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ABSTRACT 

The paper presents a review of the analytical and numerical procedures developed by the authors for the dynamic analysis of soil-pile 

foundation systems subjected to the propagation of seismic waves in the soil. Inclined and vertical single piles and groups constituted 

by piles with a generic inclination are addressed. For the former, an analytical approach based on the beam on dynamic winkler 

foundation approach is adopted; the pile is modelled as a Euler-Bernoulli beam and the soil-pile interaction is captured by defining soil 

impedances relevant to the harmonic vibrations of rigid disks available in the literature. The coupled flexural and axial behaviour of 

the pile is solved analytically exploiting exponential matrices. The pile group dynamic problem is similarly formulated but the solution 

is achieved exploiting the finite element approach. Besides numerical models, simplified approaches based on static equivalent methods 

and simplified formulas are also addressed to estimate the maximum kinematic stress resultants on vertical piles subjected to lateral 

seismic excitations. The reliability of the presented tools in capturing the dynamic stiffness and the overall kinematic response of pile 

foundations is shown by comparing results with those available in the literature or achieved through refined finite element models. 

From an engineering point of view, the proposed approaches assure a sufficient accuracy and may substitute refined computational 

demanding numerical models. 

 

1 INTRODUCTION 

Damage sustained during past earthquakes has highlighted that the seismic behavior of structures and infrastructures is highly 

influenced by the response of the soil-foundation system. For this reason, modern seismic codes have started, at least in particular 

cases, to address the design and the verification of the structure, its foundation and the local deposit as a whole system. The substructure 

method plays a significant role for performing soil-structure interaction analysis allowing the analysis of the soil-foundation and 

superstructure subsystems separately and a more easily identification of their dynamic behaviours through the use of dedicated 

software. In the framework of the substructure method, the dynamic response of soil-foundation systems in the case of deep foundations 

can be studied with different approaches: i) elastic continuum methods, in which the soil is considered as an elastic medium [e.g. 1-3]; 

ii) Winkler-type (or p-y curves) methods, which, in their more refined versions, can also account for nonlinear soil behaviour in the 

vicinity of the pile shaft [e.g. 4-8]; iii) finite and boundary elements, and finite difference methods in both frequency domain [e.g. 9-

12] or time domain to account for soil non linearity [e.g. 13-15]. In addition, when soil-structure interaction analyses are not required 

and only kinematic interaction effects on piles have to be computed, simplified approaches available in the literature can be used [e.g. 

16-21]. 

The goal of this paper is to present a general overview of the analytical and numerical procedures developed by the authors for the 

dynamic analysis of soil-pile foundation systems subjected to the propagation of seismic waves in the soil. Both single piles and pile 

groups with general layouts (including also inclined piles) embedded in homogeneous as well as in inhomogeneous soil profiles are 

addressed. In the first section, an analytical approach based on the beam on dynamic Winkler foundation approach for the dynamic 

analysis of inclined and vertical single piles is presented; the pile is modelled as a Euler-Bernoulli beam and the soil-pile interaction is 

captured starting from local soil-pile impedances available in the literature. The coupled flexural and axial behaviour of the pile is 

solved analytically exploiting exponential matrices. In the second section, the dynamics of pile groups subjected to the propagation of 

seismic waves is formulated and the solution achieved through the finite element approach. Besides numerical models, simplified 

approaches based on static equivalent methods and simplified formulas are also presented in both sections (i.e. for single piles and pile 

groups) to estimate the maximum kinematic effects on piles. The procedures presented herein may be used in practice or in research to 

obtain realistic estimation of the dynamic impedances, the Foundation Input Motion (FIM) and stress resultants along piles. 

2 SINGLE PILES 

2.1 Analytical approach 

In this section an analytical approach for the kinematic interaction analysis of inclined single piles, based on the Beam on Dynamic 

Winkler Foundation approach is addressed, and an analytical solution is derived. The pile is modelled as a Euler-Bernoulli beam having 

a generic inclination and the soil-pile interaction is captured by defining soil impedances according to expressions available in the 

literature for viscoelastic layers undergoing harmonic vibrations of a rigid disk. The coupled flexural and axial behaviour of the pile is 

described by a system of partial differential equations, with the relevant boundary conditions, that is solved analytically exploiting 

exponential matrices.  

The dynamic problem of the single pile of diameter d and length L embedded in a homogenous soil deposit and subjected to the free-

field seismic displacements is formulated in the frequency domain by assuming a linear behaviour for the pile and soil (Figure 1a). A 

Euler-Bernoulli model is assumed for the pile that is constituted by a linear viscoelastic material, characterized by Young’s modulus 

Ep and material damping p, considered according to the correspondence principle [22]. During the motion, the pile interacts with the 

surrounding soil without developing gaps and resultants of the soil reactions r are assumed to be constituted by line forces distributed 

along the pile axis (Figure 1b); by considering the soil stratum constituted by infinite horizontal independent layers with linear 

viscoelastic behaviour, the compatibility condition between the pile and soil displacements, due to both the free-field motion and the 

soil-pile interaction forces (Figure 1c), make it possible to express forces r as 
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Figure 1. (a): Pile section in the homogeneous stratum; (b) pile section subjected to interaction forces and (c) soil stratum subjected to 

propagating seismic waves and interaction forces. 

 

𝐫(ω ; 𝑧) = 𝓚(ω) {[
𝐮𝑓𝑓,ℎ(𝜔 ; 𝑧)

𝑢𝑓𝑓,𝑧(𝜔 ; 𝑧)
] − [

𝐮ℎ(ω ; 𝑧)

𝑢𝑧(ω ; 𝑧)
]}  (1) 

where  is the circular frequency, uff,h and uff,z are the grouped horizontal and vertical components, respectively, of the free-field motion 

and 𝓚 is the 3x3 impedance matrix of the unbounded soil layers. Furthermore, uh and uz are the grouped horizontal and vertical 

components of the pile axis displacements at depth z, expressed with respect to a global reference system (Figure 1a). 

Matrix 𝓚 can be populated considering results of studies by Dobry et al. [23], Makris and Gazetas [24] and Gazetas and Dobry [25]; 

its components represent forces necessary to induce unitary harmonic vibrations of a rigid disk at depth z. The equilibrium condition 

of the pile may be expressed by the Lagrange-D’Alembert principle that, suitably integrated by parts, furnishes the following local 

balance conditions, expressed with respect to the pile local reference system 
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with the relevant boundary conditions 
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In Equations (2) and (3), J is the inertia matrix and A is the area of the pile cross section, respectively, while Ep
*=Ep(1+2ip) is the 

complex elastic modulus of the pile material [22]; ut and u are the grouped horizontal and vertical pile displacement components 

expressed with respect to the pile local reference system whose longitudinal axis  has direction cosine cz (Figure 1a). Furthermore, 

∐ ∎𝑙,𝑚
𝑖,𝑗  is an operator indicating segments of a generic matrix constituted by the subset of rows comprised between i and j and the 

subset of columns comprised between l and m, and R is the rotation matrix which allows that allows expressing the local displacements 

starting from the relevant global quantities. Finally, in Equation (3), Ft and F are the transverse and longitudinal forces, respectively, 

while Mt is the vector collecting transverse moments applied at the pile ends ( = 0 and  = L). 

