An Efficient Lewis Acid Catalyzed Povarov Reaction for the One-Pot Stereocontrolled Synthesis of Polyfunctionalized Tetrahydroquinolines

Cristina Cimarelli* a
Samuele Bordi a
Pamela Piermattei a
Maura Pelleia a
Fabio Del Bello b
Enrico Marcantoni a

* School of Science and Technology - Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
cristina.cimarelli@unicam.it
b School of Pharmacy - Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy

Received: 13.07.2017
Accepted after revision: 09.08.2017
Published online: 07.09.2017
DOI: 10.1055/s-0036-1589104; Art ID: ss-2017-t0457-op

Abstract
An easy and efficient synthetic methodology for the one-pot stereocontrolled synthesis of tetrahydroquinolines through Lewis acid activated Povarov reaction is described. The protocol takes advantage of the very cheap, easy to handle, and environmentally friendly cerium trichloride as catalyst and allows to obtain either the anti- or the syn-isomer of the final tetrahydroquinoline with good selectivity, by performing the reaction in solvent or solventless conditions. The scope of the reaction is expanded to the one-pot synthesis of N-alkyltetrahydroquinolines through a very efficient iminium-Povarov approach. A deeper insight on the reaction system was provided by the study on the side reactions occurring in the reaction conditions and on the nature of the stereoselectivity.

Key words tetrahydroquinoline derivatives, Povarov reaction, Lewis acid catalysis, cerium, solventless reactions

The Povarov reaction, 1,2 – the aza-Diels–Alder reaction of electron-poor 2-azabutadienes with electron-rich dienophiles – is one of the more common pathways for the synthesis of fused-ring heterocyclic compounds, both in the two and three components version, depending on the pre-formation of the imine or the direct mixing of all the starting materials. Many catalysts have been used to activate the reagents: Brønsted3 and Lewis4 acids, also supported,5,6 and enzyme catalysis7 were investigated with different results. Efforts are made to develop new methodologies, oriented towards more efficient and environment friendly Lewis acids, and to bypass the step of pre-formation of imines, compounds that are difficult to synthesize and unstable in many cases.

In the last years, the search for economic and environmentally benign synthetic methodologies has stimulated the use of nontoxic and inexpensive catalytic systems, and in this perspective Lanthanides8 have played an important role. Trivalent rare earth compounds salts, such as Ce(III) exhibit characteristic acid properties, and they activate Lewis base functionalities to promote useful organic transformations. For this reason numerous reactions and methodologies have been developed that involves cerium(III) as CeCl3, its more available source, as key component.9

Cerium trichloride has become interesting because of its high efficiency, low toxicity, and cost and for the ease of application also in non-anhydrous conditions.10 Furthermore, this environment friendly, cheap, highly efficient Lewis acid has just been widely applied as catalyst for the synthesis of heterocyclic compounds.11 Even if the CeCl3/7H2O has been used as catalyst in multicomponent reactions12 for generating new products in a single step and avoiding large amounts of solvents and expensive purification techniques,13 to the best of our knowledge there is no report on its use in the cyclization of acyclic precursors to fused-ring heterocycles. Often reactions catalyzed by CeCl3/7H2O require a stoichiometric amount of this Lewis acid and long reaction times. A more reactive form of this catalyst is represented by the promoting system CeCl3/7H2O/NaI in 1:1 ratio,14 used in catalytic amount in a wide range of reactions.15

As part of our ongoing efforts on the synthesis of heterocycles, and considering that lanthanides have just been used in imino-Diels–Alder reactions16 and that a number of biologically active compounds with interesting properties have their structures based on the tetrahydroquinoline scaffold,17 we thought about exploring the application of the CeCl3/7H2O/NaI system as Lewis acid catalyst in the Povarov reaction, for the one-pot synthesis of a series of substituted pyranotetrahydroquinolines.

Indeed pyranquinoline skeleton is present in a series of natural products and biologically active compounds with interesting pharmaceutical activities namely anti-Alzheimer18,19 antiallergic,19 anti-inflammatory,20 and some mole-
molecules with this structure find application in mammalian cell imaging. In addition, several heterocycles for industrial application contain this framework contributing to make the synthesis of these derivatives an important challenge.

The reaction was studied in solvent and under solventless conditions and the method has been extended also to other dienophiles and N-substituted anilines.

