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HIGHLIGHTS 1 

- SncRNA are present in both plant- and animal-based food, especially in milk; 2 

- Exogenous sncRNA might regulate  immune- and development-related processes; 3 

- Local effects and microbiome modulations are the major focus of sncRNA research; 4 

- Environment (i.e., diet) and health status modulate the milk’s sncRNA profile; 5 

- SncRNA content might mediate nutrigenomic effects of milk in human nutrition. 6 
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ABSTRACT  45 

The characterization of small non-coding RNA (sncRNA) in food has become part of the 46 

field as a promising field of nutrigenomics. Milk contains sncRNA that are protected by 47 

extracellular vesicles which makes them resistant to digestive processes and possibly 48 

absorbable by the human gut. Due to the high conservation of sncRNA, these molecules 49 

might mediate inter-species gene expression regulations, opening numerous applications in 50 

the field of human nutrition. These include the modulation of sncRNA milk profile through 51 

diet, both in humans and dairy animals, livestock rearing methods, food technology, but also 52 

the production of infant formulas or the usage of sncRNA as biomarkers. SncRNA contained 53 

in milk might contribute to the elucidation of the long-term effects of milk consumption in 54 

the human diet,  confirming the application of nutrigenomics in both health promotion and 55 

food production areas. The main aim of this mini-review is to introduce this aspect of 56 

nutrigenomics illustrating both promising aspects and pitfalls.  57 

Keywords: nutrigenomics; epigenetics; milk; small non-coding RNA; nutrition; microbiome. 58 
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DNMT  DNA methyl transferase 61 

EV  extracellular vesicles 62 

miRNA micro RNA 63 

mRNA  messenger RNA 64 

piRNA  PIWI-interacting RNA 65 

siRNA  short interfering RNA 66 
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sncRNA small non-coding RNA 67 
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 81 

1. Small non-coding RNA and gene regulation 82 

Small non-coding RNA (sncRNA) are untranslated transcripts (~21–34 nucleotides long) that 83 

regulate 40 % to 60 % of gene expression in humans. Several types of sncRNA have been 84 

described. MicroRNA (miRNA), endogenous short interfering RNA (endo-siRNA) and Piwi-85 

interacting RNA (piRNA) are the most extensively studied. They differ in biogenesis, length, 86 

and mechanisms through which they accomplish their biological functions (Carvalho 87 

Barbosa, Calhoun & Wieden, 2020). The ability to downregulate gene expression in the 88 

cytoplasm by pairing with target mRNA, mediated by the assembly of an effector complex, 89 

i.e., RNA-induced silencing complex (RISC) (Bartel, 2004; Fabian & Sonenberg, 2012), is a 90 
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function of sncRNA (miRNA in particular), but it is not the only one. They can also act 91 

inside the nucleus (Sarshad et al., 2018), where they can post-transcriptionally regulate small 92 

and long non-coding RNA or even promote gene expression at the transcriptional level 93 

through mechanisms that have not been completely elucidated (Liu et al., 2018). Moreover, 94 

the specific subclass of piRNA can suppress the activities of transposable elements, regulate 95 

chromatin architecture to control genomic stability and modulate stability and translation of 96 

messenger RNA (Jodar & Anton, 2018). SncRNA have been found not only in the 97 

intracellular environment (as initially hypothesized) but also in biological fluids. 98 

Extracellular vesicles (EV), which are released as a means of intercellular communication, 99 

and fat globules have been shown to protect and carry sncRNA (van Herwijnen et al., 2018; 100 

Wolf, Baier & Zempleni, 2015), thus facilitating the long-range intercellular effects of these 101 

molecules (Ferrero et al., 2017; Turchinovich, Samatov, Tonevitsky & Burwinkel, 2013; Yeri 102 

et al., 2017). However, the presence of sncRNA in biological fluids is not exclusively 103 

associated with EV (Turchinovich, Weiz, Langheinz & Burwinkel, 2011). Biological fluids 104 

that contain sncRNA include blood, urine, saliva, cerebrospinal fluid, sperm, tears and milk 105 

(Ferrero et al., 2017; Izumi et al., 2012; Park et al., 2009; Weber et al., 2010; Yeri et al., 106 

2017). Their unexpected resistance to degradation in the extracellular environment led to 107 

sncRNA being considered strong biomarker of health and disease, as well as a promising 108 

prognostic tools. Alterations in sncRNA profile has been shown in numerous pathological 109 

conditions, not only in the measurement of tissue-specific expression patterns (de Almeida, 110 