Equations (2) is a system of ordinary differential equations with constant coefficients describing the coupled flexural-axial dynamic 

behaviour of the inclined pile. Unknowns are the complex valued function ut() and u() fulfilling Equations (3) that encompass both 

kinematic and static boundary conditions. Solution of system (2) is provided in Appendix I for the one-dimensional propagation of 

shear and pressure waves in the vertical direction. Displacements at the pile head represents the motion at the foundation level (i.e. the 

FIM) while the soil-pile complex impedance matrix 𝕴 can be obtained through the condensation of the soil-pile stiffness matrix on the 

pile head displacements. The latter, which represents forces necessary to induce unit-amplitude harmonic displacements at the pile 

head, is classically used in the framework of the sub-structure approach to define compliant restraints of superstructures in the inertial 

interaction analysis. 

Differently from classical numerical methods (e.g. finite element method and finite difference method), this approach allows expressing 

the problem solution analytically; in the case of homogeneous soil deposit the discretization of the pile axis is not needed to achieve 

an accurate numerical solution, although some numerical issues relevant to the computation of the exponential matrix may require the 

pile axis subdivision into segments of limited length [8]. In the case of layered soil deposits, the problem can be solved exploiting 

solution provided in Appendix I for the homogenous deposit; assuming uniform soil properties within each layer, a different solving 

system is assembled for each pile segment belonging to the homogenous layer and suitable boundary conditions are provided at the 

pile head, at the pile base and at the interface between layers, where the pile continuity (with both reference to kinematic and static 

issues) has to be imposed. A similar approach can be adopted for the computation of impedance functions. Alternatively, the finite 

element method can be exploited: the stiffness matrix is assembled considering contributions of the pile segments (provided in 

Appendix I) and external forces are obtained assembling those resulting at the ends of each segment, obtained from the system solution 

assuming homogeneous boundary conditions. With this approach, impedances of the soil-pile system descend directly from the 

condensation of the dynamic stiffness matrix on the pile head degree of freedom [8]. 

In the sequel few applications are presented to demonstrate the model potential in capturing the dynamic response of inclined piles in 

terms of impedance functions, kinematic response factors and pile stress resultants, considering results obtained from a Boundary 

Element (BE) formulation available in literature. Further details and validation analyses can be found in [5]. In detail, pile 



configurations adopted by Padron et al. [26] and Medina et al. [27] are considered (Figure 2) for what concern impedance functions 

and kinematic response factors. Figure 2 shows a comparison between the impedance functions obtained with the proposed model and 

those available in [26]; non-dimensional components of the impedance matrix (i.e. the translational ℑ𝑥, vertical ℑ𝑧, rotational ℑφ𝑦 and 

coupled roto-translational ℑx−φ𝑦 components) are plotted in the same frames as a function of the non-dimensional frequency 𝑎0 =

ω𝑑 𝑉𝑠⁄  , being Vs the shear wave velocity of the soil. Furthermore, d is the pile diameter while Ep and Es are the pile and soil Young’s 

moduli, respectively. Concerning horizontal impedance in the x direction, it can be observed that real parts are reproduced well for 

both stiff (Ep/Es = 100) and soft (Ep/Es = 1000) soils while some inaccuracies characterise the imaginary parts; the latter are generally 

overestimated in the whole frequency range. Vertical impedances are well captured with only some slightly differences for the damping 

coefficients (10%). Rotational impedance around axis y (orthogonal to the plane of inclination) are well reproduced for vertical or 

slightly inclined piles while errors up to 25% appears for  = 30° and soft soil conditions. Finally, the roto-translational behaviour is 

affected by some slightly inaccuracies. As for displacements, the kinematic response of the soil-foundation systems subjected to 

vertically steady propagating shear waves in planes xz and yz (Figure 2), scaled to have unit displacement amplitude at the ground 

surface, is analysed.  
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Figure 2.  Case studies and comparisons of impedances and kinematic response factors with results from literature 
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Figure 3. Envelopes of stress resultants: comparisons with results from literature 



Figure 2 shows the comparison between the non-dimensional kinematic response factors (i.e. the translational 𝐼𝑥, 𝐼𝑦, 𝐼𝑧, and rotational 

𝐼φ𝑦, 𝐼φ𝑥 components) [28] (curves with thick lines) evaluated and results available in [27] (curves with thin lines). The overall trend 

of results reveals that the response obtained with the presented model is overestimated with respect to results of a BE approach; in 

particular, at high non-dimensional frequency the response is sensibly over-predicted in the case of stiff soils (Ep/Es = 100) with errors 

up to 100%. 

This is probably due to the adopted local soil-pile impedances, which are derived starting from the plain-strain condition and are not 

able to account for the effects induced by the propagation of waves in the upper soil sections, characterised by a minor confinement. 

Concerning kinematic stress resultants, results of some applications available in [26] are considered as benchmarks. Applications refer 

to 12 m long piles with different inclination ( = 0°, 10°, 20°, 30°) embedded in a homogeneous soil deposit characterized by shear 

wave velocities Vs of 250 and 110 m/s (Ep/Es = 100, 500). The pile Young’s modulus and density are Ep = 30000 MPa and p = 2.5 t/m3, 

respectively. The seismic input at the ground surface is constituted by an artificial accelerogram with a peak ground acceleration 

ag = 0.375g.  

Figure 3 shows the envelopes of absolute values of shear forces and bending moments and the envelopes of axial forces arising along 

the pile because of the kinematic interaction. Benchmark shear forces are overall well reproduced, independently on the pile rake angle. 

However, with reference to Ep/Es = 100 significant differences are evident in proximity of the pile head and nearby the pile base. As 

for bending moments, benchmarks are well reproduced expect for the local inconsistencies in proximity of the pile head where bending 

moments resulting from the BE approach tend to reduce, probably as a consequence of the minor degree of confinement exerted by the 

superficial soil. Finally, envelopes of maximum and minimum axial forces along the pile obtained from the applications show 

discrepancies of about 25÷30% with respect to benchmarks for both soil conditions (Ep/Es = 100, 500), mainly concentrated in the 

lower half-length of the pile. Overall, the presented model provides a reliable prediction of kinematic stress resultants with only some 

minor inaccuracies at the pile head, where usually inertial effects, dominating the pile response, are considered for the pile design. 

