalisation will be provided in future work.

In this chapter, we model two functions carried out by ncRNAs in cells, ligand binding and
enzymatic activity, which together specifically characterise a subclass of non-coding RNAs called
ribozymes. They are able to catalyse biochemical reactions similarly to protein enzymes, carrying
out fundamental roles in cellular processes [58, 106].

From this point of view, a ribozyme can be seen as a process capable of performing in parallel
the tasks mentioned above, even if they can mutually affect one another.

Definition 4.1 (Ribozyme). A ribozyme R is a process whose behaviour is given by the following
defining equation:

R def= B | E; (4.1)

where B and E are, respectively, the ligand binding and enzymatic activity processes.

In the remainder of this chapter, we formally define both B and E.

4.2.1 Ligand binding

Through specific binding sites, ribozymes can bind small molecules necessary to carry out their
enzymatic functions. As an example, the binding of GlcN6P to the glmS ribozyme is fundamental
for enabling the glmS catalytic activity [35, 125]. In our models, the ligand-binding function
consists in gaining a ligand through a binding site of the RNA molecule to

• store the ligand;

• trigger or interrupt another function of the same molecule.
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A ligand can bind to a free binding site only if it shows steric and electrostatic complementar-
ity to this site (two properties labelled sc and ec, respectively). If a steric hindrance (sn) or an
electrostatic non-complementarity (en) is present, binding the ligand is not possible.

The model of this functional role is provided by the ligand binding process (B), which takes a
free RNA binding site (bs) and a ligand (l) as input and checks the sc and ec constraints. If both
these conditions are satisfied, it produces an occupied binding site (bs∗) as output; otherwise,
the binding site is left free, and the RNA molecule is ready to check the compatibility of another
ligand.

To remain as faithful as possible to the biological process and avoid the common problem
of state explosion during the simulation, we abstract the parallel verification of the steric and
electrostatic constraints as a non-deterministic choice.

When the binding site is occupied, three events can be triggered:

1. the binding site is maintained occupied to store the bound ligand;

2. the ligand is released;

3. a second function is activated or interrupted.

Based on the above description, we provide the following CCS specification of the process
that allows checking if a ligand can be stored, producing as output an occupied binding site
(bs∗).

Definition 4.2 (Ligand binding). We define the ligand binding performed by a ribozyme R as
the process B whose behaviour is specified by the following CCS equation:

B
def= l.(SCv +ECv);

SCv
def= sc.SC+sn.SN;

SC def= ec.BS∗+en.EN;

ECv
def= ec.EC+en.EN;

EC def= sc.BS∗+sn.SN;

SN def= bs.B;

EN def= bs.B;

BS∗
def= bs∗.0.

(4.2)

For a complete explanation of the symbols used in this and the following models, refer to
Tables 4.1 and 4.2.



76 4. ALGEBRAIC CHARACTERISATION OF NON-CODING RNA

4.2.2 Enzymatic activity

Ribozymes perform a variety of enzymatic activities in cells, for which several analogies have
been found to those carried out by proteins [31]. Since the present work is intended to outline a
model of the functions characterising the congruence level that relates RNAs and proteins, we
can generalise the enzymatic activity of ribozymes as the catalysis of a reaction.

Formalising this process requires first providing a basic model of a chemical reaction. A
reaction, such as S 
 P , can be modelled in its key properties with two complementary reaction
directions, represented by the following processes:

• Forward reaction direction (Rfd): starting from a substrate, generates one or more products;

• Backward reaction direction (Rbd): starting from the products, generate the original sub-
strate.

The choice between Rfd and Rbd is determined by the value of the respective free energy
change (∆G): only the reaction direction with a negative ∆G can occur. This property has been
modelled by placing both Rfd and Rbd in parallel composition with the ΔþG process; it produces
the three possible outputs representing the values that the free energy variation can assume:
negative, positive or zero (ndg, pdg and zdg, respectively).

Definition 4.3 (Reaction). A reaction R is a process whose behaviour is given by the following
defining equation:

R
def= (Rfd|ΔþG)\{ndg,pdg,zdg}+

(Rbd|ΔþG)\{ndg,pdg,zdg};

ΔþG def= ndg.ΔþG+pdg.ΔþG+zdg.ΔþG;

Rfd
def= s.Sfd;

Sfd
def= p.ΔþGfd;

ΔþGfd
def= ndg.Pfd;

Pfd
def= ts.TSfd;

TSfd
def= p.R;

Rbd
def= p.Pbd;

Pbd
def= s.ΔþGbd;

ΔþGbd
def= ndg.Sbd;

Sbd
def= ts.TSbd;

TSbd
def= s.R;

(4.3)
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We want to point out that the modelled reaction is driven by the free energy reduction. The
ΔþGfd and ΔþGbd processes check if the ∆G of the related reaction direction is negative.

Before producing its final output (p for Rfd and s for Rbd), each reaction direction has an
intermediate output, the transition state (ts). The enzymatic activity, modelled as the E process,
catalyses the reaction by taking as input this transition state and an active site (as). The latter is
a catalytic binding site; therefore, similarly to what we described for the ligand-binding function,
it must show steric and electrostatic complementarity with the transition state for the E process
to proceed. If these constraints are satisfied, the E process performs a transition to the ES state,
representing the formation of the enzyme-substrate (ES) complex; otherwise, if there is steric
non-complementarity (sn) or electrostatic non-complementarity (en), the active site remains
free, and the ribozyme can check another transition state. As in the case of the B process, this
verification has been modelled as a non-deterministic choice.

On the ES complex acts the binding energy of the enzyme to perform the catalysis, modelled
with the process C, which causes the reduction of the activation energy of the reaction (aer), to
obtain the output of one of the two reaction directions.

Here we propose a simplified specification for the E process.

Definition 4.4 (Enzymatic activity). We define enzymatic activity of a ribozyme R the process E
whose behaviour is given by the following CCS specification:

E
def= ts.(SCv +ECv);

SCv
def= sc.SC+sn.SN;

SC def= ec.ES+en.EN;

ECv
def= ec.EC+en.EN;

EC def= sc.ES+sn.SN;

SN def= as.E;

EN def= as.E;

ES def= es.C;

C
def= aer.(TSfd+TSbd);

(4.4)

To further clarify how this process works, Figure 4.1 shows its labelled transition system
(LTS), automatically generated with the aid of the CAAL concurrency workbench [3].

The models of ligand binding and enzymatic activity are part of the engineering life cycle
for the simulation of ribozyme functions, where they outline the process modelling; as depicted
in Figure 4.3, the subsequent step is represented by the model verification. In the next section,
we discuss this step to cover the whole first phase of the engineering life cycle. In future works,
we will provide the modelling, simulation and validation of the system in which ribozymes and
metabolites will be represented as concurrent agents.
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Figure 4.1 – Labelled transition system (LTS) of the E process. We recall that, in an LTS, each transition
P w−→ P′ means that the process P can become the process P′ by performing the action w.
Each process/state has been transliterated from the CCS model, while action labels are left
unchanged; output actions are indicated with a quotation mark. State 1 represents the
SCv +ECv choice, while state 2 corresponds to TSfd +TSbd.

4.2.3 Model checking

To show the validity of the models described in the previous section, we provide the verification of
two biochemical properties of ribozyme functions; we also ensure that the free energy reduction
drives all the reactions. Such biochemical properties are expressed as Hennessy-Milner logic
(HML) formulas so that we can establish, via model checking, if they are satisfied [63].

• If a free binding site and a ligand exhibit steric complementarity, but they do not also show
electrostatic complementarity, the binding site cannot be occupied:

RÍ 〈bs〉〈l〉〈sc〉〈en〉[bs∗]ff (4.5)

• If the free active site of an ncRNA has electrostatic complementarity with a transition state
but, at the same time, a steric hindrance is present, the active site cannot be occupied–i.e.,
it remains free (as):

RÍ 〈as〉〈ts〉〈ec〉〈sn〉〈as〉tt (4.6)

• In order for a substrate and a product to form a transition state, the ∆G of the reaction
must be negative:

Rfd Í 〈s〉〈p〉〈ndg〉〈ts〉tt (4.7)

The verification of these formulas has been made with the CAAL web-based model checking
function [3]. The results are shown in Figure 4.2.
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Table 4.1 – Symbols used to denote the processes of Equations 4.2, 4.3, and 4.4.

Process\State Transliteration Description

BS∗ BSo binding site occupied

B B ligand binding

C C catalysis

ΔþG DG Gibbs free energy change (∆G)

ΔþGfd DGfd ∆G of the forward reaction direction

ΔþGbd DGbd ∆G of the backward reaction direction

E E enzymatic activity

EC EC electrostatic complementarity

ECv ECv electrostatic complementarity check

EN EN electrostatic non-complementarity

ES ES enzyme-substrate complex

Pfd Pfd product in the forward reaction direction

Pbd Pbd product in the backward reaction direction

R R reaction

Rfd Rfd forward reaction direction (from substrate to product)

Rbd Rbd backward reaction direction (from product to substrate)

R RIBOZYME ribozyme

Sfd Sfd substrate in the forward reaction direction

Sbd Sbd substrate in the backward reaction direction

SC SC steric complementarity

SCv SCv steric complementarity check

SN SN steric non-complementarity

TSfd TSfd transition state of the forward reaction direction

TSbd TSbd transition state of the backward reaction direction
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Table 4.2 – Description of the action labels used in Equations 4.2, 4.3, and 4.4.

Action label Description

aer activation energy reduction

as free active site

bs free binding site

bs∗ occupied binding site

ec electrostatic complementarity

en electrostatic non-complementarity

es enzyme-substrate complex

l ligand

ndg ∆G < 0

p product

pdg ∆G > 0

s substrate

sc steric complementarity

sn steric non-complementarity

ts transition state

zdg ∆G = 0

Figure 4.2 – Verification of some biochemical properties of the ribozyme functions, expressed as HML
formulas. It has been performed through CAAL concurrency workbench [3]; the checkmarks
on the “Status” column indicate that all the formulas are satisfied. The R and Rfd processes
are transliterated RIBOZYME and Rfd, respectively (see Table 4.1); the bs∗ action label is
transliterated as bso. We recall that CAAL represents the output action on a channel w using
the label ′w instead of w.
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       Adapted from ©User:Lucasharr / Wikimedia Commons / CC-BY-SA-4.0

Figure 4.3 – Engineering life cycle for the simulation of ribozyme functions. We can identify five steps–
represented through different formalisms–enclosed in two phases: (1) process modelling
and verification, (2) system modelling, simulation, and validation. The starting point is the
actual biological system, from which we derive an abstraction of the functions we aim to
model and simulate. These functions are then modelled using process algebras (CCS in
our case), and the properties of the models obtained are verified through the best suitable
method for model checking (for our models, we chose Hennessy-Milner logic). This phase
is the one explored in the present chapter; the second phase will be defined upon the
agent-based simulator described in the second part of this dissertation. It involves the
definition of a low-level specification, the generation of the actual agent-based simulation
and the validation of the results obtained to make the agent-based model more faithful
to the biological system. The UML activity diagram in this figure provides a semi-formal
example of the low-level specification.
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4.3 Conclusions

In this chapter, we provide a formal description of the functions that RNA molecules can perform
at the abstraction level where they have the same complexity as proteins (discussed in Chapter 2).
We show how CCS, thanks to its expressiveness, can handle the complexity of modelling non-
coding RNA functions, specifically those performed by ribozymes. These functions characterise
the congruence class defined by the RNA catalytic activity. The validity of these models has been
tested using Hennessy-Milner logic to perform the model checking and confirmed through an
automated tool.

These results are a solid basis upon which a multiagent simulator of molecular interactions
can be enriched by implementing the functions of non-coding RNAs. The models we provide in
this work should be intended as the first phase of the engineering life cycle for the simulation of
ribozyme functions (see Figure 4.3).

Beyond their biological roles, ribozymes have been applied in treating respiratory viral
infections; it was possible due to their ability to cleave specific RNA segments of influenza viruses,
like the influenza A virus or the SARS-coronavirus [41, 86, 111]. The simulations based on the
models we propose in this chapter might provide in silico support to further applications of
ribozyme mediated inhibition of influenza infections.

Moreover, we are taking just the first steps towards a broader modelling and simulation ap-
proach intended to study the behaviour of the more complex class of long non-coding RNAs (lncR-
NAs). In recent years, it has been increasingly acknowledged the relevance of these molecules
in fundamental cellular processes and their involvement in several diseases, such as in tumour
progression, where they carry out either an oncogenic or a tumour-suppressive role [97, 99]. We
believe that the application of formal methods to the study of non-coding RNAs can provide
the perspective necessary to fully understand the behaviour of this class of molecules and thus
contribute to the development of concrete strategies for addressing the pathologies in which
they are involved.
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Agent-based Modelling and Simulation
of Metabolic Pathways





Chapter 5

Background and Methods for Part II

5.1 Introduction

This chapter describes the agent-based modelling and simulation approach that we defined to
study molecular interactions in metabolic pathways. Because we chose the glycolysis of baker’s
yeasts (Saccharomyces cerevisiae) as a case study, Section 5.2 introduces some basic knowledge
on glucose oxidation in living cells. In Section 5.3, we then go into the details of the modelling
and simulation methods; they comprise a complete description of the choices we made for
adapting a kinetic model of yeast’s glycolysis to be used as input to a multiagent simulator.
Such information is important to understand the studies we propose in the next chapters of this
second part of the dissertation.

5.2 Overview of the Glycolytic Pathway

This section outlines the reactions occurring in the glycolytic pathway; the description is fairly
general and based on a long-established knowledge of glucose oxidation [65]. The reader already
familiar with these concepts can jump directly to Section 5.3, where we provide details on the
modelling and simulation methods adopted in this second part of the manuscript.

Glycolysis is the process that degrades, through a series of enzyme-catalysed reactions, a
molecule of glucoseþ to yield two molecules of pyruvateþ and store some of the released free
energy in the form of ATPþ and NADH. When glucose degradation happens in the absence of oxygen
(anaerobic conditions), it is called fermentation.

The enzymes involved in the glycolysis of all eukaryotic cells are similar in their structures
and functions; they only differ in the regulatory processes that determine the fate of pyruvate.
The sequential reactions of the glycolytic pathway are usually schematised in ten steps. In what
follows, we describe the most relevant of these steps and provide the name and the acronym of
the related molecular species we will refer to in the remainder of this manuscript.

The initial five steps constitute the preparatory phase;
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• first step : glucoseþ (GLC) is phosphorylated to form glucoseþ 6-phosphateþ (G6P)

• second step : G6Pþ is converted to fructoseþ 6-phosphateþ (F6P)

• third step : F6Pþ is phosphorylated to fructoseþ 1,6-bisphosphateþ (F16bP)

(for both the phosphorylations, ATPþ is the phosphoryl group donor)

• fourth step : F16bPþ is split into dihydroxyacetoneþ phosphateþ (DHAP) and
glyceraldehydeþ 3-phosphateþ (GAP)

• fifth step : DHAPþ is converted to a second molecule of GAPþ

The energy gain occurs in the payoff phase, composing the remaining five steps of glycolysis.
In the sixth step, each molecule of GAPþ is oxidised and phosphorylated to form 1,3-bisphospho-
glycerateþ (BPG). Energy is then released by converting, from the seventh to the tenth step, two
molecules of BPGþ into two molecules of pyruvateþ (PYR). Much of this energy is conserved, by the
phosphorylation of four ADPþ molecules, into an equal number of ATPs. Since two molecules of
ATPþ are used in the preparatory phase, the net output is two ATPsþ for each molecule of glucoseþ
degraded. During the payoff phase, energy is also stored by forming two molecules of NADHþ for
each molecule of glucose.

In yeasts, pyruvateþ is further converted, under anaerobic conditions, into ethanolþ (EtOH)
and CO2, a process called ethanol (alcohol) fermentation.

Among the other carbohydrates involved in glycolysis, the only one we take into account in
our models is glucoseþ 1-phosphateþ (G1P), which is converted to G6Pþ during the preparatory
phase.

Alongside the main steps described above, the breakdown of glucoseþ can also enter one of
the glycolysis branches, which leads to the formation of end products such as trehaloseþ (TRH),
glycerolþ (GLY), and succinateþ (SUC).

A schematic representation of the steps and branches considered in our work is provided in
Figure 5.1.

5.3 Modelling and Simulating the Glycolytic Pathway: an Agent-
based Approach

5.3.1 Agent-based simulator for metabolic pathways

The studies proposed in Part II of this dissertation have been carried out with the aid of Orion, a
spatial simulator for metabolic pathways. It has been developed in Java starting from a prototype
project [5, 8, 22, 38, 71]. The version of the simulator used for this work is Orion 2.0.0, in which
we fixed and refined the original software to make it capable of dealing with a large number of
molecules and highlighting their interactions.
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Figure 5.1 – Schematic representation of the glycolysis steps and branches taken as a starting point of
our study. For each metabolite and enzyme involved, we reported both the name and the
acronym adopted in this manuscript (in bold for metabolites, in italics for enzymes). On
the right side of the image, we highlight the three phases identifiable in yeast glycolysis.
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Orion is an agent-based simulator; this means that the molecules involved in the pathway
are represented by agents: autonomous systems able to perceive changes in their environment
and react to them (see Section 1.3.5).

The simulations are performed in the three-dimensional space, representing a portion of
the cytoplasm, that is, the environment perceived by the agents. Each molecule is modelled as
a sphere, whose radius is estimated from its molecular weight (MW) and the average value of
the molar specific volume of a protein in solution (approximately 0.73 cm3/g ) by assuming the
following equation [34, 50, 101, 124]:

V (Å3) = 0.73 cm3/g ×1024 Å3/cm3 ×MW g /mol e

6.02×1023 mol ecul es/mol e
(5.1)

According to the data retrievable in the BioNumbers database [78], the average values of
the molecular radii are about 20 Å (angstroms) for enzymes and 5 Å for metabolites. By looking
at Table 6.1 (of the next chapter), the radii generated from the volumes calculated through
Equation 5.1 are in agreement with those experimental results.

Our modelling choices produce a reasonably realistic molecular crowding in the simulated
portion of the cytoplasm. Moreover, by making every molecule spherical, we can correlate
its shape with its diffusion coefficient through the Stokes-Einstein equation for the Brownian
motion of a spherical particle:

D = kB T

6πηr
(5.2)

where kB is the Boltzmann constant, T the temperature, η the viscosity of the environment
and r the radius of the molecule. For our simulations, we set T = 298.15 kelvin and η= 0.0011
pascal-second.

Each molecule can freely move inside the simulation volume according to a vector applied to
the centre of its sphere: its direction is generated randomly, based on polar coordinates, while its
module is calculated from the ambient diffusion coefficient D , obtained via Equation 5.2, as the
average value of the square of the molecule displacement x in a time t :

< x2 >= 2Dt (5.3)

A dedicated agent monitors the position of all molecules to ensure that every movement
ends in an empty space of the environment, avoiding collisions and overlaps.

The simulator enables us to set the space unit and the time scale as per requirement; in this
study, we consider the angstrom (Å, equivalent to 10−10 m) for space and 10−4 seconds for time
(corresponding to one tick of the simulation clock). A cube of 1 attolitre (10−18 L, having edges
of 1000 Å) represents the best option for the aim of our analysis and meets the computational
demand of the simulations (Figure 5.5 shows the 3D space visualised through the interface of the
simulator).

