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Abstract

In many natural and artificial devices diffusive transport takes place in confined geometries with

corrugated boundaries. Such boundaries cause both entropic and hydrodynamic effects, which have

been studied only for the case of spherical particles. Here we experimentally investigate diffusion of

particles of elongated shape confined into a corrugated quasi-two-dimensional channel. Elongated

shape causes complex excluded-volume interactions between particle and channel walls which reduce

the accessible configuration space and lead to novel entropic free energy effects. The extra rotational

degree of freedom also gives rise to a complex diffusivity matrix that depends on both the particle

location and its orientation. We further show how to extend the standard Fick-Jacobs theory to

incorporate combined hydrodynamic and entropic effects, so as, for instance, to accurately predict

experimentally measured mean first passage times along the channel. Our approach can be used as

a generic method to describe translational diffusion of anisotropic particles in corrugated channels.
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Diffusive transport through micro-structures such as occurring in porous media [1, 2],

micro/nano-fluidic channels [3–7] and living tissues [8, 9], is ubiquitous and attracts ever-

growing attention from physicists [10, 11], mathematicians [12], engineers [1], and biologists

[8, 9, 13]. A common feature of these systems are confining boundaries of irregular shapes.

Spatial confinement can fundamentally change equilibrium and dynamical properties of a

system by both limiting the configuration space accessible to its diffusing components [10]

and increasing the hydrodynamic drag [14] on them.

An archetypal model to study confinement effects consists of a spherical particle diffus-

ing in a corrugated narrow channel, which mimics directed ionic channels [15], zeolites [16],

and nanopores [17]. In this context, Jacobs [18] and Zwanzig [19] proposed a theoretical

formulation to account for the entropic effects stemming from constrained transverse dif-

fusion. Focusing on the transport (channel) direction, they assumed that the transverse

degrees of freedom (d.o.f’s) equilibrate sufficiently fast and can, therefore, be eliminated

adiabatically by means of an approximate projection scheme. In first order, they derived a

reduced diffusion equation in the channel direction, known as the Fick-Jacobs (FJ) equation.

Numerical investigations [11, 20–23] demonstrated that the FJ equation provides a useful

tool to accurately estimate the entropic effects for confined pointlike particles. However,

our recent experiments [5] evidentiated that hydrodynamic effects for finite size particles

cannot be disregarded if the channel and particle dimensions grow comparable. In order

to incorporate such hydrodynamic corrections, the FJ equation must then be amended in

terms of the experimentally measured particle diffusivity.

Previous studies on confined diffusion focused mostly on spherical particles, for which only

the translational d.o.f’s were considered. However, particles in practical applications appear

inherently more complex in exhibiting anisotropic shape and possessing additional degrees

of freedom other than translational. For example, anisotropic particles, such as colloids

[24–28], artificial and biological filaments [29, 30], DNA strands [31, 32] and microswimmers

[33, 34], exhibit complex coupling between rotation and translation, even in the absence

of geometric constraints. How can complex shape and additional d.o.f’s such as rotation

alter the current picture of confined diffusion? Here, we address this open question and

study how a colloidal rod diffuses in a quasi-two-dimensional (2D) corrugated channel [35].

Our experiments reveal that the interplay of channel’s spatial modulation, rod’s shape and

rotational dynamics causes substantial hydrodynamic and entropic effects. We succeed to
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Figure 1. (a) Electron scanning image of a thin channel (H = 1.0 µm, α = 7/8). Narrow openings

at the two ends are marked by red asterisks. The inset illustrates a section of the channel with

laser-scanning contour, f(x), wall inner boundary, h(x), and upper effective boundary, g+(x, θ),

delimiting the region accessible to the center of a rod with a given tilting angle, θ. Rod’s length

and width and wall thickness are denoted respectively by 2lX , 2lY and dt. The coordinates x, y, z

and X,Y refer respectively to the laboratory and body frames. (b) Sample of time discretized

trajectory (dotted line) for a rod with lX =1.5 µm in a tall channel (H = 2.0 µm, α = 1); the rod’s

orientation at different times is also reported according to the depicted color-code.

extend the standard FJ theory to incorporate both effects; the resulting theory accurately

predicts the experimentally measured mean first-passage times (MFPT’s) associated with

rod translation along the channel.