2.2 Simplified pseudo-static approach 

A simplified procedure for the evaluation of stress resultants in single piles subjected to earthquake soil displacements is presented in 

this section. The procedure allows obtaining not only the peak bending moment at the interface between soil layers with impedance 

contrast but also the complete distribution of the stress resultants along the pile. The evaluation of the effects induced in piles by the 

propagation of seismic waves in the soil is studied by means of a static equivalent procedure that can be easily implemented in 

commercial finite element computer codes for structural analysis or simple spreadsheets. A single pile embedded in a layered soil is 

considered. Under the simplifying assumption that the motion of the soil deposit due to the seismic excitation is not influenced by the 

presence of the foundation, the pile stress resultants due to kinematic interaction are evaluated by assuming the pile as an elastic beam 

resting on a Winkler foundation subjected to the earthquake soil displacements evaluated by means of a dynamic response spectrum 

analysis of the soil deposit. 

The free-field displacement profile developing in a generic soil deposit constituted by n homogeneous horizontal layers of thickness hj 

because of the seismic motion applied at the underlying rigid bedrock (Figure 4) can be evaluated considering the dynamics of a shear 

deformable column, assuming the soil to behave linearly and considering constant elastic modulus and density within each layer. By 

assuming a reference system frame {0; zj} for each layer (Figure 4) the equation of motion for the column is given by 

 

ρ𝑠,𝑗𝑢̈𝑠(z𝑗 , 𝑡) − 𝐺𝑠,𝑗𝑢𝑠
′′(z𝑗 , 𝑡) = −ρ𝑠,𝑗𝑢̈𝑏(𝑡)     for  𝑗 = 1, … 𝑛 (4) 

 

with the relevant boundary and continuity conditions 

 

𝑢𝑠
′ (z1, 𝑡) = 0                                      for  𝑧1 =0

𝑢𝑠(z𝑗 , 𝑡) = 𝑢𝑠(z𝑗+1, 𝑡)                     for 𝑗 = 1, … 𝑛 − 1; 𝑧𝑗 = ℎ𝑗; 𝑧𝑗+1 = 0

𝐺𝑠,𝑗𝑢𝑠
′ (z𝑗 , 𝑡) = 𝐺𝑗+1𝑢𝑠

′ (z𝑗+1, 𝑡)     for 𝑗 = 1, … 𝑛 − 1; 𝑧𝑗 = ℎ𝑗; 𝑧𝑗+1 = 0

𝑢𝑠(z𝑛, 𝑡) = 0                                     for 𝑧𝑛 = ℎ𝑛 

  (5) 

 

where Gs,j and s,j are the elastic modulus and density of the j-th soil layer, respectively, us(zj, t) denotes the horizontal relative soil 

displacement while ub(t) is the soil displacement at the bedrock level. By solving the associated eigenvalue problem, the soil 

displacement may be expressed by a linear combination of the r modes as 

 

𝑢𝑠(z𝑗 , 𝑡) = ∑ 𝑈𝑟(z𝑗)𝑞𝑟(𝑡)∞
𝑟=1      for  𝑗 = 1, … 𝑛 (6) 

 

Substituting Equation (6) into Equation (4), multiplying by Um (i.e. the contribution of the m-th mode), integrating over the length of 

the soil column and considering the orthogonality properties of the modes, yields 
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Figure 4. Horizontally layered soil profile overlying a rigid formation and pile subjected to the free-field soil displacements 



𝑞̈𝑚(𝑡) + ω𝑚
2 𝑞𝑚(𝑡) = −Γ𝑚𝑢̈𝑏(𝑡) (7) 

 

that, for classically damped system, transforms into 

 

𝑞̈𝑚(𝑡) + 2ξ𝑚ω𝑚𝑞̇𝑚(𝑡) + ω𝑚
2 𝑞𝑚(𝑡) = −Γ𝑚𝑢̈𝑏(𝑡) (8) 

 

In Equations (7) and (8), m and m are the natural circular frequency and the modal participation factor of the m-th mode of vibration, 

respectively, while m is the relevant damping ratio. The latter represents the damping of the soil that is generally dependent on the 

strain level to which the ground is subjected. A constant value for the modal damping ratio for the m-th mode of the deposit should be 

determined to represent the material hysteretic damping of the whole system; thus, if energy dissipation occurs differently in each layer 

a weighted value of the damping ratio may be determined by empirical approaches [29]. The motion of the continuous deposit may be 

studied by considering an infinite number of Single Degree of Freedom (SDF) systems each one governed by Equation (8), which 

foresees the following solution 

 

𝑞𝑚(𝑡) = Γ𝑚𝐷𝑚(𝑡) (9) 

 

where Dm(t) is the response of the m-th SDF system. The peak soil displacement for the m-th vibration mode can be directly computed 

through the earthquake response spectrum by means of the expression 

 

𝑢𝑓𝑓,𝑚(𝑧𝑗) = Γ𝑚
𝑆𝑎(ω𝑚;ξ𝑚)

ω𝑚
2 𝑈𝑚(𝑧𝑗) (10) 

 

where uff,m(z) is the maximum free-field displacement and Sa(m, m) is the ordinate of the earthquake pseudo-acceleration response 

spectrum associated to the modal damping ratio m and corresponding to the vibration frequency m. Furthermore, Um is the m-th 

vibration mode. The procedure needs the solution of the eigenvalue problem associated to Equation (4), which can be easily solved 

separating variables z and t for the definition of the horizontal displacement us(zj, t) as follows: 

 

𝑢𝑠(𝑧𝑗; 𝑡) =𝑈(𝑧𝑗)𝑒𝑖ω𝑡 (11) 

 
where U(zj) is the modal displacement function and  is the circular natural frequency. The general solution of the problem assumes 

the form 

 

𝑈(𝑧𝑗) = 𝐴𝑗𝑐𝑜𝑠 (
ω

𝑉𝑠,𝑗
𝑧𝑗) +𝐵𝑗𝑠𝑖𝑛 (

ω

𝑉𝑠,𝑗
𝑧𝑗) (12) 

 
where Vsj is the shear wave velocity of the j-th soil layer and Aj and Bj are the integration constants depending on the conditions at the 

boundaries of each layer. Considering boundary conditions (5), a system of 2n homogeneous equations in the constants Aj and Bj can 

be obtained and natural frequencies of the system can finally be computed imposing determinant of the coefficient matrix of above 

system equal to zero. 

The pile, which is assumed to be a Euler-Bernoulli beam with constant flexural rigidity Ep Jp resting on a Winkler-type medium 

embedded into p soil layers (1 ≤ p ≤ n), is subjected to earthquake soil displacements (10) (Figure 4). The equilibrium condition of a 

generic pile element subjected to the soil displacement profile associated to the contribution of the m-th mode of vibration may be 

written in the form 

 

𝐸𝑝𝐽𝑝𝑢𝑚
′′′′(𝑧𝑗) + 𝑘𝑗[𝑢𝑚(𝑧𝑗) − 𝑢𝑓𝑓,𝑚(𝑧𝑗)] = 0 (13) 

 

where um is the pile displacement and kj is the Winkler coefficient of the j-th layer that can be derived from the literature (e.g. [30]). 