The pilot reaction was carried out in different conditions using aniline (1a), benzaldehyde (2a), and 3,4-dihydro-2H-pyran (3a, DHP), exploring CeCl₃·7H₂O/NaI as promoting system to find the best reaction conditions, as described in Table 1. Given that the required 2-azabutadienes are not stable in the presence of moisture, we chose to prepare them in situ. To avoid the formation of by-products from the reaction between aniline and dihydroxypyran, 1a and 2a were stirred in the solvent, in the presence of magnesium sulfate, and after the quantitative formation of the corresponding imine, monitored by TLC and GC and by NMR in some cases, DHP (3a) and the catalyst were added. The reaction was monitored by GC-MS and TLC until the starting reagents were consumed or a constant composition of the mixture was reached, and the final tetrahydroquinolines 4aa and 5aa were obtained as racemates in syn/anti-diastereomer mixture. The results obtained are reported in Table 1.

In acetonitrile at room temperature, the reaction with an equimolecular amount of CeCl₃·7H₂O/NaI, with respect to the substrates, gave 67% yield, while with a 30% mol amount of catalyst a very similar 70% yield was obtained in a slightly longer reaction time (Table 1, entries 1, 2). The reaction is anti-diastereoselective, with a syn/anti ratio of 28:72 in the first case and the ratio increased to 18:82 in the second. A further lowering to 10% mol of the catalyst system resulted again in a comparable yield, but the reaction time rose to 24 hours with a lower diastereoselectivity (entry 3). The reaction performed in toluene or 1,4-dioxane led to lower yields and with very long reaction times (en-
tries 4, 5). Really poor yields were obtained in water, affording to a synthetically useless result (entry 6); on the other hand anhydrous CeCl$_3$/NaI in anhydrous acetonitrile at 50 °C led to an excellent syn/anti ratio of 8:92, but in only 40% yield (entry 12). Both yield and diastereoselectivity increased when the reaction was performed at 50 °C and the reaction time decreased to 1 hour (entry 7). Although the yield obtained using Cul as efficient iodide source instead of NaI23 was comparable, the corresponding diastereoselectivity was lower (entry 13). The reaction was attempted also under solventless conditions with interesting results (entries 9–11). The SiO$_2$ supported CeCl$_3$·7H$_2$O/NaI system24 gave no reaction, but the solventless reaction without SiO$_2$, performed by adding the dienophile and 30% mol of the catalytic mixture CeCl$_3$·7H$_2$O/NaI to the preformed imine, afforded 50% yield at room temperature with a slight preference for the syn-diastereomer. Lowering the temperature to –10 °C allowed to obtain a 73% yield with an interesting inverted diastereoselectivity with respect to reaction performed in solvent (entries 7, 11). Further, although in our previous papers, SiO$_2$ has been introduced as a support that facilitates the workup of the reaction mixture and to change the environment of the catalyst active site,25,26 under our present conditions the Povarov reaction did not take place in the presence of SiO$_2$.

The components of the promoting system14 work in synergy, and we encountered no difficulty to perform our reaction under solventless conditions because one of the components is always liquid: the results obtained with CeCl$_3$·7H$_2$O or NaI alone were really worse and required longer reaction times than that obtained with both components together (Table 1, entries 14, 15). Magnesium sulfate was not removed from the reaction system after the imine formation step, because it has no effect on the following reaction (entry 16).

Generally the reactions performed in solvent show a strong preference for the anti-diastereomer together with slightly lower yields with respect to those under solventless conditions. This difference may depend on a different selectivity of the reaction itself and at the same time on a different stability of the two diastereomers in the reaction mixture.

Experiments were made to ascertain if the selectivity depends on a kinetic or thermodynamic control of the reaction system in the different conditions. Generally high concentration and low temperatures favor the kinetic control of a reaction, while high dilution condition and higher temperature allow the thermodynamic control.

We performed the reaction in different conditions of solvent and temperature, monitoring the diastereomer ratio at different reaction times and stopping the reaction at 4 hours, unless differently stated. We observed that at –10 °C only 5 equivalents of solvent are enough to decrease the syn selectivity shown in the reaction under solventless conditions (Table 1, entry 11) from 77:23 to 54:46. The trend is confirmed by data of the reactions performed in the same conditions of time and temperature, in 5 and 10 mL of solvent, that showed an increasing anti selectivity of 35:65 and 17:83, respectively. After 4 hours, all the reaction mixtures were left to reach room temperature and stirred overnight, and all resulted enriched in the anti-diastereomer. These observations confirm that under kinetically controlled conditions at high concentrations and at low temperatures, the syn product is favored, and low concentration, long reaction times and high dilutions favor the formation of the anti-diastereomer.

The issue of the different stability of the two diastereomers in the reaction mixture was addressed with a further experiment. A mixture of the two diastereomers (syn/anti = 41:59) was dissolved in MeCN, the catalyst was added and left stirring overnight at room temperature. After this period, the diastereomers were isolated as a mixture, and the yield and the d.r. were determined. The syn/anti ratio passed to 32:68, showing that the mixture was enriched in the anti-diastereomer. At the same time, only the 82% of the initial amount of the mixture was recovered, that in more detail revealed a 5% loss of the anti-product and a 37% loss of the syn (Scheme 1).