The model at the basis of the simulator classifies molecules into three types: enzymes, com-
plexes and metabolites. The property that distinguishes enzymes and complexes from metabo-
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lites is that the latter can only move while the first two classes of molecules can also act on the
environment.

Although molecular movements are modelled based on Brownian diffusion, this study pushes
forward the capabilities of the agent paradigm by not limiting molecular interactions to just those
allowed by random encounters. Indeed, enzymatic reactions are simulated by exploiting the
ability of agents to perceive and interact with one another: each enzyme identifies the cognate
metabolites in its proximity thanks to a perception-sphere that it projects on the environment
(see Figure 5.2 for a representation of this sphere in the form of the potential interactions that an
enzyme can perform).

As better explained in Chapter 6, such an approach is the simulator key feature that allows
studying the effects of long-distance interactions among biomolecules. Indeed, the radius of
the interaction sphere can be set according to needs, so we were able to test various lengths of
perception and the related molecular behaviours.

Every molecular interaction may lead to the formation of a complex, which is modelled
as a new agent. If such a complex represents a saturated enzyme, it waits an amount of time
corresponding to the reciprocal of its turnover number (kcat ) and then releases the final product
(or products) of the reaction; otherwise, it moves and acts on the environment to bind the
metabolite needed to reach saturation. This modelling approach is based on the construction of
an enzymatic reaction automaton.

Enzymatic reaction automaton

According to the Michaelis-Menten model of enzyme kinetics, an enzymatic reaction can be
represented as

E +S � ES → E +P (5.4)

where E is an enzyme, S is its substrate, and P is the product of the reaction catalysed by E;
assuming the steady-state approximation, we can consider ES as constant [18, 59].

However, by taking into account local interactions in the dynamics of a biochemical reaction,
we can abstract the following molecular entities:

• Free enzyme, seeking a substrate to interact with.

• Dual-complex, formed when an enzyme binds a cognate metabolite but needs another
molecule (such as an energy donor) to saturate; it is unstable because the second metabo-
lite is necessary to generate the final products of the reaction.

• Saturated enzyme, corresponding to the final complex of the reaction; it is formed by an
enzyme linked to one or two metabolites, stably for a time interval obtained as the recipro-
cal of the kcat of the reaction. The kcat represents the number of molecules converted by
an enzyme in the time unit; therefore, its reciprocal provides the interval after which the
reaction products are released in the environment, and the enzyme returns free.
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(a)

(b)

Figure 5.2 – Agents’ perception capabilities underlying the molecular interactions in the simulated
environment. All molecules are modelled as spheres: the larger ones correspond to enzymes
while the others to metabolites. In molecular complexes, the latter are shown as attached
to the sphere of the cognate enzyme. This representation has just an illustrative purpose; in
the actual implementation, each complex is simulated as a single sphere whose volume is
obtained from the sum of the weights of the generating molecules through Equation 5.1. The
perception spheres are not explicitly represented to maintain the clarity of the illustration;
instead, a perceiving enzyme and the metabolites in its perception volume are highlighted
in blue. Figure (a) shows the possible interactions of a free enzyme; in (b), a similar situation
is depicted for a complex made up of an enzyme with a bound metabolite. The white arrows
point out that each interaction in the system is two-body.
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An enzymatic reaction cycles through these states; we model such a pattern by constructing an
automaton based on the molecular entities described above. To reproduce the local interactions
properly, we represent each molecule as an autonomous entity; as mentioned in Section 5.3.1,
this entity corresponds, in our model of glycolysis, to an agent, a system having the capability of
perceiving and interacting with its environment.

We provide a formal definition of the automaton through Milner’s Calculus of Communi-
cating Systems (CCS). This process algebra consists of a collection of constructors for building
a new process description from existing ones by representing them as systems that exhibit
behaviour and interact via synchronised communication (see Section 1.3.1). The reaction au-
tomaton represents an agent-based perspective on the CCS enzymatic reaction model proposed
in Definitions 4.3 and 4.4.

Definition 5.1 (Enzymatic reaction automaton). An enzymatic reaction automaton, denoted by
RE, is the process whose behaviour is given by the following defining equation:

RE
def= e.Em1+e.Em2;

Em1
def= m1.DC1+m1.ES;

Em2
def= m2.DC2;

DC1 def= m2.DC1m2;

DC2 def= m1.DC2m1;

DC1m2
def= m2.ES;

DC2m1
def= m1.ES;

ES def= pe.RE;

(5.5)

where

• e is a free enzyme;

• m1 is the primary substrate of the enzyme;

• m2 is a secondary substrate of the enzyme, such as an energy donor;

• pe generalises the products of the reaction (one or more) and the enzyme that returns free;

• Em1 and Em2 are the states that represent the enzyme perceiving a cognate metabolite;

• DC1 and DC2 correspond to the dual-complexes of the enzyme with m1 and m2 respectively;

• DC1m2 and DC2m1 are the states in which the dual complexes perceive the metabolite needed
to saturate the enzyme;

• ES represents the saturated enzyme.

To better highlight all the processes and actions characterising the reaction automaton,
Figure 5.3 provides the labelled transition system (LTS) [62] related to its algebraic specification.
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Figure 5.3 – Labelled transition system (LTS) of the automaton representing an enzymatic reaction in
our agent-based model. As described in Section 1.3.2, it consists of a set of processes, a set
of actions and a transition relation → such that, if a process P can perform an action w and
become a process P′, we write P w−→ P′ [1]. The shown LTS has been generated, from the
algebraic definition provided in Section 5.3.1, through the CAAL concurrency workbench [3].
The names of the states are transliterations of the names provided in the CCS specification;
the output on the general communication channel w is denoted by the label ′w.

Since the simulator represents the molecules as spheres, we can implement this model by
allowing the formation of larger spheres as a result of the interaction between two cognate
molecules. The volume of the sphere corresponding to a molecular complex is calculated from
the sum of the originating molecules’ weights on the basis of Equation 5.1. Figure 5.4 provides a
schematic representation of the automaton for the case in which the enzyme interacts with two
metabolites.

5.3.2 From a kinetic to an agent-based model

The construction of an agent-based model (ABM) able to represent the molecular interactions of
a metabolic pathway requires some information on the pathway itself and on the environment
where it occurs. In particular, we need to know the sequence of reactions to simulate–or a subset
of those relevant for our analysis–and some quantitative data, such as the initial concentrations
of the species involved. In this perspective, a kinetic model can serve as a source of such data
and as a reference against which to compare our results.

We cannot completely base our study on a kinetic model, since it uses experimental param-
eters, often assayed in vitro, to directly describe the global properties of the system through a
set of differential equations. Conversely, we aim to understand if kinetic data actually underlie
processes related to the ability of molecules to perceive each other, even from a long distance. An
ABM of molecular interactions allows not considering a priori most of these parameters and thus
provides a better baseline over which to carry out our in silico studies. ABMs describe molecular
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Figure 5.4 – The three states of the enzymatic reaction automaton in which the enzyme interacts with
two metabolites (see also Chapter 7 for further details). Each state has been associated
with a representation of the related molecular entities in the agent-based model. To better
show the molecules involved in the formation of a molecular complex, we choose to draw
dual-complexes and saturated enzymes as paired spheres; however, in the actual imple-
mentation, each of them is represented by a single sphere whose volume is obtained, from
the sum of the weights of the generating molecules, through Equation 5.1.

interactions at a local level, but they also possess compositionality, which is the capability of
recursively applying the rules characterising agent interactions to progressively define higher
abstraction levels. In this way, we can hide the unnecessary details of a specific level and, at the
same time, observe its global behaviour [16, 28]. Considering the case of a metabolic pathway, a
kinetic model treats enzymatic reactions as mathematical functions that relate the concentra-
tions of reactants to those of products, assuming that they incorporate the role carried out by
each molecular interaction. In our ABM, instead, each enzyme is represented by a dedicated
agent able to perceive the environment and its cognate partners; the interactions among the
molecules are thus explicit in the definition of the model. The compositionality of ABMs also
makes it possible to conduct the study at an abstraction level that can be represented with a small
amount of empirical data without losing accuracy in reproducing macromolecular behaviours.
Nonetheless, not all kinetic parameters can be disregarded. For a modelled saturated enzyme to
generate the products of the reaction faithfully to its biological counterpart, it must wait for a
time interval corresponding to the reciprocal of its kcat (see Section 5.3.1).

Several kinetic models have already been constructed over metabolic pathways, mainly
because the properties of metabolism at a steady state simplify the model definition [120].
However, by considering the enzymatic reactions as just mathematical functions from reactants
to products, they mostly focus on changes in metabolite concentrations and do not provide
the actual number of enzyme molecules in the simulated environment. In contrast, for the
reasons explained above, this information is fundamental for constructing our ABM. Based on
this requirement, we identified in the Smallbone2013 - Iteration 18 [107] a model particularly
suitable to serve as a source for the ABM because it contains a complete set of experimental data
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on the isoenzymes involved in a well-studied metabolic process, the glycolysis of Saccharomyces
cerevisiae. The Smallbone2013 model provides a detailed description of the chain of reactions
that generates energy from glucose by breaking it into two molecules of pyruvate. In addition
to the main branch of glycolysis, it includes the glycerol, glycogen, and trehalose branches; it
also considers the alcoholic fermentation steps, which lead to the formation of ethanol (see
Figure 5.1).

5.3.3 Defining the input for the simulation

The input of our agent-based simulator (Orion) is a Systems Biology Markup Language (SBML)
file filled with experimental data [5, 8, 22, 38, 56, 71]. It contains information about the molecules
involved in the metabolic pathway and their initial concentrations; data related to the reac-
tions carried out are also taken from this source. The Smallbone2013 model of glycolysis
mentioned above is provided in the SBML format (http://identifiers.org/biomodels.
db/MODEL1303260018).

A dedicated simulator component converts the SBML model to an Extensible Markup Lan-
guage (XML) file specifically formatted to be interpreted by the simulator while remaining
human-readable [122]. Therefore, its primary function is to translate the kinetic representation
of the metabolic reactions into our agent-based model. To accomplish this task, for every re-
action we want to model, it gets from the SBML file the reactants and products and generates
XML code for each of its interactions, based on the algebraic definition of the automaton pro-
vided in Section 5.3.1. It also associates the kcat to the related reaction and the Km values to
all its enzyme-substrate interactions. The Km measures the affinity of an enzyme for a specific
substrate; it is needed since an enzyme can form a complex with an encountered metabolite
randomly or based on a priority list constructed over the kcat /Km ratio (specificity constant).
This possibility can be established in the initial setup of the simulation.

SBML and XML (from which the first is derived) are markup languages that define rules for
storing data in a formatted document to comply with both human and machine readability [56,
122]. They are structured as element trees: starting from a root, each element of the tree can
have one or more child elements. Every element is delimited by an opening tag, in which the
element name is enclosed between angle brackets (< and >), e.g. <element_name>, and a closing
tag, similar to the opening tag but with the element name preceded by a slash symbol (/), e.g.
</element_name>. It can also have one or more attributes, placed inside the opening tag in the
form attribute_name = “attribute_value”.

In what follows, we provide a simplified conversion of a kinetic model, in SBML format, to
the XML input of our agent-based simulator; we consider a generalised reaction that is catalysed
by an enzyme E, with two substrate metabolites (M1 and M2) and two products (P1 and P2).

http://identifiers.org/biomodels.db/MODEL1303260018
http://identifiers.org/biomodels.db/MODEL1303260018
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The conversion starts from the following SMBL source:

<reaction metaid =" meta_E " sboTerm =" SBO:0000176 " id="E" name="
reaction_name ">

<annotation >
<rdf:RDF xmlns:rdf =" http: // www.w3.org /1999/02/22 - rdf -syntax -ns#"
xmlns:bqmodel ="http: // biomodels .net/model - qualifiers /"
xmlns:bqbiol ="http: // biomodels .net/biology - qualifiers /">

<rdf:Description rdf:about ="# meta_E ">
<bqbiol:is >

<rdf:Bag >
<rdf:li rdf:resource =" resource_url "/>

</ rdf:Bag >
</ bqbiol:is >
<bqbiol:isVersionOf >

<rdf:Bag >
<rdf:li rdf:resource =" identifier_url "/>
<rdf:li rdf:resource =" identifier_url "/>

</ rdf:Bag >
</ bqbiol:isVersionOf >

</ rdf:Description >
</ rdf:RDF >

</ annotation >
<listOfReactants >

<speciesReference metaid =" metaid_value " species ="M1"/>
<speciesReference metaid =" metaid_value " species ="M2"/>

</ listOfReactants >
<listOfProducts >

<speciesReference metaid =" metaid_value " species ="P1"/>
<speciesReference metaid =" metaid_value " species ="P2"/>

</ listOfProducts >
<listOfModifiers >

<modifierSpeciesReference metaid =" metaid_value " species ="E"/>
<modifierSpeciesReference species ="P1"/>
<modifierSpeciesReference species ="P2"/>
<modifierSpeciesReference species ="E"/>

</ listOfModifiers >
<listOfParameters >

<parameter metaid =" metaid_value " id="kcat" value=" kcat_value "
units=" per_second "/>
<parameter metaid =" metaid_value " id="Km1" value=" Km1_value " units
="mM"/>
<parameter metaid =" metaid_value " id="Km2" value=" Km2_value " units
="mM"/>

</ listOfParameters >
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From this SBML source, the simulator’s conversion component generates the XML code:

<reaction >
<interaction >

<reactants >
<reactant id="E"/>
<reactant id="M1"/>

</ reactants >
<products >

<product id="E+M1"/>
</ products >
<Km unit="mM">Km1_value </Km>

</ interaction >
<interaction >

<reactants >
<reactant id="E"/>
<reactant id="M2"/>

</ reactants >
<products >

<product id="E+M2"/>
</ products >
<Km unit="mM">Km2_value </Km>

</ interaction >
<interaction >

<reactants >
<reactant id="E+M1"/>
<reactant id="M2"/>

</ reactants >
<products >

<product id="E+M1+M2"/>
</ products >
<Km unit="mM">Km2_value </Km>

</ interaction >
<interaction >

<reactants >
<reactant id="E+M2"/>
<reactant id="M1"/>

</ reactants >
<products >

<product id="E+M1+M2"/>
</ products >
<Km unit="mM">Km1_value </Km>

</ interaction >
<interaction >

<reactants >
<reactant id="E+M1+M2"/>

</ reactants >
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<products >
<product id="P1"/>
<product id="P2"/>
<product id="E"/>

</ products >
<Km unit="mM">0.0 </Km>

</ interaction >
<kcat unit=" per_second ">kcat_value </kcat >

</ reaction >

where E+M1 and E+M2 are dual complexes (the states DC1 and DC2 of the Equation 5.5), while
E+M1+M2 represents the saturated enzyme. The Km of the last interaction is always 0 because
this process models the release of the reaction products after the time interval given by the kcat

reciprocal.
The conversion component of Orion 2.0.0 also retrieves from online databases, specifically

ChEBI [52] and UniProt [114], the molecular weights–needed for the simulation but missing in
the SBML model. These values are required to obtain the volumes of the spheres that represent
the molecules of the simulation; they are calculated through Equation 5.1.

The XML file is structured in four main parts:

1. unit definitions;

2. list of metabolites and enzymes in the modelled cytoplasm portion at the beginning of
the simulation (along with the list of the complexes that may form during each enzymatic
reaction);

3. list of all the reactions that may occur in the metabolic pathway;

4. ambient and interaction properties of the simulation.

The first three parts are composed of the children of the element “pathway” because they,
indeed, set the properties of the modelled metabolic pathway.

The unit definitions provide a list of all the derived units adopted in the model and specify
how they are obtained from the base units of the International System of Units (SI). For example,
the definition of the unit millimolar (mM or mmol/l) is given by the following XML code:

<unitDefinition id="mM">
<unit exponent ="1" kind="mole" multiplier ="1" scale=" -3"/>
<unit exponent =" -1" kind="litre " multiplier ="1" scale="0"/>

</ unitDefinition >

The list of molecules part reports all the metabolites, enzymes, and complexes involved in the
modelled metabolic process. It also stores the initial concentrations and the molecular weights
(which the simulator retrieves from online databases, as explained before). For molecular com-
plexes, the initial concentrations are always zero, while their molecular weights are calculated as
the sum of the weights of the molecules that compose each of them. As an example of XML code
for a metabolite, glucoseþ (GLC) is defined as follows:
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<!--metabolite - ChEBI name: D- glucopyranose ; resource: http: //
identifiers .org/ chebi / CHEBI:4167 -->

<molecule compartment ="cell" id="GLC" name=" glucose " type="
Metabolite ">

<molecularWeight unit=" dalton ">180.06 </ molecularWeight >
<initialConcentration unit="mM">0.6280001793382419 </

initialConcentration >
</ molecule >

The compartment is reported as an attribute for allowing the possibility of modelling mem-
brane transport (not implemented in the simulations described in this manuscript); name and id
are taken from the SBML model, but the database name is also indicated in the comment (the
first line, delimited by <!–– and ––>), along with the link to the online database record.

A similar approach is used to define enzymes and complexes. To improve the file’s readability,
the simulator groups each enzyme definition with those of the complexes that such an enzyme
can form. For example, considering the isoenzyme hexokinase-1þ (HXK1), since it can interact
with glucoseþ and ATP, this enzyme and the related complexes are listed in the following way:

<!--Reaction: Hexokinase [HXK1]-->
<!--enzyme - UniProt name: Hexokinase -1; resource: https: // www.

uniprot .org/ uniprot / P04806 -->
<molecule compartment ="cell" id="HXK1" name="HXK1" type=" Enzyme ">

<molecularWeight unit=" dalton ">53738.0 </ molecularWeight >
<initialConcentration unit="mM">0.0167807457149784 </

initialConcentration >
</ molecule >
<molecule compartment ="cell" id="HXK1+GLC" name="HXK1+ glucose " type=

" Complex ">
<molecularWeight unit=" dalton ">53918.06 </ molecularWeight >
<initialConcentration unit="mM">0</ initialConcentration >

</ molecule >
<molecule compartment ="cell" id="HXK1+ATP" name="HXK1+ATP" type="

Complex ">
<molecularWeight unit=" dalton ">54245.0 </ molecularWeight >
<initialConcentration unit="mM">0</ initialConcentration >

</ molecule >
<molecule compartment ="cell" id="HXK1+GLC+ATP" name="HXK1+ glucose +

ATP" type=" Complex ">
<molecularWeight unit=" dalton ">54425.06 </ molecularWeight >
<initialConcentration unit="mM">0</ initialConcentration >

</ molecule >

The list of reactions is in the form already described in this section; for completeness, we
show, instead of just a generalisation, the reaction catalysed by HXK1, that is:

GLCþ + ATPþ HXK1þ−−−→ G6Pþ + ADPþ

The XML code generated for this reaction is the following:
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<!--Hexokinase [HXK1]: irreversible reaction - forward direction -->
<reaction >

<interaction >
<reactants >

<reactant id="HXK1"/>
<reactant id="GLC"/>

</ reactants >
<products >

<product id="HXK1+GLC"/>
</ products >
<Km unit="mM">0.15 </Km>

</ interaction >
<interaction >

<reactants >
<reactant id="HXK1"/>
<reactant id="ATP"/>

</ reactants >
<products >

<product id="HXK1+ATP"/>
</ products >
<Km unit="mM">0.293 </Km>

</ interaction >
<interaction >

<reactants >
<reactant id="HXK1+GLC"/>
<reactant id="ATP"/>

</ reactants >
<products >

<product id="HXK1+GLC+ATP"/>
</ products >
<Km unit="mM">0.293 </Km>

</ interaction >
<interaction >

<reactants >
<reactant id="HXK1+ATP"/>
<reactant id="GLC"/>

</ reactants >
<products >

<product id="HXK1+GLC+ATP"/>
</ products >
<Km unit="mM">0.15 </Km>

</ interaction >
<interaction >

<reactants >
<reactant id="HXK1+GLC+ATP"/>

</ reactants >
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<products >
<product id="G6P"/>
<product id="ADP"/>
<product id="HXK1"/>

</ products >
<Km unit="mM">0.0 </Km>

</ interaction >
<kcat unit=" per_second ">10.2 </kcat >

</ reaction >

The fourth part of the XML file is placed outside the “pathway” element; it specifies the
physical parameters of the modelled cytoplasm portion that are needed to reproduce Brownian
motion (see Section 5.3.1), as well as the properties of molecular interactions. Specifically, it lists:

• volume of the cytoplasm portion (in attoliters);

• viscosity of the environment (in pascal-seconds);

• temperature (in Kelvin degrees);

• perception distance of the active molecules (in angstroms);

• the possibility or not for enzymes to prioritise interactions based on the specificity constant
(kcat /Km ratio, as previously explained in this section).