Experimental setup. Our channels were fabricated on a coverslip by means of a two-

photon direct laser writing system, which solidifies polymers according to a preassigned

channel profile, f(x), with a submicron resolution [5]. As depicted in Fig.1 (a), the quasi-2D

channel has a uniform height (denoted by H). In the central region, the periodically curved
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lateral walls form cells of length L with inner boundaries a distance y = ±h(x) away from

the channel’s axis. The preassigned profile f(x) is given the form of a cosine, which tapers

off to a constant in correspondence with the cell connecting ducts, or necks, that is

f(x) =











1
2
(fw + fn) +

1
2
(fw − fn)cos(

2πx
αL

), |x| < αL
2

fn,
αL
2

≤ |x| < 1
2
L

. (1)

The minimum (maximum) half-width of f(x) is denoted by fn(w), respectively, whereas

(1 − α)L is the length of the neck. Due to the lateral wall thickness dt =0.8 µm [see inset

of Fig. 1(a)], f(x) and h(x) are separated by a distance dt/2, so that fn(w) = hn(w) + dt/2.

We changed fn continuously for fixed L = 12 µm and fw = 4.6 µm, while for the remaining

channel parameters we considered two typical geometries: tall channels (H = 2.0 µm, α = 1)

and thin channels (H = 1.0 µm, α = 7/8).

After fabrication, channels were immersed in water with suspended iron-plated gold rods

of width 2lY = 0.3 µm and length 2lX , which varies in the range 1.6-3.2 µm . Using a magnet,

we dragged a rod into the channel through a narrow entrance, which creates insurmountable

entropic barriers to prevent the rod from exiting the channel. The rod’s motion in such

quasi-2D channel was recorded through a microscope at 30 frames per second for up to 20h

[5]. We tracked rod trajectories in the imaging plane and extracted its center coordinates,

(x, y), and tilting angle, θ, by standard particle-tracking algorithms. We detected no sizeable

rod dynamics in the out-of-plane direction, see Movie S1.mp4 in Supplemental Material [36].

A typical rod trajectory is displayed in Fig. 1(b). The channel boundaries limit the space

accessible to the rod and such a limiting effect depends on the rod’s orientation: the rod

gets closer to the boundary if it is aligned tangent to the walls. To quantify this orientation

dependent effect, we distributed the recorded rod’s center coordinates, (x, y), for a given

orientation, θ, into small bins (0.26µm×0.2µm) and counted how many times the rod’s

center was to be found in each bin. The resulting rod center distributions for three values

of θ are plotted in Fig. 2(a). Nearly uniform distributions demonstrate that the rod diffuses

in a flat energy landscape, whereas sharp drops of the distributions near the boundaries

mark the edge of the accessible space, consistently with y = g±(x, θ) computed from the

excluded-volume considerations [see Fig. 2(a)]. The channel boundaries also affect the rod’s

orientation. For instance, when the rod is relatively long, namely for hn < lX , then it tends

to orient itself parallel to the channel direction inside the neck region, as illustrated in the
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Figure 2. (a) Spatial distributions of the rod center for three tilting angles, θ = π
6 ,π2 and −π

6 . The

channel’s inner boundaries, y = ±h(x), and the tilt-dependent effective boundaries, y = g±(x, θ),

are marked by solid and dashed lines, respectively. (b) The configuration space accessible to the

confined rod is delimited by the surfaces y = g±(x, θ). Five cross sections are shown in color; three

of them, at x/L = 0, 0.22, and 0.46, are displayed in (c). (d) Free-energy profile (in unit of kBT ),

− ln[G(x)/G(0)], for different rod lengths (see text). The black line represents the case of a sphere

of radius lX = 0.15µm. Data in (a)-(d) were obtained in a tall channel (H = 2.0 µm, α = 1) with

hn =1.8 µm, while the rod used in (a)-(c) had half-length lX = 1.6 µm.

middle panel of Fig. 2(a).

Fick-Jacobs free-energy. The rod diffusion can be described as a random walk in the

configuration space (x, y, θ). The dashed curves y = g±(x, θ) in Fig. 2(a) illustrate how

the walls limit the channel’s space accessible to the rod’s center for three different θ values.

From these curves one can construct a surface in the configuration space, as shown in Fig.

2(b), and model the motion of the confined rod as that of a pointlike particle diffusing inside

the reconstructed 3D channel enclosed by that surface. For a rod with length of about 1 µm,

the relaxation times of θ and y are short enough for the FJ approach to closely reproduce the

long-time diffusion in the reconstructed 3D channel (see supplemental Sec. IIB [36]). To that

end, we integrate the probability density ρ(x, y, θ, t) to obtain p(x, t) =
˜

ρ(x, y, θ, t)dydθ
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and the corresponding FJ equation governing its time evolution,

∂p(x, t)

∂t
=

∂

∂x

{

D(x)

[

∂p(x, t)

∂x
+ p(x, t)

∂

∂x

(

− ln
G(x)

G(0)

)]}

. (2)