Fraczek, Parker, Delneri & O’Keefe, 2016; Lekka & Hall, 2018), but also in the detection of 111 

peripheral sncRNA  in body fluids (Gupta, Bang & Thum, 2010; Y. Jin et al., 2019; Mi, 112 

Zhang, Zhang & Huang, 2013; Redell, Moore, Ward, Hergenroeder & Dash, 2010; Roth et 113 

al., 2010; Santamaria-Martos et al., 2019).  114 

 115 
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2. Inter-species gene expression regulation through small non-coding RNA: Any 116 

nutrigenomic effect? 117 

Nutrigenomics studies how food can modulate gene expression (Bordoni & Gabbianelli, 118 

2019). This discipline focuses on the role of macro- and micro-nutrients, bioactive 119 

compounds and dietary regimens in regulating gene expression and consequentially affecting 120 

the health status. In particular, nutri-epigenomics investigates the role of epigenetics in 121 

mediating the effects of food on gene expression. The term nutrimiromics has been coined to 122 

define the study of how nutrients and bioactive molecules (e.g., selenium, zinc, resveratrol, 123 

curcumin and quercetin) can modulate miRNA concentrations in the human body 124 

(Quintanilha, Reis, Duarte, Cozzolino & Rogero, 2017). While the ability of food to modulate 125 

endogenous sncRNA production has been extensively shown, the existence of food-derived 126 

sncRNA, that remain stable and can potentially be absorbed, was shown by Yang, Hirschi 127 

and Farmer in 2015 and it is still a discussed topic (Yang, Hirschi & Farmer, 2015). 128 

Exogenous sncRNA have been found in both plant- and animal-derived foods. The mobility 129 

of sncRNA from one species to another is considered one of the main mechanisms for cross-130 

talk between different organisms, even between species from different kingdoms (Choi, Um, 131 

Cho & Lee, 2017; Zeng et al., 2019). While the sequence of some miRNA is specific to a few 132 

plants or animal lineages, others are conserved in animals and plants (Ha, Pang, Agarwal & 133 

Chen, 2008; van Herwijnen et al., 2018). Since foods contain sncRNA that could potentially 134 

target human genes, it has been speculated whether an inter-species genomic regulation by 135 

sncRNA could exist (Li, Xu & Li, 2018; Liang et al., 2012; Zempleni, Baier, Howard & Cui, 136 

2015; Zhang, Chen, Yin, Zhang & Zhang, 2019; Zhao, Cong & Lukiw, 2018) and have a 137 

specific role in disease pathogenesis (Perge, Nagy, Decmann, Igaz & Igaz, 2017). However, 138 

although sequence conservation of miRNA and target genes may suggest conservation of 139 

expression patterns and functions, several questions remain to be addressed: the stability and 140 
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bioavailability of sncRNA  as a function of the food matrix, the efficiency of their uptake in 141 

the gut system and the amount of xeno-microRNA needed for biological actions. Major 142 

concerns about the possibility that sncRNA could have significant biological effects in 143 

mammals have been raised (Dickinson et al., 2013; Snow, Hale, Isaacs, Baggish & Chan, 144 

2013; Witwer, McAlexander, Queen & Adams, 2013). On the other hand, some authors have 145 

described a significant bioavailability of both plants and animal-derived sncRNA (Baier, 146 

Nguyen, Xie, Wood & Zempleni, 2014; Benmoussa et al., 2020; Manca et al., 2018; Wu et 147 

al., 2019), suggesting that they might be absorbed in the intestine and transferred into the 148 

blood circulation (Liang et al., 2014; Liang et al., 2015; Yang, Farmer, Agyekum, Elbaz-149 

Younes & Hirschi, 2015; Yang, Farmer, Agyekum & Hirschi, 2015; Zhao et al., 2018). Izumi 150 

et al. (2015) showed that miRNA from milk might be taken up by  human intestinal cells 151 

(Liao, Du, Li & Lönnerdal, 2017) and macrophages (Izumi et al., 2015; Lässer et al., 2011).  152 

This suggested that certain types of food, beyond being a source of macro- or micro-nutrients, 153 

bioactive molecules, and energy, might also provide biologically active sncRNA. Although 154 

the possibility of systemic effects is still open (see paragraph 4 for more details), the exposure 155 

to exogenous sncRNA coming from food has been reported (Ledda, Ottaggio, Izzotti, Sukkar 156 

& Miele, 2020; Li et al., 2018; Sanchita, Trivedi, Asif & Trivedi, 2018; Vaucheret & 157 