An example of configuration is the following:

<!--Ambient settings -->
<ambientSettings >

<volumeOfSimulation unit=" attolitre ">1</ volumeOfSimulation >
<viscosity unit=" pascal_second ">0.0011 </ viscosity >
<temperature unit=" kelvin ">298.15 </ temperature >

</ ambientSettings >
<!--Interaction settings -->

<interactionSettings >
<perceptionDistance unit=" angstrom ">300 </ perceptionDistance >
<priorityBySpecificity >false </ priorityBySpecificity >

</ interactionSettings >

The value of the perception distance is widely discussed in Chapter 6, while the priority-
BySpecificity value is set according to the aim of the study carried out (it is set to false in
Chapter 6, while it is required to be true for the work proposed in Chapter 7). The ambient
values of the example are those we set for all the simulations provided in this manuscript.
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5.3.4 Simulation output and visualisation

The output of the simulator is a set of Comma-Separated Values (CSV) files reporting the type
and number of molecules contained in the simulated environment, along with their position, at
each instant of simulation. More precisely, the simulator generates three types of CSV files:

• A standard output, reporting type (metabolite, enzyme or complex) and concentration (in
mmol/l) of every molecular species in the modelled cytoplasm portion at each instant of
the simulation. Such files are used to generate the plots provided in Chapter 6 and related
Appendix C.

• A “verbose” output, which, differently from the previous one, lists each molecule in the
environment at every instant of the simulation, its radius (in picometres), and its position
coordinates in the three-dimensional space. This file is necessary to restart an interrupted
simulation and generate a 3D representation of the simulated environment; the latter is
shown through a dedicated interface of the simulator.

• An “interactors” output, containing, for each simulation time step, the enzymes perceiving
one or more metabolites and a list of these molecules; such a file is needed to highlight
enzymes’ perception in the 3D interface. The generation of this file is optional and can be
excluded to reduce the computational demand of the simulation.

In Figure 5.5, we provide a screenshot of the simulated environment after 5.9 ms of simulation
and the related plots of the concentration changes generated through the simulator interface.

Figure 5.5 – 3D interface of the agent-based simulator. The cube representing the volume of the sim-
ulation has edges of 1000 Å. The interface shows the position of every molecule instant
by instant. It is also possible to highlight the metabolites perceived by each enzyme at a
specific time step of the simulation. On the right, the plots of the species concentration
changes over time are generated for the first 5.9 ms of simulation. At the bottom of the
interface, a legend associates each molecule with its corresponding colour.





Chapter 6

Detecting In Silico the Driving Forces of
Biomolecular Interactions

6.1 Introduction

Long-distance electrodynamic interactions between two small molecules have been primar-
ily studied within the framework of quantum electrodynamics since long-range forces can be
detected among excited atoms with similar transition frequencies [72, 109]. However, interac-
tions beyond the Debye screening length (' 10 Å in biological systems [26]), carried out by the
molecular cognate partners of a biochemical reaction, are not well investigated. Nonetheless,
experimental evidence for collective excitations of biological macromolecules is available in the
Raman and far-infrared spectroscopic domains [36, 85]. Electrodynamic interactions occurring
between oscillating electric dipoles might have a long-range nature; deterministic selective
forces can thus be activated at a distance when the molecules undergo coherent collective oscilla-
tions [95]. The existence of forces of this kind might justify the efficiency of biochemical reactions
more than the sole effect of stochastic short-range interactions, which rely just on Brownian dif-
fusion and chemical affinity. Numerical studies proved that the overall interaction potential U(~r)
between cognate partners (with r being the intermolecular distance) is generally composed of a
short-range term (r−6) and a resonant long-range term (r−3); this means that, when the dipole
moments of two molecules oscillate at the same frequency, an attractive resonant potential
U(r) ∝−1/r3 should be added to the random Brownian force [94].

These phenomena have been lately analysed, theoretically and experimentally, in the in-
teractions among lysozyme molecules and oppositely charged dyes [81]. However, detecting
long-range molecular recruitments in biosystems is still held back by the current technology;
even these recent results, gained through fluorescence correlation spectroscopy, are limited to
systems where the long-range interactions are built-in (by setting up a solution in which the
electrostatic interactions are non-screened).
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Computational approaches might overcome some of these hurdles, allowing to test in silico
the existing theoretical models. Indeed, numerical simulations, such as those performed through
molecular dynamics, have been successfully carried out [81], considering an a priori knowledge
of numerous physical parameters characterising the molecular interactions under study. A
large amount of empirical information allows for generating a faithful representation of the
biological system and provides a reliable in silico support for theoretical and experimental
analyses; however, a lack of empirical data may limit the complexity of the system simulated.

This chapter aims to address most of these issues by exploiting an alternative way to define a
computational model of molecular interactions in a metabolic pathway. Specifically, we con-
struct an agent-based model (ABM) of a well-studied process, the glycolysis of yeasts, to simulate
the effect of the long-distance electrodynamic interactions among the biomolecules involved
in the pathway. The agent-based simulator we use for this study is Orion 2.0.0, introduced in
Section 5.3.1, which makes use of autonomous software pieces (agents) capable of interacting
with one another concurrently and asynchronously (see also Section 1.3.5); they can thus fairly
faithfully replicate in silico the behaviour of the entities interacting in a real biological system.
ABMs require instructing the agents representing the simulated molecules with minimal em-
pirical information, letting the global behaviour of the process result from local interactions
generated dynamically at each step of the simulation. The system evolves due to the ability of
every agent to perceive and respond to the states of its environment, which is unpredictable
and populated by other agents; the agent’s perception results in performing an appropriate
action (if any) able to modify the environment [42]. The agent-based approach allows both the
environment and the molecules to be three-dimensional (as shown in Figure 5.5 on page 101);
molecular shapes can thus affect the diffusion processes.

ABMs have been already successfully applied in the analysis of several biological systems and
used to develop tools for in silico supporting experimental studies [11, 23, 84]. With the present
work, we leverage the flexibility of the agent-based modelling to construct in silico biochemical
systems; this approach is intended to simulate the glycolytic process by considering different
types of forces driving molecular interactions. We aim to abstract the core features of biochemical
systems characterised by purely random molecular encounters and compare them to those where
cognate partners’ interactions are mainly driven by deterministic long-range forces. ABMs allow
us to reproduce these phenomena in a network of mutually conditioning reactions without
knowing a priori all the parameters needed in a numerical simulation, which might be missing
or difficult to assay experimentally. For this reason, we simulated the molecular interactions as
entirely random, without predetermining any priority on the metabolites perceived by an enzyme
(that is, ignoring the effects of the specificity constant in the initial setup of the simulation, as
described in Section 5.3.3).

By analysing the concentration changes of the molecular species during each step of the
agent-based simulation, we can hypothesise how long-distance interactions may quantitatively
and qualitatively affect the glycolysis process. This way, we can also hint at what might be the
physical phenomena underlying the related kinetic parameters if they were assayed in vivo and
highlight possible discrepancies with the values obtained in vitro. These results would provide
the basis for setting up further experimental studies.
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6.2 Additional Methods

6.2.1 Designing the model of glycolysis

As explained in Section 5.3.2, we chose the Smallbone2013 - Iteration 18 model [107], provided in
the SBML format (http://identifiers.org/biomodels.db/MODEL1303260018), as the data
source for the simulations of this dissertation.

By importing the reactions of the SMBL file as input for our agent-based simulations, we ex-
cluded all those for which the Smallbone2013 model does not provide enzymatic concentrations.
Our simulator can handle these kinds of reactions since we can model them in terms of their bulk
effects. However, introducing any bulk reaction would perturb the environment and hide the ab-
sence of actual interactions among the molecules; this would make the ABM close to a standard
kinetic model and compromise the possibility of observing the global behaviour of glycolysis
as resulting from the local molecular interactions. Based on this idea, we do not consider the
adenylateþ kinaseþ reaction, the ATPaseþ reactions, the UDPþ toþ UTPþ reaction, and the glucoseþ
transportþ (between the extracellular environment and the cytosol). The most significant of
these reactions is the adenylate kinase since it controls the ratio of ATP, ADP, and AMPþ (also called
energy charge), which in turn affects the allosteric regulation of important enzymes, such as
phosphofructokinaseþ and hexokinaseþ [48]. However, the length of the simulated process (1
second, as discussed in Section 6.3) makes the allosteric regulation and the whole energy charge
effects negligible [64, 116]. Suppressing glucose transport and enzyme regulation also prevents,
de facto, the achievement of a steady state, helping us to emphasise the effects of the various
types of interactions on the concentration changes in the simulation interval.

The initial concentrations of the molecular species are gained from the SBML file as mil-
limoles per litre (mmol/l). A dedicated simulator component converts these values into the initial
particle numbers needed to instantiate the agents at the beginning of the simulation. In this
regard, we point out that, although agent-based simulations have a fairly light computational
load, reproducing a metabolic pathway involves thousands of molecules, therefore as many
agents running concurrently. The resulting resources demand conditioned the molecular con-
centrations we were able to simulate. More precisely, we scaled the concentrations provided by
the Smallbone2013 model to values less than 1 mmol/l. In Table 6.1, we report the initial concen-
trations of all the simulated species. The total number of molecules (enzymes and metabolites)
in the environment at the beginning of the simulation is 6955.

Our agent-based model is intended to study the glycolytic pathway from the general perspec-
tive of the oxidation of one molecule of glucoseþ to two molecules of pyruvate; for this reason,
we consider the pyruvateþ as the end product of the process and excluded the fermentation-
related reactions, catalysed by the pyruvateþ decarboxylaseþ isoenzymesþ (PDC1, PDC5, PDC6)
and by the two alcoholþ dehydrogenaseþ isoenzymesþ (ADH1þ and ADH5). Therefore, the branches
acting on pyruvate, that is, the succinateþ and acetateþ branches of glycolysis, are not taken
into account in our model.

http://identifiers.org/biomodels.db/MODEL1303260018
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Table 6.1 – Initial concentrations and sphere radii of the molecular species simulated in our study. The
original amounts provided by the Smallbone2013 - Iteration 18 model have been scaled to
values less than 1 mmol/l to fit the computational demand of the simulations. Each radius
is obtained from the volume calculated through Equation 5.1.

Metabolites

Name Initial Conc. Sphere Radius
(mmol/l) (Å)

ADP 0.129 4.98
AMP 0.44 4.65
ATP 0.429 5.28
BPG 0.007 4.26
DHAP 0.116 3.67
F16bP 0.458 4.62
F26bP 0.030 4.62
F6P 0.235 4.22
G1P 0.539 4.22
G3P 0.274 3.68
G6P 0.772 4.22
GAP 0.316 3.67
GLC 0.628 3.74
GLY 0.150 2.99
NAD 0.150 5.77
NADH 0.086 5.78
P2G 0.068 3.78
P3G 0.470 3.78
PEP 0.610 3.65
PYR 0.211 2.93
T6P 0.020 4.96
TRH 0.015 4.63
UDG 0.467 5.47
UDP 0.282 4.89
UTP 0.649 5.18

Enzymes

Name Initial Conc. Sphere Radius
(mmol/l) (Å)

CDC19 0.205 25.07
ENO1 0.686 23.83
ENO2 0.197 23.85
FBA1 0.134 22.54
GLK1 0.045 25.2
GPD1 0.068 23.14
GPD2 0.008 24.26
GPM1 0.730 19.98
HOR2 0.055 20.03
HXK1 0.017 24.95
HXK2 0.061 24.98
PFK1 0.047 31.48
PFK2 0.039 31.15
PGI1 0.138 26.07
PGK1 0.258 23.47
PGM1 0.033 26.32
PGM2 0.013 26.32
PYK2 0.061 25.17
RHR2 0.051 20.07
TDH1 0.351 21.78
TDH3 0.420 21.78
TPI1 0.294 19.79
TPS1 0.034 25.32
TPS2 0.027 30.99
UGP1 0.062 25.29

To complete the list of changes we made to the original kinetic model, we report that,
according to most of the literature, we modelled the reactions catalysed by hexokinaseþ (and
glucokinase), phosphofructokinase, and pyruvateþ kinaseþ as irreversible [12, 30, 60], since
they function as control points of the whole glycolysis process, despite the Smallbone2013 model
considers irreversible only the reaction performed by phosphofructokinase.

The subset of reactions characterising the model at the basis of our simulations, as resulting
from the above-described adaptations, can be found in Figure 6.1 and Table 6.2.



6.2. ADDITIONAL METHODS 107

6.2.2 Modelling short- and long-range forces among biomolecules

To simulate the effects of the molecular interactions operating at different distances, we endowed
agents with specifically designed perception capabilities. Their core property lies in the definition
of a perception sphere that surrounds each active molecule (enzymes and complexes, as explained
in Section 5.3.1). By setting the perception radius, that is, the radius of the perception sphere,
we can model various lengths at which enzymes and complexes can interact with their cognate
partners. Therefore, the capability of agents to perceive and interact with one another allows us
to abstract the effects of the electrostatic and electrodynamic potentials among the molecules of
the simulated environment; this can be achieved without taking into account all the physical
parameters usually required in molecular dynamics simulations (such as the potential values or
the forces generated by molecular collisions) [81].

Each perception radius is obtained by summing the radius of the enzyme to the perception
distance at which we want the enzyme to be able to find a cognate metabolite; the perception
distance extends beyond the surface of the sphere representing the enzyme. As the distance of
the metabolite from the enzyme increases, the intensity of the forces acting on it diminishes;
for this reason, each perception sphere is characterised by different interaction probabilities,
depending on its size.

We simulated three different systems in which the interactions characterising the glycolytic
process are driven by the specific kinds of forces whose effects on the pathway we aim to compare.
Going into detail, the agent-based modelling approach makes us able to define:

• A system in which molecular encounters are driven only by Brownian motion and dynamic
complementarities (e.g., lock-and-key or induced-fit phenomena). We modelled this sys-
tem allowing enzymes and complexes to identify a cognate metabolite within a perception
distance of 5 Å ; this sets the space on which electrostatic forces, such as those resulting
from van der Waals-like potentials, operate. When a metabolite enters the related sphere
(of a cognate enzyme), there is a probability p = 1 that the interaction will happen.

• A system where a 10 Å perception distance models the effects of electromagnetic potentials
limited by the Debye screening [26]; it restricts the interactions to just those allowed by
stochastic short-range forces. In this case, the probability of the interaction is still p = 1
when the metabolite is, at most, 5 Å far from the enzyme sphere; it reduces to p = 1/2 when
the metabolite is detected at a distance d such that 5 < d ≤ 10 angstroms.

• A system characterised by perception distances of 300 Å, chosen as the average length to
simulate the existence of long-range electrodynamic forces among biomolecules (con-
sidering that the size of the simulation volume of our study is 1000 cubic angstroms). As
mentioned in the Introduction, these are deterministic attractive forces activated by a
long-range potential between two dipolar molecules, A and B, if they vibrate at frequencies
ωA ' ωB (that is, if they are at resonance). In real cells, this phenomenon might be ob-
served because a macromolecule oscillating at a high frequency (in the range of 1010−1011

Hz) does not suffer the Debye screening effect by the ions of the medium [94, 95].
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Figure 6.1 – Schematic representation of the glycolysis steps and branches taken into account in the
ABMs of this chapter. They are extracted and adapted, through a dedicated component of
Orion, from the SBML of the Smallbone2013 kinetic model [107]. The reactions in red are
those excluded during the conversion (see the Section 6.2.1 for details). For each metabolite
involved, we report both the name and the acronym (in bold), while, for every reaction, we
indicate the abbreviation of each isoenzyme carrying it out (in italics). On the right side of
the image, we highlight the two main phases of the process; since the ethanol fermentation
has not been simulated, we prefer not to show this phase to preserve the readability of the
figure.
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Table 6.2 – Table of the reactions gained from the Smallbone2103 - Iteration 18 model to define the ABM
underlying our simulations. They represent a subset of all the Smallbone2013 reactions,
specifically those for which the enzymatic concentration is provided and those not involved
in the transformation of pyruvate to ethanol. The reactions are shown in alphabetic order;
the related kcat values are also reported.

Reaction name Chemical equations kcat (s−1)

3-phosphoglycerate kinase ADP + BPG
PGK1
(−−−−−−+ ATP + P3G 58.6

enolase P2G
ENO1
(−−−−−−−−+ PEP 7.6

P2G
ENO2
(−−−−−−−−+ PEP 19.87

fructosebisphosphate aldolase F16bP
FBA1
(−−−−−−+DHAP + GAP 4.14

glyceraldehyde phosphate dehydrogenase GAP + NAD
TDH1
(−−−−−−−−+ BPG + NADH 19.12

GAP + NAD
TDH2
(−−−−−−−−+ BPG + NADH 8.63

GAP + NAD
TDH3
(−−−−−−−−+ BPG + NADH 18.16

glycerol 3-phosphatase G3P
HOR2−−−−→ GLY 161.38

G3P
RHR2−−−−→ GLY 17.26

glycerol 3-phosphate dehydrogenase DHAP + NADH
GPD1
(−−−−−−−−+ G3P + NAD 114.6

DHAP + NADH
GPD2
(−−−−−−−−+ G3P + NAD 987.3

hexokinase GLC + ATP
HXK1−−−−→ G6P + ADP 10.2

GLC + ATP
HXK2−−−−→ G6P + ADP 63.1

GLC + ATP
GLK1−−−→ G6P + ADP 0.07

phosphofructokinase ATP + F6P
PFK1−−−→ ADP + F16bP 209.6

ATP + F6P
PFK2−−−→ ADP + F16bP 209.6

phosphoglucomutase G6P
PGM1
(−−−−−−−−+ G1P 39.12

G6P
PGM2
(−−−−−−−−+ G1P 101.39

phosphoglucose isomerase G6P
PGI1
(−−−−−−+ F6P 487.36

phosphoglyceromutase P3G
GPM1
(−−−−−−−−+ P2G 400

pyruvate kinase ADP + PEP
CDC19−−−−→ ATP + PYR 20.15

ADP + PEP
PYK2−−−→ ATP + PYR 0

T6P synthase G6P + UDG
TPS1−−−→ T6P + UDP 145.49

T6P phosphatase T6P
TPS2−−−→ TRH 879.75

triosephosphate isomerase DHAP
TPI1
(−−−−−−+ GAP 564.38

UDP glucose phosphorylase G1P + UTP
UGP1−−−−→ UDG 2137.21
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A perception sphere of this size is modelled with four different interaction probability
intervals. Specifically, let p be the probability of interaction, dper the perception distance,
and dm the distance of the metabolite from the centre of the sphere representing the
perceiving enzyme (all the lengths expressed in angstroms):

– if dm ≤ 1

4
dper , then p = 1

– if
1

4
dper < dm ≤ 3

4
dper , then p = 3

4

– if
3

4
dper < dm ≤ dper , then p = 1

2

This modelling approach turned out to be a reasonable abstraction to represent the pro-
gressive reduction of the attraction strength exerted by the enzyme on a cognate metabolite
as the distance between the two molecules increases. In Figure 6.2, we provide a graphical
representation of how the perception radii project on the environment.