Solution of Equation (13) assumes the form 

 

𝑢𝑚(𝑧𝑗) = 𝑒−α𝑗z𝑗(𝐶1,𝑗𝑐𝑜𝑠α𝑗z𝑗 + 𝐶2,𝑗𝑠𝑖𝑛α𝑗z𝑗) + 𝑒α𝑗z𝑗(𝐶3,𝑗𝑐𝑜𝑠α𝑗z𝑗 + 𝐶4,𝑗𝑠𝑖𝑛α𝑗z𝑗) +
4𝑆𝑚α𝑗

4

β𝑗
4+4α𝑗

4 (𝐴𝑗𝑐𝑜𝑠β𝑗z𝑗 + 𝐵𝑗𝑠𝑖𝑛β𝑗z𝑗) (14) 

where 

 

α𝑗
4 = 𝑘𝑗 4𝐸𝑝𝐽𝑝⁄

β𝑗 = ω𝑚 𝑉𝑠,𝑗⁄

𝑆𝑚 = Γ𝑚
𝑆𝑎(ω𝑚;ξ𝑚)

ω𝑚
2

 (15) 

 

By substituting boundary and continuity conditions at the pile ends and at the interface between the soil layers, a system of 4p 

homogeneous equations in the constants C1,j, C2,j, C3,j, C4,j may be obtained. The solution of the system allows calculating the 

displacements of the pile sections and consequently the stress resultants at each depth of interest for each mode of the free-field motion. 

If the pile is embedded into the bedrock, supports of springs of the pile sections below the bedrock are subjected to a null prescribed 

motion. Since the response to earthquake is primarily due to the lower modes of vibration only the first few natural frequencies and 

modal shapes must be evaluated to compute the kinematic response with a good level of precision. When higher modes have to be 

considered the effects need to be combined with the modal Complete Quadratic Combination (CQC); details can be found in [20]. 



An application is presented below comparing results of the above simplified approach with those obtained by a dynamic soil-pile 

kinematic interaction analysis. Single piles of two diameters embedded into the three-layered soil profile reported in Figure 5a are 

considered. The model proposed by Dezi et al. [11] is used for the evaluation of the kinematic interaction of the selected case studies 

considering the soil-pile interaction and the radiation damping. The concrete piles have Young modulus Ep = 3107 kPa and density 

p = 2.5 Mg/m³. Piles are 24 m long and have a circular cross section of diameter d of 600 and 800 mm. A constant soil Poisson’s ratio 

s = 0.4 and a constant material hysteretic damping ξs = 10%, compatible with the strain level in the soil, are considered. The bedrock 

is characterized by a shear wave velocity Vsb = 800 m/s and a density sb = 2.5 Mg/m³. The seismic action is defined at the bedrock 

level and consists of an artificial accelerogram (Figure 5a). The first three modes have been considered for an overall effective modal 

mass of 86% of the total one. Contributions of each mode to the pile response are independently evaluated and then combined with the 

CQC. 

Figure 5b shows the soil displacement profile relevant to the first three vibration modes of the soil deposit (Equation (10)) while Figure 

5c depicts the relevant deformed shapes of piles (Equation (14)). Figure 6 shows comparisons between results obtained with the 

proposed simplified method and that resulting from the dynamic analyses. The effects induced by the contribution of only the first 

mode and the modal CQC of the effects produced by the first two and three modes are presented. As expected, by increasing the number 

of modes contributing to the response stress resultants obtained from the dynamic analyses are reproduced closer. Further details of the 

procedure efficiency can be found in [11]. 

2.3 Empirical formulas for estimating kinematic bending moments in vertical single piles 

A comprehensive parametric study has been carried out to analyze the effects of kinematic interactions in vertical single piles having 

restrained rotational degree of freedom at the head. The objective of this study is to examine the influence of the main parameters 

governing the dynamic response of piles (e.g the pile diameter, the properties of the layered soil and the bedrock location), and to 

determine simplified formulas for the estimation of pile kinematic bending moments.  

The analysis scenario covers a wide range of possible homogeneous deposits overlying or not a stiff bedrock, to also investigate effects 

of the layer interface on pile bending moments for highly contrasting soil properties and various pile diameters. Layouts of the 

investigated piles are presented in Figure 7a, b while Figure 7c reports the adopted parameters. For the homogenous soil deposit, a pile 

length of 24 m is considered while for soil layers overlying the bedrock, the pile length is assumed to be 48 m in order to assure a 

suitable embedment of the pile into the bedrock for the 42 m thick soil layer; preliminary analyses are performed to assure that the pile 

length does not affect the maximum kinematic bending moments attained at the layer-bedrock interface in the case of smaller 

thicknesses of the superficial layer. Piles are considered to have a linear elastic behaviour, with a Young’s modulus Ep = 30000 N/mm² 

and a mass density ρp = 2.5 Mg/m³.  

Soil-pile interaction effects are evaluated by means of an analysis procedure consisting of two steps: firstly, the free-field motion is 

obtained in absence of piles; secondly, the free-field motion is applied to the soil-pile system to perform the kinematic soil-pile 

interaction analysis.  
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Figure 5. (a) Accelerogram and response spectrum at the bedrock level, (b) free-field maximum displacement profile, (c) pile 

displacements when subjected to the free-field motion. 
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Figure 6. Comparisons of bending moments and shear forces from the simplified method and the dynamic analysis 



In the first step the seismic input motion along the pile is obtained by means of a 1D local site response analysis where the seismic 

action at the outcropping rock is linearly deconvoluted at the bedrock level and then propagated through the soil profile [31]. In the 

second step the kinematic soil-pile interaction problem is investigated adopting through the numerical procedures developed by the 

authors [8, 11]. The seismic action at the outcropping bedrock is represented by an artificial accelerogram matching the EC8 Type 1 

elastic response spectrum for ground type A [32] and Peak Ground Acceleration (PGA) 0.25g. Figure 8 shows the response spectra 

obtained from the deconvolution analyses for all the investigated soil profiles; each graph refers to a specific soil type and collects 

results obtained for different thickness h of the deformable layer. Spectral de-amplifications are overall evident in correspondence of 

the fundamental periods of the soil deposits: soil profiles with Vs = 400 m/s are particularly responsive to the deconvolution process in 

the range 0÷0.5 s where the periods of the soil deposits fall and where the spectrum of the seismic input action achieves the maximum 

values. 