Chupeau, 2012), and the possibility that they might exert significant biological effects in 158 

mammals needs further study (Asgari, 2017; Nguyen, 2020).  159 

Bacteria could also produce miRNA-like molecules that could modulate the host’s gene 160 

expression, as previously shown for sncRNA produced by viruses (Cardin & Borchert, 2017; 161 

Duval, Cossart & Lebreton, 2017; Kincaid & Sullivan, 2012; Shmaryahu, Carrasco & 162 

Valenzuela, 2014). However, only limited data is available on their ability to target human 163 

gene expression (Choi et al., 2017; Lee, 2019). On the other hand, bacteria manipulate the 164 

expression of various miRNA in the host to modulate cellular processes that favors their 165 
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survival and proliferation (Ahmed, Zheng & Liu, 2016; Duval et al., 2017). Moreover, it has 166 

been shown that fecal miRNA (including those deriving from food) can shape the gut 167 

microbiota, thus representing a potential future strategy for manipulating the human 168 

microbiome (Liu et al., 2016). 169 

 170 

3. sncRNA in milk 171 

Milk is one of the most important biological fluids, rich in macro- and micro-nutrients but 172 

also bioactive compounds, like antimicrobial molecules, growth factors, immune cells and 173 

antibodies. Moreover, milk is a rich source of all types of sncRNA (Martin, 2017; Testroet et 174 

al., 2018; Weber et al., 2010), which are stable with degradative conditions (Izumi et al., 175 

2012; Zempleni et al., 2016) and in vitro digestion (Benmoussa et al., 2016; Rani, Vashisht, 176 

et al., 2017). Their stability is favored by the presence in the emulsion of EV that protect 177 

sncRNA from enzymatic degradation and facilitates their uptake by endocytosis (Baier et al., 178 

2014; Pathan et al., 2019; Tomé-Carneiro et al., 2018; Zhou et al., 2012). Probably for this 179 

reason, milk is the biological fluid that contains the highest level of sncRNA relative to its 180 

volume, and these sncRNA are stable with acidic conditions, resistant to RNAse and to 181 

degradation with freeze-thaw cycles (Golan-Gerstl et al., 2017; Pieters et al., 2015; Rani, 182 

Yenuganti, Shandilya, Onteru & Singh, 2017; Weber et al., 2010).  183 

Despite numerous inter-species differences on sncRNA profile have been measured, analysis 184 

of miRNA in milk from different species showed that some microRNA are persistently 185 

abundant and overlap between human and other mammal’s milk. Benmoussa and Provost 186 

(2019) have provided a complete overview of the miRNA characterized in previous studies 187 

and identified the top 10 microRNA found in human, cow or goat milks. The existence of 188 

these recurrent “milk miRNA” suggests a conserved evolutionary process that leads to the 189 
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release of specific microRNA in milk, maybe because of potentially conserved functions in 190 

lactation and, possibly, for the newborn’s development and health (Kosaka, Izumi, Sekine & 191 

Ochiya, 2010; Stephen et al., 2020; van Herwijnen et al., 2018; Zempleni et al., 2016). It has 192 

also been speculated that milk-derived sncRNA may be involved in the “epigenetic priming” 193 

of the newborn (Perge et al., 2017). Since the digestive tract of infants is far less developed 194 

and has less harsh conditions (lower acidity and lower enzymatic activity), it allows immune 195 

cells and, other cells in milk, to survive and settle within the infant’s digestive tract wall (Le 196 

Huërou-Luron, Blat & Boudry, 2010; Mirza et al., 2019). Thus, it has been hypothesized that 197 

these specific conditions might led to the transfer of dietary microRNA through milk EV to 198 

infants (Izumi et al., 2012; Kosaka et al., 2010; Zhou et al., 2012), having a role in regulating 199 

their development. Carney et al. (2017) showed that the miRNA profile of breast milk from 200 

mothers of premature infants differs from that of mothers of term infants, suggesting that 201 

premature delivery might stimulate the secretion of a milk with a microRNA profile that may 202 

have adaptive functions for growth in premature infants (Carney et al., 2017). 203 