6.3 Results

By setting the local rules that determine the movements and interactions of the molecules
involved in our model of yeast glycolysis (as detailed in Section 5.3.1), the global behaviour of the
pathway can be observed during the simulation in the form of molecular concentration changes
(mmol/l) over time (s).

To balance the computational demand of dealing with thousands of molecules and the
need to produce worthwhile outputs, we ran each type of simulation for an interval of 1 second
(about ten days of actual running time); it turned out to be sufficiently long for us to observe and
compare the specific features of each of the three modelled systems.

In Figure 6.3, we report some of the concentration changes that characterise each type of
system. For generating these plots, we selected the metabolites whose amount variations during
the simulation were most meaningful for our analysis (a complete set of plots covering all the
metabolite species considered in our models is provided in Appendix Section C.1.1).

The simulation performed by setting perception distances of 300 Å, which represents a
system where we hypothesise the existence of selective long-range molecular recruitments,
has the highest reactivity and efficiency (Figure 6.3a); already after 0.9 s, all the glucoseþ in
the environment is consumed, and the pyruvateþ (one of the main products of the pathway)
increases from an initial concentration of 0.2 mmol/l to about 1 mmol/l.

In the system where we limited the electromagnetic forces to those below the Debye screening
(perception distances of 10 Å –Figure 6.3b), we do not observe utterly different concentration
changes in comparison to the previous one; however, they clearly show a lower efficiency in
the production of pyruvateþ from glucose, which a system of that type is unable to deplete
completely in the chosen simulation interval.
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Figure 6.2 – Graphical representation of the agent’s perception, by which every modelled enzyme
detects the cognate metabolites in its surrounding environment. Each enzyme, depicted as
a sphere of radius r, is able to perceive its neighbouring metabolites at different distances d.
This process is fundamental for reproducing in silico the effects of the long-range forces
on biochemical reactions, as discussed throughout this chapter. Each perception radius
is given as the sum of the enzyme radius (r) and the perception distance (d) at which the
molecule can detect its cognate metabolites. The perception radius of the r1+d1þ type
schematises the constraint that limits the enzyme interactions to those allowed by short-
range forces (both 5 and 10 Å perception distances), while a r2+d2þ type radius models
the effects of the long-distance electrodynamic interactions. We point out that the figure
arranges side by side two different types of radii just for comparative purposes; in the ABMs
defined for glycolysis, only one type of radius is allowed per modelled system.

We can also compare these two types of simulations in terms of variations of the other
main products of glycolysis and related branches. Indeed, they both report a clear, yet similar,
increase of the glycerolþ amount. Conversely, if we take into account the effects of long-distance
interactions, the trehaloseþ branch shows a change in its end product from 0.015 to 0.76 mmol/l,
a higher concentration compared to the about 0.60 mmol/l resulting from a system limited by a
10 Å perception distance. Regarding ATPþ and NADH, their concentrations reach a value close to
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zero almost immediately and then fluctuate slightly for the remainder of the simulation. This
behaviour is observable due to the short interval of glycolysis we are analysing: at this stage of
the process, the reactions that use ATPþ as an energy donor, as well as the redox conversion of
dihydroxyacetoneþ phosphateþ to glycerolþ 3-phosphateþ (which is coupled with the oxidation
of NADH), still have an abundance of the substrate to consume. As a consequence, the related
enzymes continuously bind the ATPþ and NADHþ in the environment to perform their catalytic
activity.

We obtained remarkably opposed results in the case of simulations based on perception
distances of 5 Å, which model a system affected only by short-range van der Waals-like potentials
(Figure 6.3c). Despite the certainty that a metabolite will be bound by its cognate enzyme when it
enters such a small perception sphere (as detailed in Section 6.2.2), at the end of the simulation,
we can observe negligible increases in the concentration of the pathway end products as well
as in the consumption of glucose. In particular, the curve representing this last metabolite
reaches a plateau after a small depletion in its concentration, a behaviour we would observe at
steady state; however, mostly because we did not implement enzyme regulation and glucose
transport, such a condition is unlikely in our simulated systems. We can also observe similar
concentration changes for glycerolþ (in this case, it increases before reaching a plateau). In
both the situations, these anomalous behaviours are explainable if we observe the curves of ATPþ
and NADH: the amount of ATPþ never decreases because, during the preparation phase of glycol-
ysis, neither the hexokinasesþ nor the phosphofructokinasesþ are able to bind this molecule
and complete the catalysis of their respective reactions. Indeed, glucoseþ molecules are bound
at the beginning of the simulation, but then the environment maintains the same concentra-
tion of hexokinase-glucoseþ and glucokinase-glucoseþ complexes for the entire simulated
interval (plots reporting the concentrations changes of complexes are provided in Appendix Sec-
tion C.1.2). This phenomenon also justifies why fructoseþ 1,6-bisphosphateþ (product of the
phosphofructokinase) can only decrease, consumed by fructose-bisphosphateþ aldolase.
NADH, instead, remains stable at its initial concentration of 0.086 mmol/l because the glycerol-
3-phosphateþ dehydrogenaseþ is not able to bind it; when all the glycerolþ 3-phosphateþ in the
environment has already been converted in glycerol, the latter can no longer be produced
(causing the observed plateau of its curve).

We compared the results described thus far with the output obtained through a numer-
ical time-course simulation; this has been performed via the Copasi software [55] over the
Smallbone2013 model [107]. We modified the original SBML with the same adjustments to the
considered reactions and initial molar concentrations of our ABM (see Section 6.2.1). However,
we left the functions associated with enzyme regulation unchanged because a system of differ-
ential equations resulted in being less flexible than an ABM, and removing this feature would
have compromised its consistency, making the numerical simulation impossible. As shown in
Figure 6.3d, the kinetic model thus generates results closer to a steady-state condition, a property
that, at first glance, may mislead the observer to find analogies with the simulations reproducing
5 Å perception distances.
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(a) (b)

(c) (d)

Figure 6.3 – Concentration changes over time, in simulations of 1 second, of a selection of metabo-
lites particularly relevant for our study (for the complete set of plots, representing all the
metabolites simulated, see Appendix Section C.1.1). This figure provides a comparison of
the plots generated by three agent-based simulations–with perception distances set to 300
Å (a), 10 Å (b), and 5 Å (c), respectively–and by a deterministic time course simulation based
on the Smallbone2013 kinetic model (d). We selected the following metabolite species:
glucoseþ (GLC), the source of the glycolytic pathway; pyruvateþ (PYR), NADH, and ATP, that
is, the end products of glycolysis; trehaloseþ (TRH) and glycerolþ (GLY), the products,
respectively, of the two main glycolysis branches; fructoseþ 1,6-bisphosphateþ (F16bP),
the product of the most important control-point reaction of the glycolytic pathway, namely
the one catalysed by the phosphofructokinase. In plot (a), it is possible to notice how
the simulation that takes into account long-range electrodynamic forces (300 Å perception
distance) also shows a higher reactivity and an evident increase in the amounts of the path-
way end products. In comparison, the simulation that limits the electromagnetic forces
to those affected by Debye screening (10 Å perception distance), shown in (b), is not able
to consume the whole glucoseþ in the environment and generates significantly smaller
amounts of pyruvateþ and thralose. Simulating a system driven by van der Waals-like
potentials (5 Å perception distance), whose plot is represented in (c), causes negligible
changes in metabolite concentrations, and the glucoseþ consumption reaches a plateau;
the agent-based approach allows us to attribute this behaviour to the inability of the re-
actions that use ATPþ or NADHþ as energy donor to bound these types of metabolites (see
Appendix Section C.1.2 for further details). The plot (d) is generated through the determin-
istic time-course simulation of the Smallbone2013 model using the software Copasi [55].
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However, excluding the fluctuations of metabolites concentrations, which are better captured by
the ABM and more evident in the related plots, most of the shown concentration changes are
loosely similar to those identified when we simulated 10 Å and 300 Å perception distances. This
can be verified at least for the consumption of glucoseþ and ATP, and for the increase of pyruvateþ
and fructoseþ 1,6-bisphosphate; nonetheless, they show significantly smaller variations from
their initial molar concentrations. Although we consider identifying such properties in some of
the most relevant species of the pathway noteworthy, we also point out that the last observations
do not apply to all the simulated metabolites (as explained in Appendix Section C.1).

6.4 Discussion

The outcomes of the agent-based simulations detailed above suggest that the two systems that
reproduce an off-resonance situation–where molecular interactions rely only on van der Waals-
like potentials or, at least, on electromagnetic forces shorter than the Debye length–are not able
to oxidise glucose at a high rate. This property is particularly true when we limit the perception
distance to 5 Å, resulting in negligible changes in metabolite concentrations. By analysing the
complexes formed by specific enzymes, such as hexokinasesþ and phosphofructokinases, we
attributed this behaviour to the inability of the electrostatic forces to guarantee the interaction
of these enzymes with the needed energy donors. In this regard, the agent-based approach
shows one of its major capabilities: it reproduces the dynamics of local interactions among the
molecules (modelled as autonomous agents) and “captures” the formation of complexes, even
when they are partly-saturated enzymes.

Such a possibility allowed us to observe, in the system limited by short-range electrostatic
interactions, a condition that might be detrimental to the cell anaerobic metabolism, which
commits the production of energy (in the form of ATP) only to a fast-paced glycolytic process.
At the current stage of our work, this consideration represents just a hypothesis: in real cells,
glycolysis processes occur in times ranging from a few seconds to hours [64, 83, 100, 116], making
our one-second interval of simulation just a testbed to validate the capability of ABMs to support
the study of the above-described forces in biological systems. However, if confirmed by further
analyses, this result might suggest the non-feasibility of the lock-and-key model for enzymes in
metabolic processes.

Interestingly, even though enzyme regulation has not been modelled, the systems driven by
electromagnetic forces (including those below the Debye screening length) produce oscillatory-
like fluctuations in the concentrations of fructoseþ 1,6-bisphosphate, the main product of
phosphofructokinase. Moreover, as shown in Figure 6.4, these fluctuations are synchronised
with the concentration changes of DHAPþ and GAP, the products of the subsequent reaction in
the glycolytic pathway, especially due to its reversibility. Conversely, such behaviour is almost
unnoticeable in the output of the simulation that allows only short-range van der Waals-like
potentials (5 Å perception distance). Phosphofructokinaseþ has a central role in the regulation
of glycolysis and, pivoting around this enzyme, an oscillatory behaviour has been experimentally
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observed during the oxidation of glucose (even if at much lower frequencies) [100, 121]. Consid-
ering the high level of abstraction of the current glycolysis ABM, this result might be viewed as
another clue that, by not limiting molecular interactions to just shape complementarities and
chemical affinities, we generated processes more faithful to those occurring in cellular glycolysis.

We could not reach such a conclusion if we based our analysis on a standard kinetic model,
which derives the changes over time of the concentrations (often of metabolites alone) through
rate and balance equations. As it lacks the ability to represent the granularity of a molecular
system, this approach hardly grasps the fluctuations in the species amounts, generating several
discrepancies with the results we gained through our agent-based approach. Although differ-
ential equations best suit modelling the continuum or macroscale level [23], such divergences
might also be attributed to the possible inaccuracy through which kinetic parameters are essayed
in vitro. Indeed, already in the early 2000s, Teusink et al. questioned that in vitro kinetics could
be able to faithfully describe an in vivo behaviour [112].

Molecular dynamics simulations, which may not be affected by the limitations of the standard
kinetic approach, require a high number of physical parameters to be performed. Numerical sim-
ulations of this kind have been carried out to detect long-range interactions among biomolecules
through the molecular diffusion behaviour [81]. In this case, simulating just one type of pro-
tein (the white egg Lysozyme) and one oppositely charged dye (the Alexa Fluor 488) required
an a priori knowledge of several data; applying the same approach to a complex pathway of
many reactions would be significantly more difficult than performing in silico studies through
agent-based simulations.

6.5 Conclusions

We think that the results provided in this chapter support the reliability of ABMs in capturing the
essential features of a complex biological process and faithfully reproducing different aspects of
its behaviour, even on the basis of few empirical data. This approach identified in the long-range
electrodynamic forces some of the fundamental “ingredients” necessary for glycolysis to operate
efficiently.

However, we just laid the groundwork for further in silico and experimental studies that would
explore those aspects of metabolism dynamics overlooked at the current stage of our analysis.
An optimised implementation of Orion would allow longer simulations that, complemented by
experimental validation of the present results, might highlight if some of our outcomes could be
biased by the abstraction level of the agent-based models. Once we reinforce the robustness of
our agent-based approach, it might pave the way for a better comprehension of those phenomena
associated with cellular metabolism that are still not well understood. For example, it can be
applied in the study of the Warburg effect, which describes the preference of cancer cells for the
anaerobic (and energetically inefficient) consumption of glucose through glycolysis, even in the
presence of a high oxygen concentration [118]. Recent studies have linked such a process to the
effect of glycolytic oscillations [102] and to the rate of glycolysis, increased to provide a selective
advantage over the metabolic competition in the tumour environment [66]. In this chapter, we
have shown how long-range electrodynamic forces may affect the rate and efficiency of glucose
oxidation and the oscillations in glycolysis intermediates; therefore, additional studies might
enlighten us on their potential involvement in such an anomalous behaviour of tumour cells.
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(a) (b)

(c)

Figure 6.4 – Synchronised oscillation-like fluctuations observed in fructoseþ 1,6-bisphosphateþ
(F16bP), dihydroxyacetoneþ phosphateþ (DHAP) and glyceraldehydeþ 3-phosphateþ
(GAP). The first metabolite is the product of the phosphorylation of fructose-6-
phosphate, catalysed by phosphofructokinase, while the other two are generated by the
subsequent reaction in the glycolytic pathway, carried out by fructose-bisphosphateþ
aldolase. DHAPþ and GAPþ are also interconverted by the triosephosphateþ isomerase. In
(a) and (b), that is, the plots of the simulations that take into account the electromagnetic
forces (limited or not by the Debye screening), we can observe an oscillatory trend with a fre-
quency of about 2.8 s−1, synchronised in all the three curves. Conversely, in the simulation
that considers just short-range electrostatic interactions, shown in plot (c), these oscilla-
tions are almost unnoticeable. The higher frequency measured experimentally in yeast’s
glycolysis is 0.03 s−1 [100]; therefore, at the time scale of our simulations, these results give
us just a clue of the higher faithfulness to the actual glycolytic process of the models whose
interactions are not limited to just random encounters and chemical affinities.

Similar results might also be reached by empowering the capabilities of the agent-based ap-
proach with methods from other disciplines. Among them, the topological data analysis, already
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used to better understand enzymatic reactions through ABMs (see Chapter 7), may provide the
current model with a many-body perspective. Shape calculus can be applied to represent molec-
ular conformations and increase the accuracy of the interactions between cognate partners; these
approaches would allow modelling the geometry of molecule shapes and collisions with a higher
precision [20]. Moreover, we may better capture the collective synchronisation properties of a
population of molecules behaving as coupled oscillators by using BOSL, the biological oscillators
synchronisation logic [10]. Putting efforts in these directions might provide a new standpoint in
our comprehension of molecular interactions and disclose aspects of biological systems that are
still unexplored.





Chapter 7

Modelling Interactions as Perceptions
in Metabolic Reactions*

7.1 Introduction

This chapter analyses the space of potential reactions in a simulated metabolic process with the
topological data analysis, one of the most effective methods to extract information patterns from
a data collection [43, 76, 90, 91, 123]. This technique consists in building simplicial complexes–
i.e., finite collections of objects, each of which could be seen as an n-body relation–and selecting
the most meaningful one. Weight rank clique filtration is used to map simulation data into
simplicial complexes and visualise the significant simplicial structures in the specific domain of
metabolic reactions [25, 33, 88, 126].

This approach allows us to define a new visualisation paradigm based on the concept of
interaction-as-perception: whenever a molecule perceives another one to interact with, a po-
tential link between the two is established; the latter consolidates if the interaction ends up
in a complex formation. In this way, we can derive the graph of perceptions at a given step;
over this graph, we apply the topological data analysis to capture the 3-body interactions by
interpreting 2-simplices–which are convex hulls of three points–as observable structures. We
use the 2-simplex formation as a semantic to represent the global dynamics of the system and as
a possible validation tool for the agent-based models of glycolysis introduced in the previous
chapters.

*This chapter is derived from a co-authored work, conducted and published as part of the PhD project:
Piangerelli, M., Maestri, S., Merelli, E., 2020. “Visualising 2-simplex formation in metabolic reactions”. Journal
of Molecular Graphics and Modelling 97, 107576. ©2020 Elsevier Inc. https://doi.org/10.1016/j.jmgm.2020.
107576. M.P. and S.M. contributed equally to the work; they both curated the data and wrote the paper. M.P dealt
with the topological data analysis; S.M. dealt with the agent-based modelling and simulation. E.M. supervised the
research. All the authors conceptualised the study and reviewed the paper.
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7.2 Additional Methods

7.2.1 Simulating glucose phosphorylation

The investigation we present is performed with the aid of Orion 2.0.0, the spatial simulator for
metabolic pathways we discussed in Chapters 5 and 6, taking the Smallbone2013 model of
glycolysis [108] as a source for the species concentrations and kinetic values (see Section 5.3.2
on page 92). The only reaction simulated for the aim of this study is the phosphorylation of
glucose–catalysed by hexokinaseþ and glucokinase–which produces glucoseþ 6-phosphateþ
and ADP; the Smallbone2013 model takes into account the contribution of isoenzymes; therefore,
we considered the following three reactions:

GLCþ + ATPþ HXK1þ−−−→ G6Pþ + ADPþ
GLCþ + ATPþ HXK2þ−−−→ G6Pþ + ADPþ
GLCþ + ATPþ GLK1þ−−−→ G6Pþ + ADPþ

For such reactions, the Smallbone2013 model provides the experimental data in Table 7.1. As
explained in the following sections, the specificity constant is used in this study as a weight to
characterise each molecular perception and interaction; thus, we ran the simulations by enabling
the Orion option that assigns a priority to enzymes for their substrate based on the kcat /Km ratio
(see Section 5.3.3 on page 94).

Table 7.1 – Initial concentrations and kinetic parameters from the Smallbone2013 model [108].