Figure 9 shows an example of the results obtained from the applications in terms of kinematic pile bending moments. Different curves 

in each frame refer to soil-foundation layouts (for end-bearing piles) characterized by different thicknesses of the superficial layer. For 

the sake of simplicity only results relevant to pile diameters d = 0.4 m and d = 1.2 m are reported, while the complete set of data are 

addressed in [19]. It can be observed that bending moments present peaks in correspondence of the deposit-bedrock interface and 

overall peaks values tend to increase by increasing the bedrock depth. Furthermore, in the case of soft soils, bending moments at the 

pile head tend to increase with respect to those achieved within the pile shaft.  

Starting from data from the complete set of analyses, empirical formulas to predict the kinematic bending moments at the pile head, as 

well as at the deposit-bedrock interface, have been defined and calibrated. To this purpose, results are normalized with respect to the 

values obtained for the stiffer soil (Vs = 400 m/s), hereafter called M400. With reference to the pile head, analyses of data revealed that 

(i) the M400 values are only slightly dependent on h whereas they are very sensitive to the pile diameter; (ii) for each deposit depth h, 

trends of normalised bending moments with respect to Vs are almost superimposed for the different pile diameters and are characterised 

by an exponential law; (iii) only for soft soils (Vs = 100-200 m/s) and low-depth deposits (h = 6 m) a dependency on the pile diameter 

is evident. 
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Figure 8. Response spectra at the bedrock level for all the investigated soil profiles 
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Figure 9. Piles kinematic bending moments 



With reference to bending moment at the deposit-bedrock interface, analysis of data reveals that values of M400 are more sensitive to 

the deposit thickness whereas the above considerations hold for the normalised bending moments. 

These remarks suggest that an empirical expression of the bending moments, both at the head and at deposit-bedrock interface, may 

have the following form: 

 

𝑀(𝑉𝑠; 𝑑; ℎ; PGA) ≅
PGA

0.25𝑔
𝑀400(𝑑; ℎ)𝑒𝑓(𝑑;ℎ)(𝑉𝑠−400) (16) 

 

where the ratio PGA/0.25g accounts for different seismic intensities owing to the problem linearity. Formulas for evaluating bending 

moments M400(d, h) and the function f(d, h), defining the dependency of the exponential regression on d and h, are calibrated with a 

nonlinear least square procedure by fitting data obtained in the parametric analysis. 

With reference to the maximum bending moment at the deposit-bedrock interface, the following polynomial approximations hold: 

 

𝑀400(𝑑; ℎ) = (55.5𝑑3 + 414𝑑2 − 189𝑑 + 23.4)(−0.001ℎ2 + 0.0718ℎ − 0.2) (17) 

 

𝑓(𝑑; ℎ) = (−0.05𝑑 + 0.864)(0.000122ℎ − 0.01103) (18) 

 

With reference to the maximum bending moment at the pile head, the following expressions are obtained: 

 

𝑀400(𝑑; ℎ) = (85𝑑3 − 85.75𝑑2 + 30.93𝑑 − 3.37)(0.000133ℎ2 − 0.00042ℎ + 1.091) (19) 

 

𝑓(𝑑; ℎ) = (−0.07𝑑 + 1.002)(0.000067ℎ − 0.0113) (20) 

 

Equation (16) allows predicting bending moments at the critical sections of an end-bearing pile embedded in a generic homogeneous 

soil starting from the PGA relevant to soil class A as defined in EC8 [32], the shear wave velocity of the deposit, the pile diameter and 

the bedrock depth. It is worth noting that Equation (16) accounts for both the local site response and the soil-pile kinematic interaction. 

With reference to the pile head, Figure 10a compares results obtained through Equation (16) with those of the dynamic analysis: errors 

are generally acceptable for design purposes. Less precision is obtained for bending moments at the head of piles with very small 

diameter. Figure 10b refers to the deposit-bedrock interface and adds results obtained by applying the formula of Nikolaou et al. [33] 

(white dots), which is only able to predict kinematic bending moments at the deposit-bedrock interface. As can be noticed, the proposed 

formula gives better results. 

3 PILE GROUPS 

3.1 Analytical approach 

In this section, the numerical model developed by Dezi et al. [12] for the dynamic interaction analysis of inclined pile groups is briefly 

addressed. Piles are modelled with linear beam finite elements and the soil is assumed to consist of a set of independent horizontal 

layers of infinite extent, making use of the Winkler’s assumption. The pile-soil-pile interaction and the radiation damping are 

formulated in the frequency domain within each layer by means of elastodynamic Green’s functions available in the literature. For the 

model validation and some comparisons, the simplified elastodynamic solutions provided by Dobry et al. [23] and by Roesset and 

Angelides [34], as well as the damping model of Gazetas and Dobry [25], are herein used. The presence of a rigid cap is accounted for 

by constraining the displacements of the pile heads. The model allows evaluating the kinematic response of pile groups with generic 

number of piles, generic layout and piles inclination; in particular the motion of the piles cap and the stress resultants in piles due to 

the passage of harmonic shear or seismic waves in the soil may be computed; in the latter case, the incoming free field may be derived 

from local one dimensional or spatial analysis depending on the complexity of the site, also accounting for the nonlinear soil behaviour. 

Furthermore, the condensation of the problem on the rigid cap degrees of freedom allows obtaining impedances of the pile group; these 

may be used, in conjunction with the pile cap motion, to perform consistent soil-structure interaction analyses according to the 

substructure approach. 
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Figure 10. Comparisons of bending moments from the design formula and the dynamic analyses: (a) pile head; (b) deposit-bedrock 

interface 



A group of n circular piles with same diameter but with different rake angles is considered and a global reference system frame 

{0; x1, x2; z} is defined as in Figure 11a. The orientation of the generic p-th pile, that is assumed to be a Euler-Bernoulli beam, is definite 

by the unit vector ap of the pile longitudinal axis p, from which an orthonormal local reference system frame can be constructed for 

each pile. For the sake of simplicity, the projection of the pile length on the vertical axis z is equal to L, for all the piles. The pile group 

equilibrium condition may be expressed in weak form by the Lagrange-D’Alembert principle that, in the frequency domain, provides 

the following equation: 

 

∫ 𝐁𝐊𝓓𝐑𝐮(ω; 𝑧) ∙ 𝓓𝐑𝐮̂(𝑧)𝑑𝑧
𝐿

0
− ∫ 𝐫(ω; 𝑧) ∙ 𝐮̂(𝑧)𝑑𝑧

𝐿

0
− ω2 ∫ 𝐁𝐌𝐮(ω; 𝑧) ∙ 𝐮̂(𝑧)𝑑𝑧

𝐿

0
     ∀𝐮̂ ≠ 𝟎 (21) 

 

where B is the matrix containing the Jacobians of the coordinate transformations (from the local to the global reference frame), K is 

the stiffness matrix of the pile group, u is the vector collecting displacements of all piles at depth z, R is the overall rotation matrix 

obtained by assembling sub-matrixes Rp of each pile (providing local pile displacements from global ones), and 𝓓 is a formal operator 

providing piles curvatures and normal strains from displacements. Furthermore, M is the mass matrix of the pile group from which 

inertia forces arising during the motion depend, and r is the vector collecting the interaction lateral forces rp developing in each pile of 

the group (Figure 11b). 