These results confirm that the selectivity of this reaction depends both on kinetic and thermodynamic control under the different reaction conditions and on a different stability of the two diastereomers in the reaction mixture. At the same time they parallel the results reported by Shen’s group on the samarium diiodide catalyzed Povarov reaction for the synthesis of pyranoquinolines.24

The generality of the reaction was explored with a series of anilines 1a–c and aromatic aldehydes 2a–g that were tested using both solvent and solventless optimized methods, as depicted in Scheme 2 (method A or B), obtaining in most cases good to excellent yields of the desired tetrahydroquinolines 4 and 5. Preliminary data obtained using aliphatic aldehydes gave poor results; further experiments are in progress in our laboratory. The reaction has a good functional group tolerance, performing better with electron-withdrawing groups on the aldehyde, while it is sluggish in the case of very electron-rich aldehydes (i.e., 3,4,5-trimethoxybenzaldehyde) or very electron-poor anilines (i.e., 4-nitroaniline). GC-MS analysis of the reaction mixture of these aldehydes revealed only traces of the corresponding tetrahydroquinolines 4 and 5 even after 24 hours. This ef
The scope of the reaction was extended also to dienophiles other than DMP (3a). Beyond the classical candidate 2,3-dihydrofuran (3b), N-vinylpyrrolidone (3c) was also used under conditions according to both methods A and B. 2,3-Dihydrofuran derivatives syn-6 and anti-7 were obtained in short reaction times, probably because of the higher energy of the more strained double bond in the five-membered ring, but unfortunately the reaction was unspecific in both conditions, because of the reduced steric hindrance of the furan ring with respect to pyran. Different results were obtained with N-vinylpyrrolidone (3c), that afforded products syn-8 and anti-9 with acceptable yields and with a strong preference for the syn-product.

The good results obtained with the classical Povarov reaction prompted us to test iminium ions as heterodienes, similar to the benzotriazole approach reported by Katritzky’s group, with the result of overcoming the two main drawbacks of this methodology: the synthesis of the starting benzotriazole derivative and a little atom economy. Further applications of our approach are under study.

N-Methylaniline (1d) or N-benzylaniline (1e), formaldehyde (2h) or ethyl glyoxylate (2i) and dienophiles 3a–c were mixed in acetonitrile and stirred together at room temperature with the catalytic system, according to method A. To our delight, reactions were complete in 0.5–5 hours, giving yields up to 96% of the desired N-alkyltetrahydroquinolines 10a–d, as depicted in Scheme 3.

This approach was applied to the synthesis of julolidine-type compound 11. A probable reaction pathway is described in Scheme 4: the imine formed by the reaction of aniline with formaldehyde reacts according to Povarov mechanism with dihydrofuran. The amino group contained in the intermediate dihydroquinoline can form an iminium ion by reaction with a second molecule of formaldehyde and then a second Povarov reaction takes place, yielding product 11. Also another julolidine-type synthesis through...
Povarov reaction is known in literature28 that takes place in the absence of any catalyst, but is performed in the more toxic and expensive trifluoroethanol.

Despite the good outcomes of these reactions, yields rarely rose above 90%, because of some side reactions that generated byproducts, making the purification more difficult as well. In these reactions, especially using the scarcely toxic, easily handled and efficient Lewis acid CeCl\textsubscript{3}·7H\textsubscript{2}O, in combination with NaI, was developed. A series of tetrahydroquinolines was obtained, in good yields, from aromatic amines, aromatic aldehydes, and DHP. The stereoselectivity of the reaction can be driven toward the anti- or the syn-diastereomer by choosing solvent or solventless reaction conditions. The coordination of Cerium with the oxygen atom in tetrahydroquinolines\textsubscript{4} favors the ether ring opening,30 then the iminodiene acts as hydrogen acceptor in the oxidation to quinoline by an hydrogen transfer mechanism.31 Furthermore tetrahydropyranylation of the free hydroxyl groups could occur, because of the known ability of CeCl\textsubscript{3}·7H\textsubscript{2}O to catalyze this kind of protection of alcohols.32 The crude mixture of the preparation of compounds 4\textsubscript{ae} and 5\textsubscript{ae} was submitted to ESI-MS analysis and the presence of all the hypothesized by-products, which cannot be identified by GC-MS analysis, was clearly shown (see Supporting Information).