ID Conc. kcat KGLC K AT P

(mM/l ) (s−1) (mM) (mM)

enzymes

HXK1þ 0.017 10.2 0.15 0.293
HXK2þ 0.061 63.1 0.2 0.195
GLK1þ 0.045 0.0721 0.0106 0.865

metabolites

GLCþ 6.28 / / /
ATPþ 4.29 / / /
ADPþ 1.29 / / /
G6Pþ 0.77 / / /

7.2.2 Simplicial data analysis

Topological data analysis is a promising technique for finding hidden patterns in (big) data. It
is based on topology, a branch of mathematics that studies the shapes of spaces. According to
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topology, a space can be characterised by quantities called topological invariants, which can be
thought of as n−dimesional holes.

A topological space is constructed over a set of data points endowed with the notion of
proximity, which characterises a coordinate-free metric. Because we are working in a discrete
domain, we focus on topological spaces known as simplicial complexes. They are made up of
building blocks called simplices: points are 0-simplices, line segments are 1-simplices, filled
triangles are 2-simplices, filled tetrahedra are 3-simplices, and so on.

A filtration is a collection of nested simplicial complexes. Filtering can be compared to
looking at a dataset through different lenses that allow extracting different types of information
from the topological space; different filtrations result in different conversions of data points into
simplicial complexes. In this chapter, we use the weight rank clique filtration, a graph-specific
filtration that allows constructing a simplicial complex from a weighted undirected graph. Graphs
are mathematical objects that lie in two dimensions: using simplicial data analysis, we derive
from a graph the relative simplicial complex, which can be in any dimension. To perform the
weight rank clique filtration and the related visualisation, we use a tool that is currently under
development at the Bioshape and Data Science Lab of the University of Camerino. This tool
exploits the GraphSharp library for visualisation.

7.2.3 Interaction-as-perception paradigm

The output of the simulator has been adapted to carry out a topological interpretation of the
modelled molecular interactions. To achieve this result, we defined an interaction-as-perception
paradigm applied to the agent dynamics of our metabolic simulator. The idea at the basis of this
approach is that the perception between cognate partners could be interpreted as an abstraction
for a complex formation.

Going into detail, we generated, along with the standard output of the simulator (as described
in Section 5.3.4), additional information about every interaction performed at each time step. In
particular, we gained the identifier of all the molecules involved in such an interaction and the
value of the related kcat /Km ratio. Based on these data, we can define the following classes of
perception:

• Direct unstable perception, of an enzyme for one of the possible cognate metabolites
identified in its surroundings.

• Direct fixed perception, of an enzyme for an already bound metabolite (to form a dual-
complex).

• Indirect unstable perception, of the metabolite forming the dual-complex for an external
one perceived by the cognate enzyme; the enzyme mediates this kind of perception, which,
by convention, has the fixed value of 0.001.

• Indirect fixed perception, of a metabolite for another metabolite bound to the same
enzyme.
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Figure 7.1 – Representation of the interaction-as-perception paradigm. In the classical agent-based
model, the interaction between a dual-complex and a complementary metabolite is 2-body;
a saturated enzyme has no interactions at all. Conversely, through the interaction-as-
perception paradigm, they can be interpreted as 3-body since we consider the potential
interactions. However, to illustrate this paradigm based on the entities of an agent-based
simulator, we need to force the original model and disrupt the structures represented by
the agents. This limitation is overcome by the topological representation of intermolecular
perceptions as simplicial structures.

By analysing the dynamics of the agent-based simulations from the above-defined perspec-
tive, we can observe the following behaviours:

• A free enzyme can have direct unstable perceptions or no perception at all (if there is no
other compatible molecule in its surroundings).

• A dual-complex, since it forms when an enzyme binds one of the perceived metabolites,
always carries out an inner fixed perception–of the enzyme for the bound metabolite. Two
additional kinds of perceptions are generated for every external compatible metabolite it
identifies, i.e., the direct and the indirect unstable perceptions performed, respectively, by
the enzyme and by the metabolite composing the dual-complex.
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• A saturated enzyme can show just the direct fixed perceptions of the enzyme for the bound
metabolites and an indirect fixed perception between the two metabolites (if more than
one is present, as in the case of the reaction we analysed). This condition is maintained
for the duration of the delay given by the reciprocal of the reaction’s kcat (after which
the enzyme returns free, and two new metabolites, corresponding to the products of the
reaction, are released in the simulation environment).

These three different behaviours identify the states of the automaton that describes the cycli-
cal pattern of an enzymatic reaction (see Section 5.3.1). The iteration of this cycle drives the
evolution of the reaction through phases of higher/lower stability, a property that we highlight
through quantitative analysis of the topological representation (2-simplex) of intermolecular per-
ceptions (see Figure 7.3). The 2-simplex structures provide a higher-order global representation
of interactions than a classical agent-based model. In the latter, each molecular interaction is
2-body, defined according to the biochemical reactions (such as those shown in Section 7.2.1),
and generates a new agent (a new complex or a final product); conversely, in the topological
setting, the potential interactions between molecules can be 3-body and represented as a whole
on the basis of the interaction-as-perception paradigm (see Figure 7.1).

7.3 Results

By applying our agent-based simulation to study the metabolic reactions catalysed by hexokinase
isoenzymes, we can observe how the molecules in the simulated environment move and interact
at each time step (see Chapter 5 for details).

To analyse the dynamic evolution of each reaction from a topological point of view, we
need to abstract, based on an interaction-as-perception paradigm, from the standard spatial
simulation output. According to such an approach, an enzyme perceives a cognate metabolite
whether a metabolite enters its perception sphere (see Section 6.2.2 on page 107) or the two
molecules actually bind. The resulting network of intermolecular perceptions can be interpreted
in terms of simplicial complexes formation, where, every time an enzyme perceives a cognate
metabolite, an edge is drawn between the two molecules.

Changes in simplicial structures go along the evolution of the simulated reaction, according
to the following general observations:

• At the beginning of the simulation, every molecule in the simulated volume does not
perceive nor interact; therefore, the topological environment is filled with sparse nodes
(0-simplices–see Figure 7.2a);

• In the first simulation instants, since enzymes start to perceive the related substrate, we
can observe the formation of isolated enzyme-metabolite edges (1-simplices) as well as of
“dandelion-like” structures (Figure 7.2b), made of a central hub (the enzyme) connected to
multiple nodes (metabolites).
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• The binding between an enzyme and a single metabolite is caught in our representation
by the formation of stable isolated 1-simplices composed of the two nodes.

• Each metabolic complex may perceive the presence of the metabolite needed to saturate
the enzyme; in this case, we can both observe the presence in the environment of isolated
triangles (2-simplices) and “booklet-like” complexes, each made of an edge placed at
the centre of a star of 2-simplices and linking the half-saturated enzyme to its bound
metabolite (as shown in Figure 7.2c). Every triangle of this type is a potential stable link
connecting the central complex and the opposite vertex.

• The potential conditions described above are resolved when fully saturated enzymes form;
they are identified by stable 2-simplices (Figure 7.2d). Each final complex remains in
the simulation volume for a time given by the reciprocal of the related kcat ; therefore,
after such a delay, three new isolated nodes appear in place of a 2-simplex, i.e., those
representing the enzyme and the products of the catalysed reaction.

All the simplicial complexes we can observe during the time evolution of the simulation have
a direct correlation with the perception-based structures described in Section 7.2.3. Table 7.2
summarises such relations by associating each simplicial structure identified in the previous
description with the corresponding perception class.

Table 7.2 – Correlation between interaction-as-perception paradigm and simplicial structures.

Interaction as perception (Multiagent Simulation) Simplicial Data Analysis

Molecule Perception Structure

free enzyme
no perception 0-simplex (isolated node)

direct unstable perception
1-simplex\
dandelion-like structure

dual-complex

no perception 1-simplex

direct unstable perception (external)
2-simplex\
booklet-like structure

indirect unstable perception (external)

direct fixed perception (internal)

saturated
enzyme

direct fixed perception (internal)
stable 2-simplex

indirect fixed perception (internal)
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(a) 0-simplices (b) Dandelion-like complexes

(c) Booklet-like complexes (d) 2-simplices

Figure 7.2 – This figure shows the most significant structures we can identify through our topological
analysis of the simulation output. (a) 0-simplices, representing all the molecules at the
beginning of the simulation; (b) a “dandelion-like” structure made of a central node (en-
zyme) linked to the nodes corresponding to the compatible substrate inside its perception
sphere; (c) “booklet-like” structures composed of a central hub made of two linked nodes
(enzyme-metabolite dual-complex), each forming an edge with an external node–i.e., a
metabolite that can complete the enzyme saturation; (d) isolated 2-simplices correlated to
the saturated enzymes that we can identify in this portion of the environment. In figures (b),
(c) and (d), the value above each edge–i.e., its weight–represents the specificity (kcat /Km

ratio) of the enzymes for the cognate metabolite connected by that edge.
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Representing the dynamics of the agent-based simulation using the simplicial approach
described above allows us to highlight some fundamental properties of the progression of
metabolic reactions over time. Specifically, we can observe that changes in the system’s reactivity
are affected by the fluctuation of 2-simplices concentration. A simulated reaction alternates
states of high reactivity and states of semi-stability that can be correlated to the number of 2-
simplices identifiable in the environment. Stars of 2-simplices determine the system’s instability;
therefore, we observe high concentrations of these “booklet-like” structures during the reactive
phases. As shown in Figure 7.3, considering a long temporal horizon, blocks of reactive phases
are clearly distinguishable from those almost saturated with stable 2-simplices (representing
final molecular complexes).

Inside these higher reactive blocks, the formation of stable 2-simplices causes the transition
from one reactivity phase to another. Indeed, a new stable 2-simplex forms when a star of
2-simplices resolves its instability (by choosing one of the possible associated peripheral nodes);
such an event determines the immediate drop of the system’s 2-simplices amount, correlated to
just one unit increase of stable 2-simplices. As we can observe in Figure 7.3, such a behaviour
determines a progressive decrease in 2-simplex stars amount and, therefore, in the block’s
reactivity over time.

We also highlight that a transition from a stable to a reactive block is related to the kcat value
of the reaction since it determines the time interval through which a stable 2-simplex maintains
its conformation. After such a lapse of time, the product is released, and the enzyme starts to
look for a new substrate, pushing the system towards a new reactive block. In Section 7.2.3, we
mentioned a three-state automaton as a formal representation of the studied enzymatic reaction.
The progression through phases of the simulation as described above is directly related to the
cyclical iteration of the three states of a reaction, identified by the molecular structures that
cause them, i.e., free enzymes, dual complexes, and saturated enzymes (see Figure 7.3).

7.4 Discussion

In the present work, we use an agent-based simulation to generate the dynamics of a complex sys-
tem and the weight rank clique filtration to try to visualise and understand the global behaviour
of that system.

Thanks to the interaction-as-perception paradigm, the visualisation clearly shows the forma-
tion of the simplicial structures characterising the system. Such structures are directly correlated
to the dynamical evolution of molecular complex formation and allow us to identify specific pat-
terns that underline the in silico behaviour of a metabolic reaction. Moreover, those instruments
gave us insights into what happens in the simulated systems in terms of topological invariants.

Even if we do not claim to infer any direct biological meaning from these results, we hypoth-
esise that the patterns mentioned above reveal the reactivity trend of the modelled reaction,
turning out to be an effective validation tool for a biochemical reaction simulation. Indeed, we
can compare the highlighted trends with those obtained by applying our visualisation method to
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other well-proven modelling approaches (e.g., based on differential equations) or even directly
to experimental data. This approach might allow us to identify how the simulated process differs
from the one chosen as a benchmark and, consequently, make the necessary adjustments to
make them fit.

Figure 7.3 – Changes over time of the number of 2-simplices associated with each edge representing
a dual complex; they are plotted along with the number of the stable 2-simplices (corre-
sponding to saturated enzymes). The aim of this plot is to provide a global view of how, on
a long temporal horizon, highly reactive blocks alternate with time intervals dominated
by stable 2-simplices. Each block is correlated to the automaton states representing the
three steps of the enzymatic reaction, respectively dominated by high concentrations of
free enzymes (yellow state), dual complexes (blue state) and saturated enzymes (red state).
Their iteration drives the evolution of each reactivity block shown in the plot, as identified
by the square brackets coloured as the related state of the automaton. Due to the large
number of complexes represented, a complete legend describing all of them would impact
the readability of the figure.
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7.5 Conclusions

Agent-based computational models and simplicial data analysis are well-suited methods for
simulating and visualising the dynamics of complex systems, which are characterised by a high
number of entities interacting in a bounded space. Moreover, they allow us to represent some
specific features of the system to be compared with empirical observations or experimental
data in a future work. By studying the global behaviour of an agent-based simulation with the
simplicial data analysis, we have advanced the visualisation capabilities of the Orion simulator,
and we were able to identify the simplicial structures associated with the reaction space over
time. This result might be a valuable validation tool for the agent-based simulation. Indeed, it
opens the possibility of performing the same simplicial data analysis on empirically retrieved
data to verify the faithfulness of the simulation to the actual biological process [73].

At the same time, identifying patterns in the reactivity associated with the molecular interac-
tions graph might provide computational support for studying therapies based on drug targeting
and enzyme inhibition [15, 21, 47, 113].

As further developments, we are working on other validation approaches that could be
combined with those mentioned above, particularly those involving innovative applications of
formal methods in the analysis of biological processes [10].



Conclusions

The core idea of this dissertation is that a bottom-up modelling approach, capable of grasping
the global properties resulting from local interactions, provides the perspective required to fully
understand a biological system. However, beyond a strictly theoretical analysis, it is possible to
identify another common thread in the issues addressed. Throughout this manuscript, we have
indeed characterised the steps needed to develop a computational framework able to contribute
to studies performed on experimental data; this type of software platform is intended to meet
the growing medical needs for supporting in silico personalised therapy design.

From this standpoint, the models presented in this manuscript can be applied to develop a
simulator that generalises interactions in biological systems, whether they are between molecules
or other entities (such as cells). Orion, which is described in Part II, is a prototype of this kind of
simulator.

The engineering life cycle for the simulation of a biological process can be divided into two
phases (which Figure 4.3 on page 81 depicts schematically):

1. process modelling and verification;

2. system modelling, simulation, and validation.

The starting point is the actual biological system, from which we derive an abstraction of
the functions we want to model and simulate. These functions are then formally defined using
process algebras, and the properties of the resulting models are verified using the most suitable
model checking method. Part I of this manuscript delves into this first phase.

More precisely, in Chapter 2, we model the folding processes as behaviours resulting from the
interactions that nucleotides and amino acids (the monomers that make up RNAs and proteins,
respectively) perform on the linear sequences to which they belong. Initially, this approach was
intended to provide new knowledge about the studied systems without relying solely on empirical
data. Using Milner’s Calculus of Communicating Systems (CCS) to highlight the distinguishing
features of the two folding processes, we discovered an abstraction level at which they show
behavioural equivalence. To this level belong all the functions expressible by non-coding RNAs
(ncRNAs), interpreted as a subclass of protein functions. To advance this idea, we used CCS and
Hennesey-Miler logic to represent the process that leads to the formation of misfolded proteins.
In Chapter 3, a class of pathologies affecting RNA and proteins is modelled as global behaviours
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generated by both nucleotide and amino acid interactions; these results allow us to study their
different responses to a change in the correct folding pathway.

The algebraic approaches described thus far were not originally intended to develop simula-
tion software, but rather to investigate a theoretical method for acquiring new knowledge about
biological processes. By analysing the complexity of the interactions that characterise living
systems, we defined a new methodology for understanding biological behaviours. We could,
however, construct an algebraic specification for an actual simulation based on these models.
For these reasons, in Chapter 4, we look at the expressiveness of process algebras for modelling
ncRNA behaviour not only for theoretical purposes, but also for building agent-based models
and validating hypotheses through model simulation. We hope, in this manner, to support the
study of cellular processes and pathologies involving ncRNAs.

As a first step in implementing these specifications, we conducted preliminary studies to
identify an agent-based approach that meets the requirements for simulating molecular inter-
actions. We found the best solution for our needs in Orion, a spatial simulator for metabolic
pathways. However, because it was a prototype project, its functionality was required to be
significantly improved. The results of this work are described in Part II of the dissertation and
represent the second phase of the simulator engineering life cycle. It entailed the definition of a
low-level specification, the generation of the actual agent-based simulation, and the validation
of the obtained results, all to make the agent-based model more faithful to the biological system.
These steps led to the development of Orion 2.0.0.

Chapter 6 describes a preliminary study in this direction, where we adapted the original Orion
prototype to analyse the effect of long-distance electrodynamic interactions among biomolecules.
We put our approach to the test by simulating the glycolytic pathway to observe the collective
behaviour of molecules involved in a reaction network; the goal was to detect the role that long-
range electrodynamic forces might play in the effectiveness of glucose oxidation. The results
obtained demonstrate the ability of our agent-based simulations to manage interactions in
complex biological systems; Orion 2.0.0 may thus represent a suitable platform for implementing
the algebraic models defined in the first section of this dissertation.

For validating the metabolic simulations, in Chapter 7, we investigate the potentiality of the
interaction-as-perception detectable in agent-based systems. We performed a topological data
analysis on the molecular perception graphs obtained during the formation of the enzymatic
complexes to visualise the set of emerging patterns. We were able to identify the simplicial
structures associated with the reaction space over time and address the complexity of visualising
the global behaviour of a metabolic reaction. This visualisation approach could be a valuable
validation tool for our agent-based simulations because it allows the same simplicial data analysis
to be performed on empirically retrieved data; it thus supports the verification of the fidelity of
the simulation to the actual biological process [73].
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Future Directions

As a next step in defining a framework for supporting the in silico design of medical therapies,
we are considering the treatment of renal cell carcinoma (RCC). RCC is a type of kidney tumour
that is gaining increasing attention; this is due not only to its spread but also to its association
with the obesity paradox, a phenomenon in which obese patients, despite having a high risk of
developing RCC, have better prognoses than lean individuals [104, 105].

We are modelling the RCC system using a formal approach that allows us to describe oncolo-
gists’ knowledge and acquire new information from experimental data. Given the characteristics
of the RCC system, the model must be able to represent the tumour microenvironment (TME)
as the main component in which immune and tumour cells are spatially distributed and move,
influenced by blood vessels; the effect of the TME on the tumour is a function of the body mass
index (BMI) [11].

We can find many related studies in the literature, the majority of which use mathematical
models based on ordinary differential equations and partial differential equations enriched
with stochastic elements, as well as other physical models based on complex networks and
phase transition analysis [29]. However, none of them allows for the explicit description of the
environment as a first component of the model. As a result, we are developing a computational
framework to support the learning process in which an RCC model is dynamically defined during
immunotherapy treatment given to different patients. This method is inspired by the modelling
and simulation approach described in this manuscript and our previous works [9, 73].

Agents are active system components; if they represent molecules in the glycolysis model,
they correspond to immune or tumour cells in the RCC model. The global properties are ob-
servable in the RCC simulation, whose dynamics are expressed by the interaction-as-perception
paradigm, adapted to this new context: a cell agent moves towards another perceived cell agent
to interact with it, activating or inhibiting the production of compatible cell agents. The immune-
response interactions are all dynamic representations of the cell interaction network, bound by
the TME and controlled by the BMI.