The Winkler’s hypothesis, in conjunction with the compatibility condition between the pile and soil displacements, due to both the 

free-filed motion uff and the soil-pile interaction forces (Figure 11c), make it possible to express forces r as  

 

𝐫(ω; 𝑧) = −𝐃̃−1(ω; 𝑧)[𝐮(ω; 𝑧) − 𝐮𝑓𝑓(ω; 𝑧)] (22) 

 

where 𝐃̃ is the complex valued matrix obtained by assembling sub-matrixes 𝐃𝑝𝑞(ω; 𝑧), expressing the soil displacements at the location 

of the p-th pile due to a time-harmonic unit point load acting at the location of the q-th pile. Taking Equation (22) into account, the 

global balance condition in weak form (21) becomes 

 

∫ 𝐁𝐊𝓓𝐑𝐮(ω; 𝑧) ∙ 𝓓𝐑𝐮̂(𝑧)𝑑𝑧
𝐿

0
− ∫ 𝐃̃−1𝐮(ω; 𝑧) ∙ 𝐮̂(𝑧)𝑑𝑧

𝐿

0
− ω2 ∫ 𝐁𝐌𝐮(ω; 𝑧) ∙ 𝐮̂(𝑧)𝑑𝑧

𝐿

0
= ∫ 𝐃̃−1𝐮𝑓𝑓(ω; 𝑧) ∙ 𝐮̂(𝑧)𝑑𝑧

𝐿

0
    ∀𝐮̂ ≠ 𝟎 (23) 

 

Differently form the single pile, for which the strong from of the balance conditions is derived, the finite element method in the 

displacement-based approach is used herein to solve the problem numerically, starting from the weak balance condition (23). Piles are 

divided into E finite elements of length Le and the local displacements within the elements are expressed by interpolating those at the 

end nodes, according to standard analytical procedures. The pile cap is imposed introducing a rigid constraint for pile head nodes and 

defining a master node dF with 6 generalized displacement components. By collecting displacements of the embedded pile nodes into 

vector dE, the following linear system can be obtained 

 

[
𝐙𝐹𝐹 𝐙𝐹𝐸

𝐙𝐸𝐹 𝐙𝐸𝐸
] [

𝐝𝐹

𝐝𝐸
] = [

𝐟𝐹

𝐟𝐸
] (24) 

 

from which the complex-valued foundation impedance matrix 

 

𝕴(ω) = (𝐙𝐹𝐹 − 𝐙𝐹𝐸𝐙𝐸𝐸
−1𝐙𝐸𝐹) (25) 

 

and the FIM  

 

𝐝𝐹(ω) = 𝕴−1(𝐙𝐹𝐹 − 𝐙𝐹𝐸𝐙𝐸𝐸
−1𝐙𝐸𝐹) (26) 

 

can be derived through simple manipulations. The FIM represents the displacements of the master node because of the free-field motion 

filtered by the pile group. The model has been widely tested, in terms of convergence, and validated comparing results with those 

obtained from refined 3D finite element model of soil-foundation systems characterized by inclined piles [12]. Both the foundation 

impedances, the kinematic response and the pile stress resultants have been considered in the validation process; for the sake of brevity, 

only few results are reported below for what concern impedances, referring to a homogeneous soil deposit and two piles configurations. 

Figure 12 shows the pile group layouts and compares the translational impedance of the case studies obtained from the presented model 

with those achieved through a refined 3D solid model. Impedances are expressed in the form ℑ𝑖 = 𝜅𝑖 + 𝑖𝑎0𝑐𝑖 where 𝑎0 = ω𝑑 𝑉𝑠⁄ , 

where d is the pile diameter and Vs is the shear wave velocity of the soil, and stiffness and damping coefficients are plotted separately; 

the proposed model, characterized by a very low computational effort compared to that of the 3D model, is able to predict the dynamic 

response of the investigated case studies with a good level of accuracy. 
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Figure 11. (a): Pile group with inclined piles; (b) foundation subjected to interaction forces and (c) soil subjected to propagating 

seismic waves and interaction forces 



3.2 Empirical formulas for estimating kinematic bending moments in vertical pile groups 

The model presented in the previous section is used to perform a comprehensive parametric investigation to analyze effects of kinematic 

interactions in floating and end-bearing pile groups. Like for the single pile, the objective of this study is to examine the influence of 

the main parameters governing the dynamic response of pile groups, and to determine simplified formulas for the estimation of pile 

kinematic bending moments. To this purpose a sub-set of the soil profiles previously adopted for the single pile are considered (Figure 

7), limited by the assumption of a pile diameter d = 1 m. The pile Young’s modulus and mass density are assumed to be 

Ep = 30000 N/mm² and ρp = 2.5 Mg/m³, respectively. 2x2, 3x3, 4x4 and 5x5 pile groups characterized by three different pile spacing s 

are considered (s/d = 2, 3, 5) for a total number of 39 analyses, in the case of floating piles, and 117 analyses in the case of end-bearing 

piles. The analysis scenarios cover a wide range of possible two-layered soil profiles and make it possible to investigate the effects of 

the layer interface on pile bending moments for highly contrasting soil properties. The seismic action, applied in one of the two principal 

directions of the pile groups, is constituted by the single artificial accelerogram adopted for the parametric investigation of single piles, 

so that results presented in Figure 8 hold. 

With reference to end-bearing piles, post-processing of data from the applications reveals that the group effect on the maximum bending 

moments is evident at the pile cross sections located at the bedrock interface; with respect to results of the single fixed-head pile, 

bending moment in the corner pile generally reduces by increasing the number of piles constituting the group. At the piles head the 

group effect is less significant and reductions of the bending moments, with respect to the single pile, are evident only in the case of a 

surface bedrock location (h = 6 m). For floating piles, the kinematic bending moment arising in the corner piles of the groups is very 

similar to those of the single pile within the whole pile length and slight reductions are visible only in the case of soft soil (Vs = 100 m/s). 

Furthermore, by reducing the s/d ratio a decrease of the maximum bending moments at both the pile head and at the bedrock interface 

can be observed. Further details on the data post-processing are available in [21]. 
With the aim of proposing simplified empirical formulas to predict the maximum kinematic bending moment in the piles of the group 

(both at the pile head and at the deposit-bedrock interface), a representative set of piles is selected for each group and the relevant 

bending moments are normalized with respect to the one resulting from the single pile analysis.  