The discovery of sncRNA in milk has raised the question about what is the function of these 204 

regulatory elements in this biological fluid. Numerous miRNA released in milk originate 205 

from epithelial cells (mammary gland cells), but the identification of abundant immunity-206 

related microRNA suggested that they can also be released in milk from immune cells. The 207 

presence of miRNA in colostrum (Van Hese, Goossens, Vandaele & Opsomer, 2020) 208 

suggested a potential role of miRNA as important regulators of both immune- and 209 

development-related processes (Alsaweed, Lai, Hartmann, Geddes & Kakulas, 2016a; Carney 210 

et al., 2017; Kosaka et al., 2010; Q. Zhou et al., 2012). MiRNA can regulate B- and T-cell 211 

differentiation and affect interleukin production of macrophages, and their role in modulating 212 

inflammation has been documented (Rebane & Akdis, 2013). Bovine milk EV and associated 213 

miRNA have been shown to be bioavailable and to distribute among murine tissues, 214 
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accumulating in particular in the liver and, to a lesser extent, in the spleen of mice (Manca et 215 

al., 2018), supporting the possibility of systemic effects induced by exogenous sncRNA. 216 

Among milk miRNA, miR-148a is one of the best studied. Its sequence is highly conserved 217 

(it is identical between humans and cows), and it regulates DNMT1 and DNMT3 expression, 218 

thus affecting epigenetic homeostasis of DNA methylation.  MiR-148a has been shown to 219 

have a  role in the molecular mechanisms of oncogenesis (Li, Deng, Zeng & Peng, 2016).  220 

Both positive and negative associations with cancer have been proposed for miR-148a: some 221 

authors addressed it as a risk factor (Melnik & Schmitz, 2019), while others suggested that it 222 

might exert a protective effect against cancer in infants (Golan-Gerstl et al., 2017). MiR-148a 223 

may regulate food intake and adipogenesis (Melnik & Schmitz, 2017) and it could also affect 224 

the development of the nervous system (Li et al., 2016). Another miRNA highly expressed 225 

(particularly in cow’s milk) and having biologically relevant functions is miR-21-5p. This 226 

miRNA regulates cell growth and proliferation (Kumarswamy, Volkmann & Thum, 2011), 227 

and it has been defined as an oncomiR (Feng & Tsao, 2016). Another miRNA typical of 228 

cow’s milk and with  high homology to the human sequence is miR-30d. This miRNA targets 229 

the 3′-UTR of TP53 (an oncosuppressor gene) to down-regulate the tumor suppressor p53 230 

protein levels, thus bringing into question the potential beneficial effects of milk in the long-231 

term (Melnik, 2017; Melnik & Schmitz, 2019). These are just a few examples aimed to focus 232 

on the heterogeneous sncRNA profile in milk, which is rich in miRNA that can have both 233 

positive and negative effects on health (Svoronos, Engelman & Slack, 2016). MiRNA 234 

deregulation is typically found in cancer, with oncomiRs that are overexpressed, while tumor 235 

suppressive miRNA are underexpressed in cancer cells. If it is confirmed that milk miRNA 236 

can enter both normal and tumor cells and affect their biological functions (Golan-Gerstl et 237 

al., 2017), studies on sncRNA profiling might help to determine additional molecular 238 

mechanisms through which potentially harmful effects of milk consumption might be 239 
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mediated. Considering that the long term safety of milk consumption is still debated due to its 240 

potential implication on cancer promotion (Fraser et al., 2020; Jeyaraman et al., 2019; Lu et 241 

al., 2016). Therefore, investigating the role of exogenous sncRNA might give further insights 242 

(Pirim & Dogan, 2020). To better understand which pathways could be modulated by 243 

miRNA contained in milk, several authors (Benmoussa & Provost, 2019; Golan-Gerstl et al., 244 

2017) extensively reviewed the implications for human health of the most conserved miRNA 245 

in milk, considering also their bioavailability and bioaccessibility.  246 

While an extensive characterization of the milk miRNA profile has been defined, little is 247 

known about which endogenous siRNA and piRNA are present in milk. Considering that 248 

endogenous siRNA and piRNA not only modulate gene expression but also affect genome 249 

stability, more research is needed. This topic also warrants attention considering that EV have 250 

been explored as nanodevices for the development of new therapeutic applications, and milk 251 

EV may be viable natural nano-carriers for the delivery of miRNA- and siRNA-based drugs 252 

(Aqil et al., 2019; Arntz et al., 2015). Since the interest towards these technologies is 253 

increasing (Chakraborty, Sharma, Sharma, Doss & Lee, 2017; Galley & Besner, 2020; Gorji-254 