Here, G(x) = 1
2π

´ π/2

−π/2
[g+(x, θ)− g−(x, θ)]dθ represents the area of the (y, θ) cross section of

the reconstructed 3D channel at a given point x. Three such cross sections are plotted in

Fig. 2(c). Restrictions in both the center coordinates, (x, y), and the tilting angle, θ, cause

variation of G (x). The latter effect is most pronounced in the neck regions, as illustrated

by the blue cross section in Fig. 2(c). Consequently, the variations of G (x) modulate the

FJ free-energy profile along the channel. The free-energy potentials plotted in Fig. 2(d),

− ln[G(x)/G(0)], exhibit barriers of about 1.8kBT for a rod with a half-length lX = 1.6 µm,

which is 50% higher than that of a sphere. This novel entropic effect is induced by particle

shape and its strength increases with increasing rod length.

Fick-Jacobs effective diffusivity. Apart from the entropic potential, the FJ approach

introduces an effective longitudinal diffusivity function, D(x) in Eq. 2. To estimate it, we

first determined the local diffusivity matrix DIJ(x, y, θ) of a rod located at (x, y) with angle

θ, where I and J represent any pair of coordinates X, Y or θ in the body frame. As shown in

Fig. S1, off-diagonal elements of DIJ(x, y, θ) are small and can be neglected. The remaining

three diagonal elements, DXX , DY Y and Dθθ, exhibit a complicated structure inside the

channel and generally have smaller values near channel boundaries, see Figs. S1(c)-(e). We

also numerically computed the hydrodynamic friction coefficient matrix and then used the

fluctuation-dissipation theorem to numerically estimate the diffusivity matrix. As shown

with Fig. S3, numerical calculations closely reproduce experimental findings. Diffusivity

at the channel center can be computed analytically [37–40] and results are in close (5%

difference) agreement with our findings.

We next transformed DIJ(x, y, θ) from the body frame to the laboratory frame and then,

in the spirit of the FJ theory, averaged the element of the resulting diffusivity matrix in the

channel’s direction, Dxx, over y and θ to obtain

Dave(x) = 〈Dxx〉y,θ = 〈DXX(x, y, θ) cos
2 θ + DY Y (x, y, θ) sin

2 θ − DXY (x, y, θ) sin 2θ〉y,θ. (3)

Figure 3(a) displays the function Dave(x) for three different rod lengths. While for the

shortest rod (lX =1.0 µm) Dave(x) exhibits minor variability along the channel, for the

longest rod (lX =1.6 µm) Dave(x) is about 30% larger in the neck regions than at the center
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Figure 3. (a) Average local diffusivity, Dave(x), plotted along the channel for three rods with lX=

1, 1.2 and 1.6 µm, see corresponding numerical results in Fig. S3(c). (b) Tilting angle distributions

in the neck regions ( x = ±L/2, symbols), and at the center of channel cell (x = 0, dashed lines),

for the same lX as in (a). Data were taken in a tall channel (H = 2.0 µm, α = 1) with hn =1.4

µm.

of the channel cells. This surprising result can be explained by inspecting the corresponding

angular distributions in Fig. 3(b). While around the center of channel cell the rods can

assume any angle, θ, in the necks their orientation is predominantly constrained around

θ = 0, more effectively as the rod length increases. In Eq. (3) for Dave (x), contributions

of DXX and DY Y are weighted respectively by cos2 θ and sin2 θ, implying that for angular

distributions peaked around θ = 0 the weight of DXX becomes dominant. Moreover, Figs.

S1 and S3 confirm that DXX/DY Y ≈ 2 in most of configuration space [41], so that Dave(x) in

the neck regions is larger for longer rods. In addition to spatial variation, the hydrodynamic

effects also cause a decrease of the local diffusivity of up to 25%, as compared to bulk values

(see Supplemental Sec. IIA [36]).

We next address the entropic corrections to the local diffusivity, Dave (x), which in the

FJ scheme follow from the adiabatic elimination of the transverse coordinates [19, 20, 42].

Reguera and Rubí proposed heuristic expressions to relate D(x) to Dave(x) in narrow 2D and

3D axisymmetric channels [20]. Unfortunately, such expressions do not apply to nonaxisym-
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metric “reconstructed” channels, see Fig. 2(b), where one or more d.o.f.’s are represented

by orientation angles. For this reason we approximated the reconstructed 3D channel of

Fig. 2(b) to a quasi-2D channel with half-width G(x), adopted Reguera-Rubì expression

[19, 20, 42] and arrived at the following estimate for D(x),

D(x) =
Dave(x)

[1 +G′(x)2]
1

3

. (4)

The validity and corresponding implications of Eq. (4) are discussed in Supplemental Sec.

IIA [36].