As an example, Figures 13 shows the normalized kinematic bending moments at the pile head and at the bedrock interface for deposits 

with shear wave velocity Vs = 200 m/s and for s/d = 3. Dots are used to plot results of each pile while lines are adopted to connect the 

maximum values attained for each group, which has a practical interest from the design point of view. By increasing the number of 

piles constituting the group, results are generally more scattered. External piles, and particularly corner ones, are characterized by 

greater bending moments while inner piles are protected. With reference to the maximum values, mostly attained at corner piles, specific 

trends of the normalized bending moments are clearly evident at both the pile head and at the deposit-bedrock interface: with respect 

to single pile, increments of the kinematic bending moments at the head are observed (considering the most stressed pile of the group) 

by increasing the number of piles constituting the group while at the deposit-bedrock interface bending moments in the most stressed 

pile of the group reduces by increasing the number of piles. Furthermore, very similar curves are obtained for different shear wave 

velocities and bedrock locations.  

By comparing the maximum normalized bending moments from all the analyses, it can be observed that, with reference to a specific 

s/d ratio, curves obtained for different shear wave velocities are very similar (for both the pile head and the deposit-bedrock interface), 

excepting those of deposits characterized by a surface bedrock (h = 6) for which interactions within moments arising at the head and 

at the bedrock interface are expected. Furthermore, moderate differences are observed by changing the s/d ratios; clearly, greater group 

effects are obtained for s/d = 2. Furthermore, the dependency of the normalized maximum bending moments on the bedrock location 

is slightly evident for deposits with h = 12 and 18 m. 
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Figure 12. 3D refined finite element model and lateral dynamic impedances for inclined pile foundations in homogeneous soil 



Previous remarks suggest the following empirical expression of the bending moments, both at the head and at deposit-bedrock interface: 

 

𝑀𝑚𝑎𝑥
𝐺 = 𝑀𝑠α (𝑛;

𝑠

𝑑
) (27) 

 

where 𝑀𝑚𝑎𝑥
𝐺  is the maximum bending moment arising in the piles of the group at the head or at the deposit-bedrock interface, 𝑀𝑠 is 

the relevant single pile bending moment,  is the group factor depending on the number of piles and the pile spacing, and n is the 

number of pile constituting the square group. It is worth noting that Equation (27) is independent on the seismic intensity, consistently 

with the assumption of linear soil and pile behavior. For high levels of seismic shakings the soil nonlinear behaviour, as well as the 

possible formation of soil-pile gaps, have to be taken into account. However, such phenomena are expected to affect both the group 

and the single pile response, mitigating effects on the normalized bending moments.  
The following expressions are proposed for the group factor  

 

α (𝑛;
𝑠

𝑑
) = 𝑎 (

𝑠

𝑑
) 𝑙𝑜𝑔(𝑛) + 𝑏 (

𝑠

𝑑
) (28) 

 

in which coefficients a and b assume different expressions depending on the considered pile cross-sections. For the pile head 

 

𝑎 = 0.16 (
𝑠

𝑑
)

−0.28
          𝑏 = 0.58 (

𝑠

𝑑
)

0.23
 (29) 

 

while for the deposit-bedrock interface 

 

𝑎 = −0.12 (
𝑠

𝑑
)

−0.30
       𝑏 = 0.88 (

𝑠

𝑑
)

0.04
 (30) 

 

Figure 14 shows comparisons between the theoretical values of factor  and values resulting from Equation (27); the grey regions are 

those in which the application of the proposed formula will lead to underestimate the maximum bending moment in the piles of the 

group (assuming the results obtained from the numerical procedure as benchmarks). The errors obtained are generally acceptable for 

design purposes (about 10% in the grey region). The accuracy of Equation (27) is evaluated comparing results with those obtained 

from the analytical procedure presented in the previous section (benchmarks). All cases of the parametric investigation are taken into 

account and the maximum kinematic bending moments in single piles are evaluated adopting the simplified formulas for single piles 

and the static equivalent method discussed in the previous sections; in the latter case, only the contribution of the first vibration mode 

is considered. Figure 15a, b compares results from the dynamic applications with those of the simplified formulas: errors are generally 

acceptable for design purposes and largely compensated by the simplicity of application of the empirical proposed formulas. 
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Figure 14. Comparisons of exact values of factor  and values from Equation (46): (a) pile head; (b) deposit-bedrock interface 
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CONCLUSIONS 

A review of some analytical and numerical procedures for the dynamic analysis of soil-pile foundation systems in the framework of 

the sub-structure approach has been presented. Single piles and pile groups with a generic inclination and layout are considered and 

the relevant dynamics is formulated in the frequency domain through both analytical and numerical approaches. In addition, simplified 

methods for the evaluation of the kinematic interaction effects on piles are shown. The reliability of the presented tools in capturing 

the dynamic stiffness and the overall kinematic response of pile foundations is briefly investigated comparing results of the presented 

approaches with those available in the literature or achieved through refined finite element models.  

From an engineering point of view, the analytical and numerical methods herein presented are recommended for performing soil-

structure interaction analyses as they assure an accuracy similar to that obtained from computationally demanding 3D solid soil-

foundation finite element models. On the other hand, the simplified approaches are suitable for computing kinematic interaction effects 

when an overall soil-structure interaction analysis is not required. Anyhow, kinematic effects on piles must be combined with those 

resulting from inertial interaction analyses, suitably accounting for their possible non-synchronous occurrence during earthquakes. 

APPENDIX I 

The analytical solution of system (2) (Section 2.1) is obtained introducing vector 

𝐱(ω ; ζ) = [𝐮𝑡 𝑢ζ 𝐮𝑡
′ 𝑢ζ

′ 𝐮𝑡
′′ 𝐮𝑡

′′′]
𝑇

  (A1) 

which collects the unknown functions and its higher-order derivatives. Taking Equation (A1) into account, system (2) and the relevant 

boundary conditions (3) can be rewritten in the canonical form 

 

𝐱′ − 𝐖(ω)𝐱 = 𝐜(ω; ζ)  (A2) 

 

[𝐃(ω)𝐱 + 𝐏(ω)] ∙ ∐ 𝐱̂1
1,5 |

0
= 0  ∀𝐱̂

[𝐃(ω)𝐱 − 𝐏(ω)] ∙ ∐ 𝐱̂1
1,5 |

𝐿
= 0  ∀𝐱̂

  (A3) 

 

where W and D are complex valued matrices, depending on the stiffness of the pile cross section and on the impedance of the soil 

layers, while c and P are vectors depending on distributed soil-pile reaction forces and loads concentrated at the pile ends, respectively. 