We have already begun to validate this new simulation approach using experimental data,
and the results are promising. It must, however, be further developed. We also want to build a
topological classifier that can distinguish between different microenvironments and identify the
reversible RCC behaviour class.

Final Remarks

Although the approach adopted in the first part of this dissertation is strictly theoretical, a
process-based view of molecular structures and functions can reveal congruence and dissim-
ilarities difficult to detect through other computational methods or experimental techniques;
this perspective can thus inspire the investigation of properties not yet considered in the current
studies on RNA structure-function relationship. The proposed results are based on the construc-
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tion of algebraic models through process calculi, which provide us with factual knowledge. For
this reason, we believe that applying formal models to the study of non-coding RNA functions
can pave the way to a better understanding of this class of molecules and therefore contribute
with solid support to handling the pathologies in which they are involved. The same approach
may be effectively extended to other biological functions and diseases.

The results provided in Part II complement the previous analysis by showing the reliability
of agent-based models in capturing the essential features of a complex biochemical process
and faithfully reproducing different aspects of its behaviour, even on the basis of little empirical
data. Considering these results, we are optimistic that the analysis of agents’ interactions will
be able to bring new knowledge on the properties of different biological systems. Nonetheless,
their global behaviour is not always predictable due to the incompleteness of the observed data.
Agents’ interactions must be aleatory, or the simulation environment must be unpredictable;
this implies that each simulation run should be affected by statistical uncertainty. Additional
steps are thus required to provide an accurate environment specification, hopefully referring to
interactive computation modelling [74].



Appendices

133





Appendix A

Supplementary Information to
Chapter 2
Process Calculi May Reveal the Equivalence Underlying
RNA and Proteins

A.1 Models Construction

In our models of the folding process, non-covalent interactions are classified into three main
categories:

• hydrogen bonds;

• electrostatic interactions (ionic and van der Waals);

• hydrophobic and hydrophilic interactions.

The hydrogen bond could be considered an electrostatic interaction, but due to its distinc-
tive properties and the fundamental role it carries out in the folding process, it is categorised
separately.

All the non-covalent interactions listed above are modelled to formally describe the whole
folding process. Each folding process starts from a linear strand (of nucleotides in RNAs and
amino acids in proteins) and is driven by the reduction in free energy between two different
folded configurations. The free energy variation during folding, denoted by ∆G , is represented
as a process that can produce three possible outputs: negative, positive, or zero.

To better clarify this concept, we can imagine the folding process as a sequence of folding
steps, each contributing to the entire process with a new non-covalent interaction between two
sequence units (equally for RNAs and proteins). For a folding step to occur, the non-covalent
interaction must cause a reduction in the free energy of the system, which means that the folding
step must have a negative ∆G.
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A.1.1 Base pairing

In RNA, hydrogen bonds allow the pairing between two bases. According to Watson-Crick base
pairing, adenine (A) always pairs with uracil (U) with two hydrogen bonds, while guanine (G)
always pairs with cytosine (C) with three hydrogen bonds. At the same time, the non-canonical
base pairing shows various combinations of the four RNA bases, forming two hydrogen bonds
(or even only one); it is not infrequent to find in RNA also base triples (indeed, it is possible that a
unique base quartet forms between G-C base pairs at the junction of two helices).

The hydrogen bond formation (in both Watson-Crick and Wobble base pair) is modelled
generalising this process as an interaction between a purine (adenine or guanine) and a pyrimi-
dine (uracil and cytosine) or between two paired bases and a third base (in this case, a generic
purine or pyrimidine). Since purines are double-ring bases, they are labelled dr; pyrimidines,
conversely, are single-ring bases and hence labelled sr. The base pairing is symmetric, thus
srdr= drsr.

For removing some details not necessary to our model definition, we also opt for another
generalisation: we do not explicitly represent all the possible interactions between a couple of
paired bases and a third base, but we indicate this process as a “triple base pairing” (Pb3) and its
output as “three paired bases” (tpb). For the same reason, the formation of the G-C base quartet
is not treated in the model.

Regarding the number of hydrogen bonds in a base pair, our models allow them to be at least
two and at most three. Conversely, the hydrogen bonds that link an unpaired base to a group of
two already paired bases must be from one to three. We introduce these constraints because
base pairs with a single hydrogen bond can be classified as variants of those linked by two, and
the number of hydrogen bonds found in a base triplet is three to six [80]. Moreover, because–up
to now–the sole known base pair that involves three hydrogen bonds is the one between cytosine
(C) and guanine (G), only the srdr base pair is allowed, in the model, to form through a triple
hydrogen bonding; this means that AU, GU and CA base pairs could also potentially be linked by
three hydrogen bonds, which is a stretch of the current knowledge on hydrogen bonding. Indeed,
if we wanted to capture the limiting constraint that allows the formation of three hydrogen bonds
only in the GC base pair, we would have to explicitly represent every base and its combination
with the others; this would reduce the readability of our models to introduce a property that does
not affect the primary purpose for which they are defined.

The base pairing process (Pb2) takes two unpaired bases (ub) as input and provides the
corresponding base pair as output only if it can form at least two hydrogen bonds (hb) between
them.

Pb2 is a sub-process of a general Fs
rna (RNA Folding Step) process, from which it receives

its input (the Fs
rna process will be described later in this section); it is one of the possible sub-

processes that give each folding step its specificity. As also explained in Chapter 2, each folding
step, and therefore each base pairing process, is conditioned by the value of the ∆G: it can take
place only if its ∆G is negative.
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The triple base pairing process (Pb3) takes as input (from the Fs
rna process) a couple of bases,

paired by the Pb2 process, and a third unpaired base (ub), providing as output a group of three
paired bases (tpb). The number of hydrogen bonds generated in this process is at least one and
at most three.

Like the Pb2 process, Pb3 is a sub-process of Fs
rna and depends on the value of ∆G (output of

the ΔþG process) to take place.
The following is the specification of the Pb2 and the Pb3 processes using Milner’s CCS (in

Section A.1.4 on page 140 they will be contextualised in the definition of the whole Fs
rna process):

Pb2
def= hb.B1b2;

B1b2
def= hb.B2b2;

B2b2
def= hb.B3b2 +srsr.Fs

rna +drdr.Fs
rna+srdr.Fs

rna;

B3b2
def= srdr.Fs

rna;

Pb3
def= hb.B1b3;

B1b3
def= hb.B2b3 +tpb.Fs

rna;

B2b3
def= hb.B3b3 +tpb.Fs

rna;

B3b3
def= tpb.Fs

rna.

(A.1)

B1b2, B2b2, B3b2 (hydrogen bonding between two bases) and B1b3, B2b3, B3b3 (hydrogen
bonding between three bases) are states that allow counting the number of the hydrogen bonds.

In proteins, a hydrogen bond can form between the amino group of one amino acid and
the carboxyl group of another. Every amino acid has an amino group and a carboxyl group
covalently linked to the alpha (central) carbon (see Section 1.2.3). In the rest of this chapter, the
terms “amino groups” and “carboxyl groups” will refer specifically to such functional groups. In
contrast with the base pairing of nucleotides, only a single hydrogen bond is allowed between
two amino acids; however, there is no limitation in the length of a sequence of amino acids
linked to one another via hydrogen bonds.

Therefore, two amino acids can link to each other through a hydrogen bond only if they meet
the following conditions:

• the interaction has a negative ∆G;

• the amino group of one of the two interacting amino acids and the carboxyl group of the
other are both free (not involved in a hydrogen bond).

The amino acid pairing process (Paa) is a subprocess of the general Fs
p (protein folding step),

as Pb2 is a subprocess of Fs
rna. Fs

p provides two amino acids (aa) as input to Paa, which generates
a hydrogen bond between the free amino group of the first one (aa1fnh) and the free carboxyl
group of the second one (aa2fco), or between the free carboxyl group of the first amino acids
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(aa1fco) and the free amino group of the second one (aa2fnh). The process produces a group
of two paired amino acids (paa) as output.

It is important to notice that:

1. although the distinction between “first” and “second” amino acid might appear unneces-
sary when they are both unpaired, it has to be specified to deal with the situation in which
at least one of the two amino acids is already involved in a hydrogen bond through one of
its functional groups;

2. when the Paa process receives two amino acids as input, we have the certainty that a
hydrogen bond will form because the negative ∆G of the interaction has already been
checked in the early phases of the Fs

p process.

The following is the CCS specification of the Paa process:

Paa
def= aa1fnh.NHaa1 +aa1fco.COaa1;

NHaa1
def= aa2fco.COaa2;

COaa1
def= aa2fnh.NHaa2;

COaa2
def= hb.Baa;

NHaa2
def= hb.Baa;

Baa
def= paa.Fs

p.

(A.2)

NHaax and COaax (where x is 1 or 2) are states that indicate the selection of the free amino group
or the free carboxyl group, respectively, of the x-th amino acid.

A.1.2 Electrostatic interactions

Two particles electrically charged can interact according to Coulomb’s law; however, the model
of the folding process does not investigate the interactions at the atomistic level. We consider
that two elementary units–of either an RNA or a protein–can be involved in a folding step if
they are both charged and if the ∆G of the step is negative. The main purpose of this kind of
interaction is to stabilise the folded structure reached through the previous steps.

The electrostatic interaction can be of two types: ionic and van der Waals. The ionic interac-
tions cause the formation of a non-covalent bond between two ions of opposite charge; the van
der Waals interactions occur between two molecules oppositely polarised.

The modelling of these interactions is essentially the same in both RNA and protein folding:
given as input a couple of bases (in the RNA model) or amino acids (in the protein model), each
unpaired or already paired, the electrostatic interaction process allows the nondeterministic
choice between an ionic interaction (ii) or a van der Waals interaction (vdwi), which are produced
as output.
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The electrostatic interaction between bases (Ie
b process) specifies the electrostatic interactions

in the RNA folding model:

Ie
b

def= ii.Fs
rna+vdwi.Fs

rna. (A.3)

The electrostatic interaction between amino acids (Ie
aa process) specifies the electrostatic

interactions in the protein folding model:

Ie
aa

def= ii.Fs
p+vdwi.Fs

p; (A.4)

Ie
b is a subprocess of Fs

rna; Ie
aa is a subprocess of Fs

p.

A.1.3 Hydrophobic interactions

Water is a polar solvent, which means that it easily dissolves charged or polar compounds,
which are called, for this reason, hydrophilic (from Greek, “water-loving”). In contrast, nonpolar
molecules are hydrophobic.

In RNA, the bases are hydrophobic and relatively insoluble in water, while the backbone
of alternating ribose and phosphate groups is hydrophilic. During the folding process, the
backbone forms the RNA’s outer surface to minimise the contact of the bases with water and
stabilise the molecule’s three-dimensional structure; in contrast, the bases are positioned on its
inside, stacked with the planes of their rings parallel to each other (a process called hydrophobic
stacking interaction).

In the RNA folding model, the hydrophobic interaction of bases (Ih
b process) takes two bases

as input, produces a hydrophobic interaction for both of them (hbi), and provides as output the
same bases buried inside the RNA (bb) and stacked to each other (sb).

Since Ih
b is a subprocess of Fs

rna, the negative value of its ∆G has already been checked in the
earlier phases of the latter process.

The CSS specification of the Ih
b process is

Ih
b

def= hbi.Irna;

Irna
def= bb.S;

S
def= sb.Fs

rna.

(A.5)

In proteins, the specific characteristics of an amino acid are determined by the properties of
its R group (also called side chain); the polarity of that group varies widely, from nonpolar and
hydrophobic to highly polar and hydrophilic. Hydrophobic amino acid side chains tend to be
clustered in the protein’s interior, away from water, while hydrophilic side chains remain on the
protein surface. The folding of a polypeptide chain thus creates an “inside” and an “outside” and
generates buried and exposed amino acid side chains.
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Hydrophobic interactions during protein folding do not exhibit the stacking phenomenon
characterising RNA nucleotides. Therefore, the hydrophobic/hydrophilic interaction of an amino
acid (Ih

aa process) takes only one amino acid as input; if its side chain is hydrophilic (hlsc), it is
exposed on the outside of the protein (esc), if it is hydrophobic (hbsc), it is buried inside the
protein (bsc).

The states Ip and Op identify the inside and outside of the protein, respectively. Ih
aa is a

subprocess of Fs
p.

The following is the CCS specification of the Ih
b process:

Ih
aa

def= hlsc.Op+hbsc.Ip;

Op
def= esc.Fs

p;

Ip
def= bsc.Fs

p.

(A.6)

A.1.4 Folding step

Now that we have described the model of each non-covalent interaction in both RNA and protein,
it is possible to contextualise these models in the folding step they belong to (Fs

rna or Fs
p). Each

step represents an iteration that allows the nondeterministic choice of one of the possible non-
covalent interaction subprocesses. Fs

rna and Fs
p ensure that each subprocess complies with the

specific restrictions on its input (according to the specifications provided above) and that the
corresponding interaction has a negative ∆G (i.e., it can be carried out).

The CCS specification of the whole Fs
rna process is the following:

Fs
rna

def= ub.I1n+ub.I2n+srsr.I1n+drdr.I1n+srdr.I1n+tpb.I1n;

I1n
def= ub.ΔþGIe

b
+srsr.ΔþGIe

b
+drdr.ΔþGIe

b
+srdr.ΔþGIe

b
+tpb.ΔþGIe

b
;

I2n
def= ub.ΔþGPb2 +ub.ΔþGIh

b
+srsr.ΔþGPb3 +drdr.ΔþGPb3 +srdr.ΔþGPb3 ;

ΔþGIe
b

def= ndg.Ie
b;

ΔþGIh
b

def= ndg.Ih
b ;

ΔþGPb2

def= ndg.Pb2;

ΔþGPb3

def= ndg.Pb3;

Pb2
def= hb.B1b2;

B1b2
def= hb.B2b2;

B2b2
def= hb.B3b2 +srsr.Fs

rna+drdr.Fs
rna+srdr.Fs

rna;

B3b2
def= srdr.Fs

rna;

(A.7)
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Pb3
def= hb.B1b3;

B1b3
def= hb.B2b3 +tpb.Fs

rna;

B2b3
def= hb.B3b3 +tpb.Fs

rna;

B3b3
def= tpb.Fs

rna;

Ie
b

def= ii.Fs
rna+vdwi.Fs

rna;

Ih
b

def= hbi.Irna;

Irna
def= bb.S;

S
def= sb.Fs

rna.

I1n and I2n (nucleotide interaction) are states that allow the selection of the right subprocess
based on its permitted inputs. The processes ΔþGPb2 (∆G of a base pairing), ΔþGPb3 (∆G of a triple
base pairing), ΔþGIe

b
(∆G of an electrostatic interaction between bases), and ΔþGIh

b
(∆G of a hydropho-

bic interaction of bases) check that the ∆G of the related interaction is negative.

The CCS specification of the whole Fs
p (protein folding step) process is:

Fs
p

def= aa.I1aa+aa.ΔþGIh
aa

;

I1aa
def= aa.ΔþGIe

aa
+aa.ΔþGPaa ;

ΔþGIe
aa

def= ndg.Ie
aa;

ΔþGIh
aa

def= ndg.Ih
aa;

ΔþGPaa

def= ndg.Paa;

Paa
def= aa1fnh.NHaa1 +aa1fco.COaa1;

NHaa1
def= aa2fco.COaa2;

COaa1
def= aa2fnh.NHaa2;

COaa2
def= hb.Baa;

NHaa2
def= hb.Baa;

Baa
def= paa.Fs

p;

Ie
aa

def= ii.Fs
p+vdwi.Fs

p;

Ih
aa

def= hlsc.Op+hbsc.Ip;

Op
def= esc.Fs

p;

Ip
def= bsc.Fs

p.

(A.8)

I1aa is a state that allows the selection of the subprocesses that take two amino acids as input. The
processes ΔþGPaa (∆G of an amino acid pairing), ΔþGIe

aa
(∆G of an electrostatic interaction between
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amino acids), and ΔþGIh
aa

(∆G of a hydrophobic/hydrophilic interaction of an amino acid) check
that the ∆G of the related interaction is negative.

A.1.5 RNA folding and protein folding

To meet the requirement that each interaction must have a negative ∆G, both the Fs
rna and

Fs
p processes are placed in parallel composition with the ΔþG process, defining in this way the

overall folding process (Frna and Fp respectively). This is formally stated in Definition 2.2 and
the related Equation 2.2, which we write here again to complete the model construction.

Frna
def= (Fs

rna|ΔþG) \ {ndg,pdg,zdg};

Fp
def= (Fs

p|ΔþG) \ {ndg,pdg,zdg};

where ΔþG def= pdg.ΔþG + ndg.ΔþG + zdg.ΔþG.

(A.9)

A.1.6 Model checking

It is possible to verify that the models described above meet the biochemical properties of the
folding processes. For this purpose, we can represent such properties as HML formulas and
perform model checking to establish if they are satisfied. We propose here four examples:

1. two unpaired bases (ub) can form a hydrogen bond (hb) if the ∆G of the interaction is
negative (ndg):

Fs
rna Í 〈ub〉〈ub〉〈ndg〉〈hb〉tt ; (A.10)

2. with a single hydrogen bond it is not possible to form a base pair (srsr, drdr, srdr):

Pb2 Í 〈hb〉([srsr]ff ∧ [srdr]ff ∧ [drdr]ff ); (A.11)

3. it is possible to form a group of three paired bases (tpb) with only a single hydrogen bond
(between an unpaired base and a group of two already paired bases - srsr in this case);
obviously, the ∆G of the interaction must be negative:

Fs
rna Í 〈ub〉〈srsr〉〈ndg〉〈hb〉〈tpb〉tt ; (A.12)

4. if an amino acid has a hydrophobic side chain (hbsc), it has to be buried inside (bsc) and
not exposed outside (esc) the protein:

Fs
p Í 〈aa〉〈ndg〉〈hbsc〉(〈bsc〉tt ∧ [esc]ff ); (A.13)

The verification that these formulas are satisfied was made with the aid of the model checking
function of the CAAL concurrency workbench [3]. The results are shown in Figure A.1.
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Figure A.1 – Verification of some biochemical properties, expressed as HML formulas, performed by
CAAL concurrency workbench [3]. The checkmarks on the “Status” column indicate that
all the formulas are satisfied. The Fs

rna, Pb2, and Fs
p processes are transliterated RNAFS,

BP, and PFS, respectively (see Table 2.1).

A.1.7 High abstraction level model

We might therefore wonder if there is an abstraction level at which the two folding processes would
show a behavioural equivalence. As proved in Chapter 2, this level of abstraction can actually
be defined. Its construction, however, requires generalising the non-covalent interactions and
imposing some limitations on the expressiveness of the protein folding process.

The first of the two modifications mentioned above can be achieved by:

• redefining nucleotides and the amino acids as general elementary units, which can be
paired or unpaired;

• abstracting from the specificity of each pairing process by no longer taking into account
the number of hydrogen bonds formed between two (or three) paired units;

• generalising the hydrophobic interactions to their key feature of burying the hydrophobic
molecules while exposing the hydrophilic ones (no longer considering the stacking process
typical of the hydrophobic interactions of nucleotides).

These adjustments to the model do not affect the main properties of each non-covalent
interaction; therefore, the model is still fairly faithful to the biological process. However, they are
also not sufficient to obtain a behavioural equivalence between the folding processes of RNAs
and proteins.