Bahri, Hashemi & Moghimi, 2018), their application in different therapies might also benefit 255 

from more research. 256 

 257 

4. Concerns on the effects of exogenous sncRNA exposure 258 

Important discrepancies on the biological effects of these exogenous sncRNA sources in 259 

humans have been identified in the scientific literature (Li et al., 2018; Zhang et al., 2019). A 260 

large part of the scientific community recommends caution in drawing definite conclusions 261 

because of potential fallacies. Issues include contamination, technical artifacts and 262 

confirmation bias (Fromm, Tosar, Lu, Halushka & Witwer, 2018; Heintz-Buschart et al., 263 
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2018; Kang et al., 2017; Witwer, 2018; Yang, Hirschi, et al., 2015). Different methods and 264 

their specific limitations have probably led to the discrepancies. The sensitivity of the 265 

methods and the proper use of internal and external controls may also affect the reliability of 266 

the results. The role of confounders in plasma miRNA analysis has also been raised by Wang 267 

et al. (2018). The existence of significant similarities between bovine and human miRNA 268 

sequences is believed to be responsible for false positive results in the detection of dietary 269 

miRNA in human blood. Indeed, the existence of systemic effects of sncRNA is still argued. 270 

Important issues in replicating the evidence to confirm the presence of high levels of 271 

circulating miRNA in blood after milk consumption have been raised (Auerbach, Vyas, Li, 272 

Halushka & Witwer, 2016). While some studies reported that exogenous miRNA are active 273 

in the recipient organisms (Zhang et al., 2012), and regulate gene expression at distant organ 274 

sites, subsequent studies have been unable to confirm an active role of diet-derived miRNA 275 

in mammalian circulation or tissues (Auerbach et al., 2016; Kirchner, Buschmann, Paul & 276 

Pfaffl, 2020; Title, Denzler & Stoffel, 2015; Title, Denzler & Stoffel, 2015; Witwer, 2014; 277 

Witwer & Zhang, 2017; Zempleni, Baier & Hirschi, 2015). The hypothesis that a weaker or 278 

absent gut barrier (i.e., at early stages of development or in gut disorders) could facilitate the 279 

passage of RNA molecules has been recently investigated in animal models. Kirchner et al. 280 

(2020) confirmed that a transfer of protein from maternal milk to the child’s circulation exists 281 

before gut closure, but they were not able to show an increased transfer of RNA molecules 282 

with the same conditions in calves. An increased transfer of RNA was not measured in the 283 

presence of increased gut permeability in mice (Yang, Elbaz-Younes, Primo, Murungi & 284 

Hirschi, 2018).  285 

The hypothesis of a systemic role of milk sncRNA in systemic circulation remains to be 286 

studied (Fritz et al., 2016; Wang et al., 2018). However, their presence in food and 287 

consequentially in the gut, should be considered for the potential local effects. Indeed, food 288 
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derived miRNA have been detected in feces and gastrointestinal mucosa (Link et al., 2019). 289 

Since miRNA play a major role in determining intestinal cell fate (Dalmasso et al., 2010), 290 

their uptake from colonocytes (Liao et al., 2017) and macrophages (Lässer et al., 2011) might 291 

exert significant effects on gut and intestinal immune systems that needs further 292 

investigations. For example, it has been shown that milk exosome and miRNA depletion 293 

exacerbates cecal inflammation in an animal model (Wu et al., 2019).  294 

A substantial portion of EV in milk seems to escape absorption and enter the large intestine, 295 

and given the previously described interplay between host and bacteria by sncRNA, it is 296 

likely that sncRNA contained in milk may also modulate the human microbiome. Indeed, 297 

plant-derived exosomal microRNA have been shown to modulate the microbiome (Teng et 298 

al., 2018), and alterations of the gut microbiota were measured after oral administration of 299 

bovine milk-derived EV in mice, whose intestinal immunity was enhanced by the treatment 300 

(Tong et al., 2020). The ability of miRNA to modulate the microbiome has been shown for 301 

miRNA contained in feces independently of their origin. Oral administration of synthetic 302 

miRNA affects specific bacteria in the gut (Liu et al., 2016). Similarly, plant-derived 303 

exosome-like nanoparticles that contain RNA were taken up by the gut microbiota, whose 304 

composition was altered (Huang, Pham, Davis, Yu & Wang, 2020; Teng et al., 2018; Zhou, 305 

Paz, Sadri, Fernando & Zempleni, 2019). It has also been shown that miRNA in human milk 306 

differed between mothers supplemented with probiotics instead of placebo (Simpson et al., 307 

2015). These results suggested that sncRNA contained in food may be used to manipulate the 308 

microbiome. 309 

The possibility of modulating the sncRNA profile contained in food (including milk) opens 310 

the way to interesting future prospectives for the development of functional foods that might 311 

be active because of their optimized sncRNA content.   312 
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 313 