Mean first-passage times. With both the entropic potential, − lnG(x)/G(0), and the

effective logitudinal diffusivity, D(x), as extracted from the experimental data, one can next

apply the FJ equation to analytically study the diffusive dynamics of confined rods. For

example, we focus on the time duration, T (±∆x|0), of the unconditional first passage events

that start at x = 0 and end up at x = ±∆x [see inset of Fig. 4(a)], regardless of the fast-

relaxing coordinates y and θ. The corresponding MFPT, 〈T (±∆x|0)〉, can then be used to

estimate the asymptotic channel diffusivity in narrow-neck cases, i.e., Dch = limt→∞〈[x(t)−

x(0)]2〉/2t, that is Dch = L2/2〈T (±L|0)〉 [5]. Taking advantage of the symmetry properties

of the system, Eq. (3) returns an explicit integral expression for the MFPT [19, 43], reading:

〈TFJ(±∆x|0)〉 =

∆x
ˆ

0

dη

G(η)D(η)

η
ˆ

0

G(ξ)dξ. (5)

In Fig. 4(a) we compare the predictions of Eq. (5) with the experimental measurements

of 〈T (±∆x|0)〉 for six combinations of hn and lX . Without any adjustable parameters, Eq.

(5) yields predictions in excellent agreement with the experimental data and captures the

fast increase of the MFPT in the neck region. In addition, the validity of our generalized

FJ equation has been systematically explored by extensive Brownian dynamics simulations

in Supplemental Sec. ID [36].

Our experiments were controlled by two geometric parameters: the half-width of the

channel’s necks, hn, and the rod half-length, lX . Numerical and experimental results in Fig.

4 clearly reveal that the MFPT increases as the ratio hn/lX decreases. Moreover, provided

that the rods are not too short, lX >0.8 µm, results for different choices of hn and lX , when

plotted versus hn/lX , collapse onto a universal curve, as illustrated in Fig. 4(b). This means

that, in the experimental regime investigated here, proportional increases of hn and lX do not

8



Figure 4. (a) MFPT 〈T (±∆x|0)〉 vs. ∆x from experiments (symbols) and theory (curves) in thin

channels (H = 1.0 µm, α = 7
8 ) for different values of the pair (hn, lX). Inset: vertical dashed

segments mark the starting (x = 0, red) and ending (x = ±∆x, blue) positions of the recorded

first passage events. (b) MFPT at ∆x = L/2 vs. hn/lX , measured in tall channels (H = 2.0 µm,

α = 1) for different hn and lX . Results from experiments and theory are represented by circles

and crosses, respectively; symbols are color-coded according to the actual value of lX . The local

diffusivity, Dave (x), used in the theoretical computations was obtained via finite-element analysis,

see Supplemental Sec. IIA [36]. The dashed line is a guide to the eye.

change the MFPT. For a qualitative explanation of such a property, we notice that increasing

lX reduces the available configuration space and, simultaneously, raises the relevant entropic

barriers [Fig. 2(d)]. As a consequence, longer rods, which also possess smaller diffusivity,

D(x) [Fig. 3(a)], tend to diffuse with longer MFPT’s. On the other hand, increasing

hn lowers the entropic barrier, thus decreasing the MFPT. As quantitatively discussed in

Supplemental Sec. IIC [36], these two opposite effects tend to compensate each other, in

our experimental regime, as long as the ratio hn/lX is kept constant.

In conclusion, we experimentally measured diffusive transport of colloidal rods through

corrugated planar channels, upon systematically varying the geometric parameters of the

rods and the channel. Anisotropic shape significantly impacts particle transport by alter-

ing free-energy barriers and particle diffusivity. Experimental observations were successfully
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modeled by generalizing the FJ theory for spherical particles in terms of an effective lon-

gitudinal diffusivity, with hydrodynamic and entropic adjustments, and an FJ free energy

including the rotational d.o.f.

Our method to quantify particle-shape-induced entropic effect (cf. Fig. (2)) is also ap-

plicable to model the confined diffusion of even more complex particles, like patchy colloids

[28] or polymers [29, 30]. Such particles possess additional d.o.f.’s, other than the pure

translational ones, and, similarly to the colloidal rods in our experiments, their description

would generally require higher dimensional configuration spaces. However, as in our work,

fast relaxing d.o.f.’s (“perpendicular” to the channel direction) may be adiabatically elimi-

nated and replaced by a reduced free-energy potential [Fig. 2(d)] together with an effective

diffusivity function [Eq. (4) and Fig. 3(a)]. Such a generalization of the FJ approach conse-

quently may serve as a powerful phenomenological tool to accurately describe the diffusive

transport of real-life particles in directed corrugated narrow channels.
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