We still need to limit the folding capability of the proteins by reducing the number of amino
acids that can interact through hydrogen bonds to the number of three (the maximum number
of nucleotides that can pair in RNAs).

With these considerations in mind, we can rewrite the above model of the folding process.This
transformation is formally carried out by the folding step high abstraction function H : P → P
defined in Equation 2.3, which generates the two high abstraction folding steps Fs

rna and Fs
p. They

are composed of the following subprocesses.
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Base pairing

Base pairing is modelled through the Pb2 process, which takes two unpaired units (uu) as input
(from the Fs

rna process) and produces a paired unit (pu) as output. It should be noted that the
label hb does not indicate a single hydrogen bond but represents the whole interaction based on
hydrogen bonding.

Pb2
def= hb.BsrBsr+hb.BdrBdr+hb.BsrBdr;

BsrBsr
def= pu.Fs

rna;

BdrBdr
def= pu.Fs

rna;

BsrBdr
def= pu.Fs

rna.

(A.14)

BsrBsr, BdrBdr, BsrBdr are states that specify the type of base pair of the produced paired
unit.

Triple base pairing

The triple base pairing is performed by the Pb3 process, taking an unpaired unit (uu) and a paired
unit (pu) as input (from the Fs

rna process) and producing a triple unit (tpu) as output.

Pb3
def= hb.Ub3;

Ub3
def= tpu.Fs

rna.
(A.15)

The state Ub3 (base triple unit) indicates that a hydrogen bonding interaction (possibly
involving more than one hydrogen bond) has occurred.

Amino acid pairing

Amino acid pairing is produced through the Paa process; it takes two unpaired units (uu) as input
(from the Fs

p process) and generates a paired unit (pu) as output. As with the Pb2 process, the
label hb does not indicate the formation of a single hydrogen bond but a generalised hydrogen
bonding interaction.

Paa
def= hb.NC+hb.CN;

NC def= pu.Fs
p;

CN def= pu.Fs
p.

(A.16)

The states NC and CN (where N and C represent a free amino group and a free carboxyl group,
respectively) allow the preservation of the correct complementarity of the hydrogen bonding
between amino acids.
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Triple amino acid pairing

Triple amino acid pairing is a process not present in the original protein folding model; it is
necessary to limit amino acids’ capabilities to form hydrogen bonds with each other. As in the
case of base pairing, at most three amino acids can be connected via the same hydrogen bonding
interaction (not to be confused with a single hydrogen bond).

This type of interaction is carried out by the Paa3 process, which takes an unpaired unit (uu)
and a paired unit (pu) as input and produces a triple unit (tpu) as output.

Paa3
def= hb.Uaa3;

Uaa3
def= tpu.Fs

p.
(A.17)

Electrostatic interaction

The electrostatic interaction between bases (Ie
b process) and the electrostatic interaction between

amino acids (Ie
aa process) are unchanged compared with the original model (see Section A.1.2).

Hydrophobic/hydrophilic interaction of a nucleotide

Since hydrophobic stacking is no longer considered in the new model, the hydrophobic interac-
tion can affect a single nucleotide per folding step.

The process, renamed Ih
n , takes one unpaired unit as input and, through the actions hbc and

bc, indicates that its hydrophobic component is buried inside the RNA; conversely, the actions
hlc and ec denote that the hydrophilic component is exposed on the outside of the molecule.

Ih
n

def= hlc.Orna+hbc.Irna

Orna
def= ec.Fs

rna;

Irna
def= bc.Fs

rna.

(A.18)

Hydrophobic/hydrophilic interaction of an amino acid

Similarly to the previous process, Ih
aa takes one unpaired unit as input and indicates that its

hydrophobic component (hbc and bc) is pushed inside the protein while the hydrophilic one
(hlc and ec) is exposed on the outside. In this case, the “component” is a generalisation of
the side chain; this means that each unpaired unit taken as input can have a hydrophobic or a
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hydrophilic component (but not both).

Ih
aa

def= hlc.Op+hbc.Ip;

Op
def= ec.Fs

p;

Ip
def= bc.Fs

p.

(A.19)

Folding step

The Fs
rna and Fs

p perform the same tasks as in the original model (see Section A.1.4 on page 140).
The CCS specification of the whole high abstraction Fs

rna process is

Fs
rna

def= uu.I1n+pu.I1n+uu.ΔþGIh
n
+uu.I2n+tpu.I1n;

I1n
def= uu.ΔþGIe

b
+pu.ΔþGIe

b
+tpu.ΔþGIe

b
;

I2n
def= uu.ΔþGPb2 +pu.ΔþGPb3 ;

ΔþGIe
b

def= ndg.Ie
b;

ΔþGIh
n

def= ndg.Ih
n ;

ΔþGPb2

def= ndg.Pb2;

ΔþGPb3

def= ndg.Pb3;

Pb2
def= hb.BsrBsr+hb.BdrBdr+hb.BsrBdr;

BsrBsr
def= pu.Fs

rna;

BdrBdr
def= pu.Fs

rna;

BsrBdr
def= pu.Fs

rna;

Pb3
def= hb.Ub3;

Ub3
def= tpu.Fs

rna.

Ie
b

def= ii.Fs
rna +vdwi.Fs

rna;

Ih
n

def= hlc.Orna+hbc.Irna;

Orna
def= ec.Fs

rna;

Irna
def= bc.Fs

rna.

(A.20)

I1n and I2n (nucleotide interaction) are states that allow the selection of the right subprocess
based on its permitted inputs.

The processes ΔþGPb2 (∆G of a base pairing), ΔþGPb3 (∆G of a triple base pairing), ΔþGIe
b

(∆G of an
electrostatic interaction between bases), and ΔþGIh

n
(∆G of a hydrophobic/hydrophilic interaction

of a nucleotide) check that the ∆G of the related interaction is negative.
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The CCS specification of the whole high abstraction Fs
p process is the following:

Fs
p

def= uu.I1aa+pu.I1aa+uu.ΔþGIh
aa
+uu.I2aa+tpu.I1aa;

I1aa
def= uu.ΔþGIe

aa
+pu.ΔþGIe

aa
+tpu.ΔþGIe

aa
;

I2aa
def= uu.ΔþGPaa +pu.ΔþGPaa3 ;

ΔþGIe
aa

def= ndg.Ie
aa;

ΔþGIh
aa

def= ndg.Ih
aa;

ΔþGPaa

def= ndg.Paa;

ΔþGPaa3

def= ndg.Paa3;

Paa
def= hb.NC+hb.CN;

NC def= pu.Fs
p;

CN def= pu.Fs
p;

Paa3
def= hb.Uaa3;

Uaa3
def= tpu.Fs

p;

Ie
aa

def= ii.Fs
p+vdwi.Fs

p;

Ih
aa

def= hlc.Op+hbc.Ip;

Op
def= ec.Fs

p;

Ip
def= bc.Fs

p.

(A.21)

I1aa and I2aa are states that allow the selection of the right subprocess on the basis of its
permitted inputs. The processes ΔþGPaa (∆G of an amino acid pairing), ΔþGIe

aa
(∆G of an electrostatic

interaction between amino acids), and ΔþGIh
aa

(∆G of a hydrophobic/hydrophilic interaction of an
amino acid) check that the ∆G of the related interaction is negative.

The whole high abstraction folding processes Frna and Fp are defined as the parallel compo-
sition of the folding step process and the folding step ΔþG (see Equation 2.5).

In Chapter 2, we prove the existence of a congruence relation between Fs
rna and Fs

p and,
consequently, between Frna and Fp (see Theorems 2.1 and 2.2).





Appendix B

Supplementary Information to
Chapter 3

An Algebraic Approach to the Study of Protein Misfolding

B.1 Formal Description of HBB Gene Expression

In this appendix, the behaviour of the gene expression process is specified using Hennessy-
Milner logic (HML) formulae [54]. More precisely, we show how the HBB gene, which codes
for one of the β subunits of the haemoglobin molecule, is expressed through the processes
described in Section 3.2.1, that is, T (transcription), P (processing), and L (translation). Each of
these processes satisfies the related HML formula of the HBB gene expression.

The DNA sequence of the HBB gene (1742 nucleotides long) has been derived from an
HBB transcript variant (1742 nucleotides) [82], which we retrieved from the National Center
for Biotechnology Information (NCBI) AceView website [115]; the gene contains three exons
(coloured in green in their coding regions) and two introns (coloured in blue). We highlight in
red the codon that codes for the Glu 6 of the β subuint amino acid sequence.

The formulae are too long to be entirely displayed in this section; therefore, we show only
their beginning part (one or two rows), their middle part, where the codon of the Glu 6 is present,
and their ending rows.
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The process starts from the string δhbb = "p" γhbb "t", where

γhbb ="gccgacagtagtgaatctggagtgggacacctcggtgtgggatcccaaccggttagatgagggtc
ctcgtccctcccgtcctcggtcccgacccgtattttcagtcccgtctcggtagataacgaatgtaaacgaa
gactgtgttgacacaagtgatcgttggagtttgtctgtggtaccacgtagactgaggagtgctcttcagac
ggcaatgacgggacaccccgttccacttgcacctacttcaaccaccactccgggacccgtccaaccatagt
tccaatgttctgtccaaattcctctggttatctttgacccgtacacctctgtctcttctgagaacccaaag
actatccgtgactgagagagacggataaccagataaaagggtgggaatccgacgaccaccagatgggaacc
tgggtctccaagaaactcaggaaacccctagacaggtgaggactacgacaatacccgttgggattccactt
ccgagtaccgttctttcacgagccacggaaatcactaccggaccgagtggacctgttggagttcccgtgga
aacggtgtgactcactcgacgtgacactgttcgacgtgcacctaggactcttgaagtcccactcagatacc
ctgcgaactacaaaagaaaggggaagaaaagataccaattcaagtacagtatccttcccctattcattgtc
ccatgtcaaatcttaccctttgtctgcttactaacgtagtcacaccttcagagtcctagcaaaatcaaaga
aaataaacgacaagtattgttaacaaaagaaaacaaattaagaacgaaagaaaaaaaaagaagaggcgtta
aaaatgataatatgaattacggaattgtaacacatattgttttcctttatagagactctatgtaattcatt
gaatttttttttgaaatgtgtcagacggatcatgtaatgataaaccttatatacacacgaataaacgtata
agtattagagggatgaaataaaagaaaataaaaattaactatgtattagtaatatgtataaatacccaatt
tcacattacaaaattatacacatgtgtataactggtttagtcccattaaaacgtaaacattaaaatttttt
acgaaagaagaaaattatatgaaaaaacaaatagaataaagattatgaaagggattagagaaagaaagtcc
cgttattactatgttacatagtacggagaaacgtggtaagatttcttattgtcactattaaagacccaatt
ccgttatcgttatagagacgtatatttataaagacgtatatttaacattgactacattctccaaagtataa
cgattatcgtcgatgttaggtcgatggtaagacgaaaataaaataccaaccctattccgacctaataagac
tcaggttcgatccgggaaaacgattagtacaagtatggagaatagaaggagggtgtcgaggacccgttgca
cgaccagacacacgaccgggtagtgaaaccgtttcttaagtggggtggtcacgtccgacggatagtctttc
accaccgaccacaccgattacgggaccgggtgttcatagtgattcgagcgaaagaacgacaggttaaagat
aatttccaaggaaacaagggattcaggttgatgatttgaccccctataatacttcccggaactcgtagacc
taagacggattattttttgtaaataaaagtaacgttactacata"

(B.1)

B.1.1 Transcription

By extending Equation 3.10 to the whole transcription process T, we obtain that:

T Í 〈p〉〈5〉Tr

Tr ≡ 〈b1〉〈b2〉〈b1b2〉〈b1b2〉(〈b2〉tt∧〈b2〉Tr ∧〈b2〉〈t〉〈3〉tt)
(B.2)

We can apply Equation B.2 to formally describe the HBB gene transcription on the basis of its
DNA sequence; the latter is represented as the γhbb string of Equation B.1.



B.1. FORMAL DESCRIPTION OF HBB GENE EXPRESSION 151

T Í
〈p〉〈5〉〈g〉〈gc〉〈gc〉〈c〉〈c〉〈cg〉〈cg〉〈g〉〈c〉〈cg〉〈cg〉〈g〉〈g〉〈gc〉〈gc〉〈c〉〈a〉〈au〉〈au〉〈u〉〈c〉〈cg〉〈cg〉〈g〉
〈a〉〈au〉〈au〉〈u〉〈g〉〈gc〉〈gc〉〈c〉〈t〉〈ta〉〈ta〉〈a〉〈a〉〈au〉〈au〉〈u〉〈g〉〈gc〉〈gc〉〈c〉
...
〈a〉〈au〉〈au〉〈u〉 〈c〉〈cg〉〈cg〉〈g〉〈t〉〈ta〉〈ta〉〈a〉〈c〉〈cg〉〈cg〉〈g〉 〈c〉〈cg〉〈cg〉〈g〉
...
〈g〉〈gc〉〈gc〉〈c〉〈t〉〈ta〉〈ta〉〈a〉〈t〉〈ta〉〈ta〉〈a〉〈a〉〈au〉〈au〉〈u〉〈c〉〈cg〉〈cg〉〈g〉〈t〉〈ta〉〈ta〉〈a〉〈a〉〈au〉
〈au〉〈u〉〈c〉〈cg〉〈cg〉〈g〉〈a〉〈au〉〈au〉〈u〉〈t〉〈ta〉〈ta〉〈a〉〈a〉〈au〉〈au〉〈u〉〈t〉〈3〉tt;

(B.3)
After the T process has occurred, we obtain the string χhbb = "5" θhbb "3", where

θhbb ="cggcugucaucacuuagaccucacccuguggagccacacccuaggguuggccaaucuacucccag
gagcagggagggcaggagccagggcugggcauaaaagucagggcagagccaucuauugcuuacauuugcuu
cugacacaacuguguucacuagcaaccucaaacagacaccauggugcaucugacuccugaggagaagucug
ccguuacugcccuguggggcaaggugaacguggaugaaguugguggugaggcccugggcagguugguauca
agguuacaagacagguuuaaggagaccaauagaaacugggcauguggagacagagaagacucuuggguuuc
ugauaggcacugacucucucugccuauuggucuauuuucccacccuuaggcugcugguggucuacccuugg
acccagagguucuuugaguccuuuggggaucuguccacuccugaugcuguuaugggcaacccuaaggugaa
ggcucauggcaagaaagugcucggugccuuuagugauggccuggcucaccuggacaaccucaagggcaccu
uugccacacugagugagcugcacugugacaagcugcacguggauccugagaacuucagggugagucuaugg
gacgcuugauguuuucuuuccccuucuuuucuaugguuaaguucaugucauaggaaggggauaaguaacag
gguacaguuuagaaugggaaacagacgaaugauugcaucaguguggaagucucaggaucguuuuaguuucu
uuuauuugcuguucauaacaauuguuuucuuuuguuuaauucuugcuuucuuuuuuuuucuucuccgcaau
uuuuacuauuauacuuaaugccuuaacauuguguauaacaaaaggaaauaucucugagauacauuaaguaa
cuuaaaaaaaaacuuuacacagucugccuaguacauuacuauuuggaauauaugugugcuuauuugcauau
ucauaaucucccuacuuuauuuucuuuuauuuuuaauugauacauaaucauuauacauauuuauggguuaa
aguguaauguuuuaauauguguacacauauugaccaaaucaggguaauuuugcauuuguaauuuuaaaaaa
ugcuuucuucuuuuaauauacuuuuuuguuuaucuuauuucuaauacuuucccuaaucucuuucuuucagg
gcaauaaugauacaauguaucaugccucuuugcaccauucuaaagaauaacagugauaauuucuggguuaa
ggcaauagcaauaucucugcauauaaauauuucugcauauaaauuguaacugauguaagagguuucauauu
gcuaauagcagcuacaauccagcuaccauucugcuuuuauuuuaugguugggauaaggcuggauuauucug
aguccaagcuaggcccuuuugcuaaucauguucauaccucuuaucuuccucccacagcuccugggcaacgu
gcuggucugugugcuggcccaucacuuuggcaaagaauucaccccaccagugcaggcugccuaucagaaag
ugguggcugguguggcuaaugcccuggcccacaaguaucacuaagcucgcuuucuugcuguccaauuucua
uuaaagguuccuuuguucccuaaguccaacuacuaaacugggggauauuaugaagggccuugagcaucugg
auucugccuaauaaaaaacauuuauuuucauugcaaugauguau"

(B.4)

The starting and ending substrings of each intron ("gu" and "ag") are highlighted in orange.
They are identified during the processing phase of HBB expression.
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B.1.2 Processing

Considering Equation 3.16 in the context of the whole P process, we obtain that

PÍ 〈5〉〈c〉Sr ∧〈3〉〈a〉tt

Sr ≡ 〈b〉〈b〉Sr ∧〈g〉〈u〉E
E ≡ 〈b〉E ∧〈a〉(〈g〉tt∧〈g〉Sr )

(B.5)

Therefore, by applying P to the string χhbb, the process satisfies the following specification:

PÍ
〈5〉〈c〉〈c〉〈c〉〈g〉〈g〉〈g〉〈g〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈u〉〈u〉〈c〉〈c〉〈a〉〈a〉〈u〉〈u〉〈c〉〈c〉〈a〉〈a〉〈c〉〈c〉〈u〉〈u〉
〈u〉〈u〉〈a〉〈a〉〈g〉〈g〉〈a〉〈a〉〈c〉〈c〉〈c〉〈c〉〈u〉〈u〉〈c〉〈c〉〈a〉〈a〉〈c〉〈c〉〈c〉〈c〉
...
〈a〉〈a〉〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈c〉〈c〉〈a〉〈a〉〈u〉〈u〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈a〉〈a〉〈c〉〈c〉〈u〉〈u〉
〈c〉〈c〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈a〉〈a〉〈g〉〈g〉〈g〉〈g〉〈a〉〈a〉〈g〉〈g〉〈a〉〈a〉〈a〉〈a〉〈g〉〈g〉〈u〉〈u〉〈c〉〈c〉〈u〉〈u〉
〈g〉〈g〉〈c〉〈c〉〈c〉〈c〉〈g〉〈g〉〈u〉〈u〉〈u〉〈u〉〈a〉〈a〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈c〉〈c〉〈c〉〈c〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉
〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈g〉〈g〉〈g〉〈g〉〈c〉〈c〉〈a〉〈a〉〈a〉〈a〉〈g〉〈g〉〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈a〉〈a〉〈a〉〈a〉〈c〉〈c〉
〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈a〉〈a〉〈u〉〈u〉〈g〉〈g〉〈a〉〈a〉〈a〉〈a〉〈g〉〈g〉〈u〉〈u〉〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈u〉〈u〉
〈g〉〈g〉〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈a〉〈a〉〈g〉〈g〉〈g〉〈g〉〈c〉〈c〉〈c〉〈c〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈g〉〈g〉〈c〉〈c〉
〈a〉〈a〉〈g〉〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈u〉〈a〉〈u〉〈c〉〈a〉〈a〉〈g〉〈g〉〈u〉〈u〉〈a〉〈c〉〈a〉〈a〉〈g〉〈a〉〈c〉〈a〉〈g〉〈g〉〈u〉
〈u〉〈u〉〈a〉〈a〉〈g〉〈g〉〈a〉〈g〉〈a〉〈c〉〈c〉〈a〉〈a〉〈u〉〈a〉〈g〉〈a〉〈a〉〈a〉〈c〉〈u〉〈g〉〈g〉〈g〉〈c〉〈a〉〈u〉〈g〉〈u〉〈g〉
〈g〉〈a〉〈g〉〈a〉〈c〉〈a〉〈g〉〈a〉〈g〉〈a〉〈a〉〈g〉〈a〉〈c〉〈u〉〈c〉〈u〉〈u〉〈g〉〈g〉〈g〉〈u〉〈u〉〈u〉〈c〉〈u〉〈g〉〈a〉〈u〉〈a〉
〈g〉〈g〉〈c〉〈a〉〈c〉〈u〉〈g〉〈a〉〈c〉〈u〉〈c〉〈u〉〈c〉〈u〉〈c〉〈u〉〈g〉〈c〉〈c〉〈u〉〈a〉〈u〉〈u〉〈g〉〈g〉〈u〉〈c〉〈u〉〈a〉〈u〉
〈u〉〈u〉〈u〉〈c〉〈c〉〈c〉〈a〉〈c〉〈c〉〈c〉〈u〉〈u〉〈a〉〈g〉〈g〉〈g〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈c〉〈c〉〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉
〈u〉〈u〉〈g〉〈g〉〈g〉〈g〉〈u〉〈u〉
...
〈u〉〈u〉〈a〉〈a〉〈u〉〈u〉〈u〉〈u〉〈u〉〈u〉〈u〉〈u〉〈c〉〈c〉〈a〉〈a〉〈u〉〈u〉〈u〉〈u〉〈g〉〈g〉〈c〉〈c〉〈a〉〈a〉〈a〉〈a〉〈u〉〈u〉
〈g〉〈g〉〈a〉〈a〉〈u〉〈u〉〈g〉〈g〉〈u〉〈u〉〈a〉〈a〉〈u〉〈u〉〈3〉〈a〉tt;