5. Implications of milk sncRNA intake for human nutrition and future prospectives 314 

 315 

5.1 Modulating the sncRNA profile: From diet to food technology  316 

SncRNA expression pattern in milk is influenced by several factors, such as maternal 317 

nutrition and environmental exposures (Chen et al., 2017; Wang et al., 2016). The fat content 318 

of the maternal diet appears to have a major effect on miRNA’s expression in milk and in the 319 

neonate (Van Hese et al., 2020). Since plant miRNA have been detected in human breast milk 320 

(Lukasik, Brzozowska, Zielenkiewicz & Zielenkiewicz, 2017), maternal plant intake might 321 

impact breast milk’s sncRNA profile. Not only diet but also pathological conditions of the 322 

mother might modulate the sncRNA profile of their milk. For example, breast milk-derived 323 

EV from mothers with type 1 diabetes show aberrant levels of miRNA (Mirza et al., 2019). 324 

Since sncRNA of maternal milk might play a role in the development of the newborn’s 325 

immune system by shaping its microbiome (Le Doare, Holder, Bassett & Pannaraj, 2018), the 326 

modulation of sncRNA induced by diseases or dietary regimens during lactation should be 327 

taken into account. The immunological state of the mammary gland seems to affect miRNA 328 

expression as well. This is true in humans, where alterations of sncRNA in milk have been 329 

suggested as a biomarker of different pathologies (Ferrero et al., 2017; Kelleher et al., 2019; 330 

Rebane & Akdis, 2013), but also in cows diagnosed with subclinical mastitis (Duval et al., 331 

2017; Sun et al., 2015), that show alterations of their milk’s miRNA profile.  332 

Since the sncRNA profile in milk is complex, to achieve an optimized composition in terms 333 

of these regulatory elements is an ambitious goal. Despite the presence of several negative 334 

effects induced by some sncRNA, the complete removal of these molecules in milk might not 335 

be the best solution (Golan-Gerstl et al., 2017; Wu et al., 2019). Ideally, the selective 336 
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removal/enrichment of some sncRNA in milk might be the answer, but it still represents a 337 

future prospective (Gessner et al., 2019; Nguyen, 2020). Here the authors review the 338 

mechanisms that, currently or in the future, could be potentially applied to optimize sncRNA 339 

profile in milk (Figure 1). 340 

A strategy to modulate the sncRNA profile could be the application of some processes 341 

regularly used in food technology to guarantee the microbiological safety of milk.  Although 342 

a limited loss of sncRNA during storage has been shown (Howard et al., 2015; H Izumi et al., 343 

2012), raw milk and its fat derivatives are rich in miRNA (Melnik & Schmitz, 2017). This is 344 

likely due to the high stability of EV at low pH, after boiling and after multiple freeze-345 

thawing cycles (Pieters et al., 2015). Pasteurization (78°C) and homogenization of milk have 346 

a minor effect on the miRNA profile (Golan-Gerstl et al., 2017). This treatment does not 347 

affect the recovery of miR-148a, which has been detected at high level in pasteurized, 348 

homogenized, and skim milk fractions. On the contrary, boiling (100°C) and ultra-heat 349 

treatment (130°C) of milk significantly decrease the levels of milk miRNA. It has been 350 

shown that EV are significantly reduced in fermented milk (Yu, Zhao, Sun & Li, 2017). A 351 

reduction in miR-29b and miR-21 was measured after fermentation, suggesting that a general 352 

loss of sncRNA is likely to occur after this process. This evidence suggests that fermented 353 

milk products, such as yoghurt, might exert different miRNA-dependent effects on human 354 

health in comparison to pasteurized milk. Only one study investigated sncRNA in cheese (Oh 355 

et al., 2017), concluding that it was not possible to correlate sncRNA profile with microbial 356 

communities present in the product. Replication studies in different kinds of samples are 357 

warranted to clarify the role of sncRNA in cheese manufacturing. The majority of studies 358 

analyzed a few candidate miRNA after different technological treatments, but did not provide 359 

a complete sncRNA profiling; thus, further studies on a complete sncRNA profiling in 360 

different dairy products are warranted.   361 
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Different rearing conditions of lactating animals represent other potential factors that affect 362 

the milk’s sncRNA profile. A different physiological status of the dairy cattle can modulate 363 

the levels of miRNA secreted in milk. For example, the levels of lactogenic hormones (i.e., 364 

prolactin) affect cellular and extracellular miR-148a expression in bovine epithelial breast 365 

cells (Muroya et al., 2016). Increased miR-148a expression (which is associated with a 366 

decreased DNMT1’s expression) is considered an important hallmark of high performance 367 

dairy cows, that may secrete more miR-148a into their milk compared to regular cows. 368 