The general solution of system (A2) is obtained by summing the complementary solution (solution of the associate homogeneous 

equation) to a particular solution depending on the external loads. It can be demonstrated that such a solution may be written as 

 

𝐱 = 𝐄(ω; ζ)𝐠(ω) + 𝐄(ω; ζ) ∫ 𝐄−1(ω; ζ)𝐜 𝑑ζ   (A4) 

 

in which E is the exponential matrix of B and g is the vector of the integration constants that has to be calculated from the boundary 

conditions (A3). Equation (A2) is of general validity and the evaluation of the particular solution requires the expression of the free 

field motion to be known. The case of one-dimensional propagation of shear and pressure waves in the vertical direction is herein 

considered, which leads the following expression of vector c: 

 

𝐜 = 𝐐ℎ(ω)𝑒𝑖𝑘ℎ𝑐𝑧ζζ + 𝐓ℎ(ω)𝑒𝑖𝑘ℎ𝑐𝑧ζζ + 𝐐𝑧(ω)𝑒𝑖𝑘𝑧𝑐𝑧ζζ + 𝐓𝑧(ω)𝑒𝑖𝑘𝑧𝑐𝑧ζζ   (A5) 

 

where kh and kz are the complex wavenumbers associated to the propagation of shear and pressure waves, respectively, while Qh, Th, 

Qz and Tz are vectors of integration constants depending on the boundary conditions (i.e. at the ground surface and at the bedrock level) 

[8]. Considering Equation (A5), Equation (A4) yields 

 
𝐱 = 𝐄𝐠𝑓(ω) +𝐱̃ℎ + 𝐱̃𝑧   (A6) 

 

where 

 



𝐱̃ℎ = 𝐄 [(𝑖𝑘ℎ𝑐𝑧ζ𝐈 − 𝐖)
−1

𝐄−𝟏𝐐ℎ(ω)𝑒𝑖𝑘ℎ𝑐𝑧ζζ − (𝑖𝑘ℎ𝑐𝑧ζ𝐈 + 𝐖)
−1

𝐄−𝟏𝐓ℎ(ω)𝑒𝑖𝑘ℎ𝑐𝑧ζζ]

𝐱̃𝑧 = 𝐄 [(𝑖𝑘𝑧𝑐𝑧ζ𝐈 − 𝐖)
−1

𝐄−𝟏𝐐𝑧(ω)𝑒𝑖𝑘𝑧𝑐𝑧ζζ − (𝑖𝑘𝑧𝑐𝑧ζ𝐈 + 𝐖)
−1

𝐄−𝟏𝐓𝑧(ω)𝑒𝑖𝑘𝑧𝑐𝑧ζζ]
   (A7) 

 

are the particular solutions for shear and pressure waves propagating in the vertical direction, respectively, and gf is the vector of the 

integration constants that has to be calculated from the boundary conditions. Once the solution is determined, stress resultants in the 

pile can be determined. For the evaluation of the soil-foundation impedances, the following homogeneous problem with non-

homogeneous boundary conditions can be considered 

 

𝐱′ − 𝐖(ω)𝐱 = 𝟎   (A8) 

 

∐ 𝐱(ω; 0)1
1,5 = 𝐱0

∐ 𝐱(ω; 𝐿)1
1,5 = 𝐱𝐿

   (A9) 

 

which, according to Equation (A4), admits solution 

 
𝐱 = 𝐄𝐠𝑑(ω)   (A10) 

 

Substituting Equation (A10) into (A9) allows computing the vector of integration constants  

 

𝐠𝑑(ω) = 𝐆 [
𝐱0

𝐱𝐿
]   (A11) 

 

where 

 

𝐆 = [
∐ 𝐄(ω; 0)𝑎𝑙𝑙

1,5

∐ 𝐄(ω; L)𝑎𝑙𝑙
1,5

]   (A12) 

 

Finally forces at the pile head can be computed through Equations (A3) 

 

[
𝓡0

𝓡𝐿
] = [

−𝐃𝐄(ω; 0)𝐆

𝐃𝐄(ω; 𝐿)𝐆
] [

𝐱0

𝐱𝐿
]   (A13) 

 

In Equation (A13) the stiffness matrix of the pile is evident, and impedances can be finally obtained through a condensation of the 

stiffness matrix on the pile head displacements. 

 

APPENDIX II 

The following symbols are used in this paper: 

 

Vectors and matrices  

B Jacobian matrix C1,j, C2,j, C3,j, C4,j Integration constants 

𝐜 Vectors of distributed forces c Damping coefficient 

𝐃 Complex valued matrix czζ Cosine director 

𝐃̃ Soil deformability matrix Dm Response of the SDF system 

d Piles nodal displacements d Pile diameter 

E Exponential matrix Ep, Es Young’s moduli 

Ft Concentrated forces Ep
* Complex pile Young’s modulus 

𝐠 Vector of integration constants F Concentrated force 

𝕴 Impedance matrix Gs Soil elastic shear modulus 

𝐉 Inertia matrix  h Layer thickness 

K Pile group stiffness matrix 𝐼 Non-dimensional kinematic response factor 

𝓚 Impedance matrix of unbounded soil Jp Inertia about a principal axis 

Mt Concentrated moments k Winkler coefficient  

𝐏 Vectors of concentrated loads L Pile length 

𝐐ℎ, 𝐐𝑧 Vector of integration constants 𝑀 Bending moment 

R Rotational matrix 𝑀400 Bending moment for Vs = 400 m/s 

𝓡 Sub-vector of pile head forces 𝑀𝑚𝑎𝑥
𝐺  Pile group maximum bending moment 

r Soil-pile interaction forces 𝑀𝑠 Single pile bending moment 

𝐓ℎ, 𝐓𝑧 Vector of integration constants 𝑞𝑟, 𝑞𝑚 Generalised displacements 

u Pile groups displacements 𝑆𝑎 
Ordinate of the earthquake pseudo-

acceleration response spectrum 

𝐮̂ Pile groups virtual displacements s Spacing of piles 

uff Free-fields motion U Modal displacement function 



uh Pile global displacements 𝑈𝑟, 𝑈𝑚 Modal shapes 

ut Pile local displacements um Pile modal displacement 

𝐮̂𝑡 Pile local virtual displacements ub Bedrock displacement 

𝐖 Complex valued matrix us Soil displacement 

𝐱 Vector of unknown functions uz Pile global displacement 

𝐱̂ Vector of virtual unknown functions u Pile local displacement 

𝐱̃ℎ, 𝐱̃𝑧 Particular solutions 𝑢̂ζ Pile local virtual displacement 

Z Stiffness sub-matrix Vs, Vsb Shear wave velocities 

  x, y, z Global reference system 

Operators α Group factor 

𝓓 Operator providing curvatures and strains m Modal participation factor 

∐ ∎

𝑙,𝑚

𝑖,𝑗

 Operator extracting segments of a matrix  Pile inclination 

   Stiffness coefficient 

Scalars p, s, sb Mass densities 

A Area p, s, sb Poisson ratios 

Aj, Bj Integration constants  Circular frequency 

a Non-dimentional frequency m Modal damping ratio 

ag Acceleration p, s, sb Material damping ratios 

a, b Functions 𝜁 Local abscissa of the pile axis 
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