(B.6)

Consequently, the result of P on χhbb is the mRNA string represented by

ρhbb ="ccggcugucaucacuuagaccucacccuguggagccacacccuaggguuggccaaucuacuccc
aggagcagggagggcaggagccagggcugggcauaaaagucagggcagagccaucuauugcuuacauuugc
uucugacacaacuguguucacuagcaaccucaaacagacaccauggugcaucugacuccugaggagaaguc
ugccguuacugcccuguggggcaaggugaacguggaugaaguugguggugaggcccugggcaggcugcugg
uggucuacccuuggacccagagguucuuugaguccuuuggggaucuguccacuccugaugcuguuaugggc
aacccuaaggugaaggcucauggcaagaaagugcucggugccuuuagugauggccuggcucaccuggacaa
ccucaagggcaccuuugccacacugagugagcugcacugugacaagcugcacguggauccugagaacuuca
ggcuccugggcaacgugcuggucugugugcuggcccaucacuuuggcaaagaauucaccccaccagugcag
gcugccuaucagaaagugguggcugguguggcuaaugcccuggcccacaaguaucacuaagcucgcuuucu
ugcuguccaauuucuauuaaagguuccuuuguucccuaaguccaacuacuaaacugggggauauuaugaag
ggccuugagcaucuggauucugccuaauaaaaaacauuuauuuucauugcaaugauguaua"

(B.7)
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We coloured in orange the start codon "aug" and the stop codon "uaa" since they are taken
as starting and ending points to carry out the translation of ρhbb into the β-globin amino acid
sequence.

B.1.3 Translation

If we relax the length constraint of Equation 3.21 through recursion, we obtain that

LÍ 〈c〉Lr

Lr ≡ 〈b〉Lr ∧〈a〉〈u〉〈g〉〈imet〉C
C ≡ 〈b1〉〈b2〉〈b3〉(〈a〉tt∧〈a〉C)∧〈u〉〈a〉〈a〉〈s〉tt

∧〈u〉〈a〉〈g〉〈s〉tt∧〈u〉〈g〉〈a〉〈s〉tt

(B.8)

We can thus apply L to ρhbb:

LÍ
〈c〉〈c〉〈g〉〈g〉〈c〉〈u〉〈g〉〈u〉〈c〉〈a〉〈u〉〈c〉〈a〉〈c〉〈u〉〈u〉〈a〉〈g〉〈a〉〈c〉〈c〉〈u〉〈c〉〈a〉〈c〉〈c〉〈c〉〈u〉〈g〉〈u〉
〈g〉〈g〉〈a〉〈g〉〈c〉〈c〉〈a〉〈c〉〈a〉〈c〉〈c〉〈c〉〈u〉〈a〉〈g〉〈g〉〈g〉〈u〉〈u〉〈g〉〈g〉〈c〉〈c〉〈a〉〈a〉〈u〉〈c〉〈u〉〈a〉〈c〉
〈u〉〈c〉〈c〉〈c〉〈a〉〈g〉〈g〉〈a〉〈g〉〈c〉〈a〉〈g〉〈g〉〈g〉〈a〉〈g〉〈g〉〈g〉
...
〈a〉〈u〉〈g〉〈imet〉〈g〉〈u〉〈g〉〈val〉〈c〉〈a〉〈u〉〈his〉〈c〉〈u〉〈g〉〈leu〉〈a〉〈c〉〈u〉〈thr〉〈c〉〈c〉〈u〉
〈pro〉〈g〉〈a〉〈g〉〈glu〉〈g〉〈a〉〈g〉〈glu〉〈a〉〈a〉〈g〉〈lys〉〈u〉〈c〉〈u〉〈ser〉〈g〉〈c〉〈c〉〈ala〉〈g〉〈u〉
〈u〉〈val〉〈a〉〈c〉〈u〉〈thr〉〈g〉〈c〉〈c〉〈ala〉〈c〉〈u〉〈g〉〈leu〉〈u〉〈g〉〈g〉〈trp〉
...
〈c〉〈u〉〈g〉〈leu〉〈g〉〈c〉〈c〉〈ala〉〈c〉〈a〉〈c〉〈his〉〈a〉〈a〉〈g〉〈lys〉〈u〉〈a〉〈u〉〈tyr〉〈c〉〈a〉〈c〉〈his〉
〈u〉〈a〉〈a〉〈s〉tt;

(B.9)

As a result, the amino acid sequence of the haemoglobin β subunit is represented by the string

ψhbb ="imet val his leu thr pro glu glu lys ser ala val thr ala leu trp
gly lys val asn val asp glu val gly gly glu ala leu gly arg leu leu val
val tyr pro trp thr gln arg phe phe glu ser phe gly asp leu ser thr pro
asp ala val met gly asn pro lys val lys ala his gly lys lys val leu gly
ala phe ser asp gly leu ala his leu asp asn leu lys gly thr phe ala thr
leu ser glu leu his cys asp lys leu his val asp pro glu asn phe arg leu
leu gly asn val leu val cys val leu ala his his phe gly lys glu phe thr
pro pro val gln ala ala tyr gln lys val val ala gly val ala asn ala leu
ala his lys tyr his"

(B.10)
Similarly to what is shown in Section 3.3, all the specifications in this appendix can be verified
with the aid of the CAAL concurrency workbench [3].





Appendix C

Supplementary Information to
Chapter 6

Detecting In Silico the Driving Forces of Biomolecular
Interactions

C.1 Plots of the Concentration Changes during the Agent-based
Simulations

This appendix provides some of the plots generated for the study proposed in Chapter 6. We
report the concentration changes over time of the metabolites (Section C.1.1) and a selection of
the complex formations (Section C.1.2). We choose specifically these plots since they are relevant
to highlight the differences between the electrostatic and electromagnetic potentials modelled
through our agent-based approach.

We ran the simulations on cloud-based virtual machines powered by 8 vCPUs and 32 GB
of memory. With these hardware resources, simulating 0.1 seconds requires roughly 24 hours.
For this reason, we chose 1 second (about ten days of simulation) as the standard time interval
for our study. Even if it could be too short for observing some biological phenomena, such as
the effects of enzyme activations and inhibitions, it turned out to be sufficient to highlight the
impact of the long-distance electrodynamic interactions on the glycolytic pathway.

In what follows, we refer to each type of simulation as:

• 300 Å simulation, representing a system where molecular interactions are driven by
long-range forces;

• 10 Å simulation, based on the model of a system where the Debye screening limits the
capability of biomolecules to perceive each other;
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• 5 Å simulation, reproducing a biochemical system whose reactions rely only on random
encounters and chemical affinity.

This convention is based on the perception distances that characterise the space inside which
an enzyme can identify a cognate metabolite, as explained in Section 6.2.2 on page 107.

C.1.1 Metabolite concentration changes

The following plots represent the molar concentration changes, observable in the interval of 1
second, of the metabolites simulated during our study. We exclude from the plots the AMPþ and
the F26bPþ because, although they are present in the simulated environment, they are involved
in enzyme regulation, a feature we have not yet modelled; their concentrations, thus, remain
constant. To make each plot more readable, we define four subsets of metabolites (a complete list
of which can be found in Table 6.1). According to the Smallbone2013 - Iteration 18 model [107],
all of them are already present in the environment at the beginning of the glycolytic process.

Every kind of simulation produces plots with common properties; therefore, we prefer
to describe and compare such features in this introductory discussion instead of providing
redundant captions for each figure.

Observing the plots, we can notice the high rates through which the 300 Å simulation pro-
duces or consumes the metabolites in the environment; this behaviour is less evident in the
10 Å simulation and almost absent in the 5 Å simulation. We largely discuss the reasons
behind these phenomena in Section 6.3 on page 110, where, in particular, we explain the concen-
tration variations of ADP, ATP, NADH, and F16bP; their plots are shown in the following Figures C.1
and C.3. To summarise some of our findings, we can say that, by limiting the molecular interac-
tions to those allowed by short-range van der Waals-like potentials (5 Å perception distance),
most enzymes cannot bind part of their substrate. For example, in the plots generated by the
5 Å simulation, the number of ATPþ molecules can only increase because, during the prepa-
ration phase of glycolysis, neither the hexokinasesþ (HXK)–and glucokinasesþ (GLK)–nor the
phosphofructokinasesþ (PFK) are able to bind this metabolite and complete the catalysis of
their respective reactions; ATPþ is instead produced in the payoff phase. This particular aspect
is better shown in the next subsection, which provides the plots of the complexes formation.
Similarly, the concentration of NADHþ never changes during the entire interval of the 5 Å sim-
ulation because the glycerol-3-phosphateþ dehydrogenaseþ (GDP) is not able to bind this
molecule (see Figures C.3, C.8, and C.9).

In general, the concentration curves of the 5 Å simulation, besides showing, for several
species, no changes in metabolite amounts, have two peculiar trends; precisely, they can

1. increase/decrease until they reach a plateau (as in the case of GLC, in Figure C.2);

2. get to a value after which they roughly oscillate for the remainder of the simulation (a
behaviour characterising F6P, in Figure C.1, and G6P, in Figure C.2).
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The two situations are linked to the inability of specific enzymes to saturate when allowed to
perceive their cognate metabolites through a small perception sphere. In the first case, they
bind their substrate until all the enzymes of the same kind are partly saturated (i.e., forming the
dual-complexes defined in Section 5.3.1); at this point, they are not able to complete the catalysis
of the reaction, and the substrate concentration stabilises at the reached value. The second case
is due to a similar reason but relates to metabolites also involved in reversible reactions that do
not require additional substrate (e.g., an energy donor) to be catalysed. Instead of reaching a
plateau, when the partly-saturated enzyme cannot consume them, they start to “move back
and forth” in the interconversion process of the reversible reaction, showing the oscillations
mentioned above. The most relevant examples of these phenomena are the reactions catalysed
by HXKþ (and GLK) and the one carried out by PFK:

hexokinase: GLCþ + ATPþ HXKþ−−→ G6Pþ + ADPþ
glucokinase: GLCþ + ATPþ GLKþ−−→ G6Pþ + ADPþ
phosphofructokinase: ATPþ + F6Pþ PFKþ−−→ ADPþ + F16bPþ

Since, in the 5 Å simulation, PFKþ cannot bind ATPþ (Figure C.7), all the molecules of this enzyme
remain partly saturated, and the F6Pþ still present in the environment begins to be interconverted
to and from G6Pþ by the phosphoglucoseþ isomeraseþ (PGI1–see Table 6.2). Since HXKsþ and GLKsþ
also reach a point in which they are all partly saturated (Figure C.5) and cannot produce G6Pþ from
glucose, the concentration of G6Pþ starts to oscillate. The phosphoglucomutaseþ (PGM), which in-
terconverts G6Pþ and G1P, equally participates in this process (the sequence of glycolysis reactions
schematised in Figure 6.1 on page 108 may help the reader to understand these behaviours). In
both plateaus and oscillations, the glycolytic process is blocked by the reactions catalysed by
enzymes unable to saturate.

Conversely, the concentration changes of the 10 Å simulation have trends similar to those
of the 300 Å simulation, although they show significantly lower rates. Among the others, it
is important to notice this property in glucoseþ (Figure C.2), pyruvateþ (Figure C.3), and in
the products of the branches considered in our models, that is, glycerolþ (Figure C.2) and
trehaloseþ (Figure C.4).

We also provide the plots generated by a numerical time-course simulation, carried out
through Copasi [55], of the Smallbone2013 kinetic model [107]. These plots are just for compari-
son; in Chapter 6, we propose various considerations over the limitations of this modelling and
simulation approach. The main discrepancy with the agent-based simulations is the inability
of the kinetic model to grasp the fluctuations of the species concentrations, producing more
homogeneous curves. Moreover, a system of differential equations is less flexible than an agent-
based model and removing enzyme regulation would have compromised its consistency, making
the numerical simulation impossible. This property resulted in concentration changes closer to
those observable at steady state, a condition unlikely to be reached by our agent-based simula-
tions (see Section 6.2.1). If we exclude these differences, the numerical simulation, in some cases,
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shows concentration trends loosely closer to those observable in the 300 Å simulation and
10 Å simulation (see the GLCþ curve in Figure C.2), while, in others, to the variations produced
by the 5 Å simulation. In several cases, they are completely different from the corresponding
concentration changes generated by the agent-based simulations.

(a) (b)

(c) (d)

Figure C.1 – Concentration changes over time of adenosineþ diphosphateþ (ADP), adenosineþ
triphosphateþ (ATP), 1,3-bisphosphoglycerateþ (BPG), dihydroxyacetoneþ
phosphateþ (DHAP), fructoseþ 1,6-bisphosphateþ (F16bP), and fructoseþ 6-phosphateþ
(F6P).



C.1. CONCENTRATION CHANGES DURING THE AGENT-BASED SIMULATIONS 159

(a) (b)

(c) (d)

Figure C.2 – Concentration changes over time of glucoseþ 1-phosphateþ (G1P), glycerolþ 3-
phosphateþ (G3P), glucoseþ 6-phosphateþ (G6P), glyceraldehydeþ 3-phosphateþ (GAP),
glucoseþ (GLC), and glycerolþ (GLY).
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(a) (b)

(c) (d)

Figure C.3 – Concentration changes over time of nicotinamideþ adenineþ dinucleotideþ (NAD),
nicotinamideþ adenineþ dinucleotideþ plusþ hydrogenþ (NADH), 2-phosphoglycerateþ
(P2G), 3-phosphoglycerateþ (P3G), phosphoenolpyruvateþ (PEP), and pyruvateþ (PYR).
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(a) (b)

(c) (d)

Figure C.4 – Concentration changes over time of trehaloseþ 6-phosphateþ (T6P), trehaloseþ
(TRH), uridineþ diphosphateþ glucoseþ (UDG), uridineþ diphosphateþ (UDP), and uridineþ
triphosphateþ (UTP).
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C.1.2 Comparison of relevant complexes formation

In this subsection, we provide a comparison of the plots of metabolites and complexes involved,
during 5, 10 and 300 Å simulations, in the following reactions:

• phosphorylation of glucoseþ (GLC) to glucose-6-phosphateþ (G6P), performed by
hexokinaseþ (HXK) and glucokinaseþ (GLK);

• phosphorylation of fructoseþ 6-phosphateþ (F6P) to fructoseþ 1,6-bisphosphateþ
(F16bP), carried out by phosphofructokinaseþ (PFK);

• conversion of dihydroxyacetoneþ phosphateþ (DHAP) to glycerolþ 3-phosphateþ (G3P),
catalysed by glycerol-3-phosphateþ dehydrogenaseþ (GDP).

The reason for this choice is to show how the agent-based approach can highlight the
limitations of a system in which molecular interactions are driven only by random encounters
and chemical affinity (that is, the 5 Å simulation). This is possible thanks to the capability of
the agent-based simulations to reproduce local molecular interactions and thus the formation of
partly saturated enzymes. A similar analysis cannot be carried out over the numerical time-course
simulations, because they consider each reaction as a mathematical function from reactants to
products, not explicitly taking into account the effects of the local interactions. For this reason,
all the plots generated through Copasi cannot show the concentration changes of the complexes
(whether they are enzymes partly or fully saturated).

In the proposed reactions, we can observe that, differently from the 300 and 10 Å simula-
tions, the 5 Å simulation does not allow the binding of the enzymes with the needed energy
donor (ATPþ for the reactions catalysed by HXK, GLKþ and PFK, and NADHþ for the reaction performed
by GDP). This property produces the peculiar concentration changes discussed in the previous
subsection and in Chapter 6. To make such a phenomenon more evident, each plot is provided
with a dedicated legend; in this way, it is possible to notice at a glance that fully saturated
enzymes are not present in the plots of the 5 Å simulation.

We show the concentration changes of reactants, products, and complexes for each reaction
catalysed by the isoenzymes considered in our model of glycolysis (see Table 6.2 on page 109 for
the related chemical equations).
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(a) (b)

(c) (d)

Figure C.5 – Phosphorylation of glucoseþ (GLC) to glucose-6-phosphateþ (G6P), performed by
hexokinaseþ (HXK1þ and HXK2þ isoenzymes). The reaction requires the energy generated by
the hydrolysis of ATPþ to ADP.
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(a) (b)

(c) (d)

Figure C.6 – Phosphorylation of glucoseþ (GLC) to glucose-6-phosphateþ (G6P), performed by
glucokinaseþ (GLK1). The reaction requires the energy generated by the hydrolysis of
ATPþ to ADP.
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(a) (b)

(c) (d)

Figure C.7 – Phosphorylation of fructoseþ 6-hosphateþ (F6P) to fructoseþ 1,6-bisphosphateþ
(F16bP), carried out by phosphofructokinaseþ (PFK1þ and PFK2þ isoenzymes). The reaction
requires the energy generated by the hydrolysis of ATPþ to ADP.
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(a) (b)

(c) (d)

Figure C.8 – Conversion of dihydroxyacetoneþ phosphateþ (DHAP) to glycerolþ 3-phosphateþ (G3P),
catalysed by glycerol-3-phosphateþ dehydrogenaseþ (GPD1þ isoenzyme). To be per-
formed, the reaction must be coupled with the conversion of NADHþ to NAD.
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(a) (b)

(c) (d)

Figure C.9 – Conversion of dihydroxyacetoneþ phosphateþ (DHAP) to glycerolþ 3-phosphateþ (G3P),
catalysed by glycerol-3-phosphateþ dehydrogenaseþ (GPD2þ isoenzyme). To be per-
formed, the reaction must be coupled with the conversion of NADHþ to NAD.
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