MiRNA profile is also altered by infections, such as mastitis induced by Staphylococcus 369 

aureus or Escherichia coli pathogens (Cai et al., 2018; W. Jin et al., 2014; Sun et al., 2015). 370 

Thus, miR-142-5p and miR-223 have been suggested as biomarkers for the early detection of 371 

bacterial infections in the mammary gland. Different miRNA profiles were detected in dairy 372 

cows fed with high- and low-quality forages (Wang et al., 2016). A modulation of miRNA 373 

profile was detected in cows exposed to dietary supplementation with 5% linseed or 374 

safflower oil, suggesting that miRNA implicated in lipid metabolism are differentially 375 

regulated (Li et al., 2015). A high-fat diet during lactation was able to alter milk’s miRNA 376 

profile in mice (Chen et al., 2017). The replacement of forage fiber with non-forage fiber 377 

sources in dairy cow’s diets changed the expression of milk’s miRNA (Quan et al., 2020). 378 

This evidence suggests that milk composition (including  sncRNA profile) is responsive to 379 

dietary manipulation and to animal rearing conditions, with direct implications for dairy 380 

production. Moreover, sncRNA profiling might represent, in the future, a tool to monitor the 381 

health and physiological status of dairy livestock. Finally, considering the effects of sncRNA 382 

on bacteria strains, different sncRNA profile might impact also fermentation and dairy 383 

production. 384 

 385 

5.2 SncRNA in children’s formulas 386 
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Although breastfeeding is highly recommended, it may not always be possible. Thus, infant 387 

formulas represent an industrially produced substitute for infant consumption that attempts to 388 

mimic the nutritional composition of breast milk as closely as possible (Martin, Ling & 389 

Blackburn, 2016). Most formulas are based on cow’s milk or soymilk and characterizing the 390 

levels of sncRNA expression in these products might help to improve the nutritional 391 

adequacy of these foods (Stephen et al., 2020). The assessment of miR-148a-3p, one of the 392 

most highly expressed miRNA in milk, showed significantly lower levels of this miRNA in 393 

infant formula compared to human milk (Chen et al., 2010; Golan-Gerstl et al., 2017). This 394 

preliminary data suggests that the total amount of sncRNA is depleted in infant formulas, that 395 

lack this archaic epigenetic regulatory signaling system. This might impact the early 396 

metabolic programming and the immune system development in the newborns who cannot 397 

benefit from the maternal lactation during early life. An extensive characterization of 398 

maternal milk could help to identify the most abundant sncRNA and their functions, with the 399 

future aim to optimize the profile of these regulatory molecules. However, this is an 400 

ambitious and complex challenge. SncRNA’ concentration in milk might change during 401 

lactation, like other nutrients, according to the infant’s needs (Carney et al., 2017; Lukasik et 402 

al., 2017). This implies that the sncRNA profiling should be performed in different periods of 403 

lactation and that supplementation should be consequentially time-dependent. Moreover, the 404 

addition of synthetic miRNA in formulas might not have the same effect in newborns as 405 

miRNA naturally present in milk. Indeed, transient transfection of chemically synthesized 406 

miRNA showed different behaviors than endogenous miRNA, suggesting that special caution 407 

must be taken (Jin et al., 2015). As suggested by Golan-Gerstl et al (2017), miRNA could be 408 

isolated from animal sources, since about 90% of miRNA found in human milk are also 409 

present in cow’s and goat’s milk; however, a wider characterization of the effects of sncRNA 410 
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in different periods of human life is required before that companies could considered the 411 

possibility to use them as a supplement (Nguyen, 2020).  412 

 413 

5.3  Milk sncRNA as biomarkers  414 

Molecular targets that could be used to exactly measure the amount of consumed food are 415 

wanted and metabolomics is a proliferative research field. The usage of sncRNA as  416 

biomarkers of food intake has been suggested, but some concerns have been raised (Witwer 417 

& Zhang, 2017). Firstly, a useful marker of intake reflects both the identity and the dose of 418 

the source material; conversely, the sequence conservation of miRNA is incompatible with 419 

discrimination of specific food sources. Moreover, there are still some uncertainties about the 420 

linear correlation between miRNA abundance in the source material and their dietary 421 

absorption (Yang, Hirschi, et al., 2015). These concerns actually originated from studies 422 

investigating plants’ miRNA, but the same doubts can be extended to animal derived 423 

sncRNA. Considering that low level of miRNA are present in body fluids, a thorough 424 

sequencing, with consequential high costs, would be necessary to accomplish this goal with 425 

confidence. For all these reasons, additional studies and technical implementations are 426 

needed to define a practical usage of sncRNA as biomarkers of food intake. Since it has been 427 

shown that sncRNA profile varies depending on environmental stimuli and infections, these 428 

sncRNA might help to identify unwanted environmental exposures, status of illness in cows 429 

(Ma, Tong, Ibeagha-Awemu & Zhao, 2019) or diseases in women (Kelleher et al., 2019). 430 

This aspect represents a stimulating future prospective for this research field both in human 431 

and veterinary medicine.  432 

 433 

5.4 SncRNA profiles in plant-based beverages used as milk substitutes 434 
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A growing number of people are eliminating milk from their diet because of several side 435 

effects, first among others, lactose intolerance. The usage of “plant-based milks” such as 436 

beverages based on soy, rice, oat and coconut is spreading. Since the presence of plant-437 

derived miRNA in human breast milk has been shown, the different sncRNA profiles 438 

between animal-derived and plant-based milk might be a further aspect to be considered in 439 

human nutrition. Treatment with plant’s sncRNA has been demonstrated to systemically 440 

reduce inflammation and prevent symptoms of multiple sclerosis in an experimental 441 

autoimmune encephalomyelitis (EAE) mouse model (Cavalieri et al., 2016). This suggests 442 

that exogenous sncRNA might significantly contribute to health promotion. Due to their 443 

presence in breast milk, plant-derived molecules might have an impact not only in humans 444 

that are directly fed with them but also in their progeny (Lukasik et al., 2017). Since there are 445 

no data on the stability of sncRNA in plant-based milks up to date, further investigations are 446 

necessary. Finally, since both bovine and plant infant formulae are produced (Tzifi, 447 

Grammeniatis & Papadopoulos, 2014), research on milk’s sncRNA might find further 448 

applications in child nutrition, where sncRNA are likely to contribute to infant protection and 449 

development (Alsaweed, Lai, Hartmann, Geddes & Kakulas, 2016b). Measuring the effects 450 

of milk and plant based formulas (also in relation to their sncRNA content) on the gut 451 

microflora could be of particular interest. 452 

 453 

6. Conclusions 454 

The characterization of sncRNA in food is an emerging research field of nutrigenomics. 455 

While a certain body of evidence is available for miRNA, few investigations have been done 456 

on siRNA or piRNA in food. Since not only gene expression regulation but also genomic 457 

stability is affected by sncRNA, further studies able to provide a complete profile of sncRNA 458 

in food are necessary. Since sncRNA are resistant to digestive processes, exogenous sncRNA 459 
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contained in food could be absorbed by the human gut. While systemic effects are still 460 

debated, it appears likely that they can affect the gut and the resident’s microbiome. These 461 

bioactive molecules could contribute to the impact of food on gene expression regulation and 462 

their impact on human health. These gene regulation pathways represent a bridge between 463 

different animal species, and between the animal and the plant kingdoms. However, a 464 

scientific consensus on this topic is still missing. Publication bias (e.g., avoiding publishing 465 

negative results), might contribute to these uncertainties. Clarifying the biological effects of 466 

sncRNA contained in milk could provide a complete overview on the effects of milk 467 

consumption in human diet, since milk is a good source of nutrients but the full safety 468 

(concerning complex environmentally-based diseases) of its intake in the long term is still 469 

discussed (Fraser et al., 2020; Jeyaraman et al., 2019; Lu et al., 2016). For this reason, 470 

additional studies on this topic are warranted. These would help to clarify the whole picture 471 

and to identify practical applications of this research field, that range from food technology, 472 

to animal rearing or infant formulas production. These applications are directed towards an 473 

optimized molecular nutrition, promoting the role of molecular biology (and nutrigenomics in 474 

particular) beyond basic research.  475 
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Figure legends 972 

Figure 1. Exogenous sncRNA can be conveyed by milk and exert inter-species effects in 973 

humans. SncRNA are contained in milk produced by dairy cattle, whose rearing conditions 974 

can modulate the final profile. Different food technologies can modulate the presence of 975 

sncRNA in milk that is used in human nutrition. SncRNA are also present in maternal milk, 976 

while their content seems to be depleted in infant formulas. The exposure to different profiles 977 

of exogenous sncRNA could contribute to the heterogeneous nutrigenomic effects exerted by 978 

milk and derivatives, and consequentially impact human health. Current knowledge of 979 

possible nutrigenomic effects induced by exogenous sncRNA is represented in the bottom 980 

right of the figure (+ likely to occur; - unlikely to occur/limited evidence).  981 
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Figures 996 

Figure 1. 997 
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