In conclusion, a one-pot methodology for the stereoselective synthesis of tetrahydroquinolines, based on the Povarov reaction catalyzed by the scarcely toxic, easily handled and efficient Lewis acid CeCl\textsubscript{3}·7H\textsubscript{2}O, in combination with NaI, was developed. A series of tetrahydroquinolines was obtained, in good yields, from aromatic amines, aromatic aldehydes, and DHP. The stereoselectivity of the reaction can be driven toward the anti- or the syn-diastereomer by choosing solvent or solventless reaction conditions. The analysis of the reaction mixture allowed the identification of the different reaction pathways that may take place in the system and consequently the main by-products, responsible for the sometimes troublesome purification of the products.

Figure 1 Recurrent by-products observed in GC-MS analysis of the crude by mixing 1\textsubscript{a} together with a two-fold excess of 3\textsubscript{a} under the reaction conditions, and observing that product 14 was formed in 45\% of isolated yield, as described in Scheme 5.

On the other hand, by-products like 13 were already reported in the Povarov reaction. The coordination of Cerium with the oxygen atom in tetrahydroquinolines 4 and 5 favors the ether ring opening,30 then the iminodiene acts as hydrogen acceptor in the oxidation to quinoline by an hydrogen transfer mechanism.31
activated dienes in this protocol was also explored, leading to up to 96% yield of the desired N-alkyltetrahydroquinoline products. In addition to demonstrating the efficiency of our CeCl₃·7H₂O/NaI catalytic system in the formation of new carbon–carbon bonds by a multicomponent method, our present methodology has evidenced its further application in organic synthesis in the cyclization to fused-ring heterocycles. Further studies in order to explore the application of our protocol in heterocyclic systems with more different heteroatoms are currently underway.

All reagents and solvents were purchased from commercial suppliers and used without further purification, unless mentioned otherwise. Formaldehyde was used as a 37% wt. solution in H₂O. All reactions were monitored by TLC using EMD/Merck silica gel 60 precoated plates (0.25 mm), and the compounds were visualized either by using UV light (254 nm), and/or I₂ vapors, vanillin, or K₂MnO₄ stains as developing agents. Purification of the reaction products was carried out by column flash chromatography using silica gel (0.040–0.063 mesh). Chemical shifts are given in ppm with reference to residual H in deuterated solvents as (400 MHz, 100 MHz, or 377 MHz, respectively). Chemical shifts are determined in open capillary tubes on a Büchi 535 melting point apparatus and are uncorrected. Melting points were determined by a Büchi 535 melting point apparatus and are uncorrected.

Tetrahydroquinolines 4 and 5

Method A

In a round-bottomed flask, N-arylmethyleniminium salt 1a–c [1 mmol] and n-butylmalonic anhydride 2a–g (1 mmol) were stirred together in MeCN (5 mL) in the presence of anhyd MgSO₄ (200 mg). The mixture was stirred until imine was completely formed (heating when required). Then, CeCl₃·7H₂O (112 mg, 0.3 mmol) and NaI (45 mg, 0.3 mmol) were added, followed by the chosen dieneophiles 3a–c (1.2 mmol) and the mixture was stirred at 50 °C until consumption of starting materials [TLC, hexane/EtOAc, vanillin stain]. The mixture was diluted with CH₂Cl₂ (10 mL) and was washed with aq 0.5 M HCl (10 mL). The aqueous layer was extracted with CH₂Cl₂, then treated with sat. aq NaHCO₃ until basic pH was reached, and extracted again with CH₂Cl₂. The organic layers were combined, washed with brine, and dried (anhyd Na₂SO₄). The crude was purified by flash chromatography over silica gel (eluent hexane/EtOAc) to afford the pure desired tetrahydroquinoline product.

Method B

In a closed vial, pure isolated N-arylmethyleniminium salt 1a–c and 2a–g, were stirred together in MeCN (5 mL) in the presence of anhyd MgSO₄ (200 mg). The mixture was stirred until imine was completely formed (heating when required). Then, CeCl₃·7H₂O (112 mg, 0.3 mmol) and NaI (45 mg, 0.3 mmol) were added, followed by the chosen dieneophiles 3a–c (1.2 mmol) and the mixture was stirred at 50 °C until consumption of starting materials [TLC, hexane/EtOAc, vanillin stain]. The mixture was diluted with CH₂Cl₂ (10 mL) and was washed with aq 0.5 M HCl (10 mL). The aqueous layer was extracted with CH₂Cl₂, then treated with sat. aq NaHCO₃ until basic pH was reached, and extracted again with CH₂Cl₂. The organic layers were combined, washed with brine, and dried (anhyd Na₂SO₄). The crude was purified by flash chromatography over silica gel (eluent hexane/EtOAc) to afford the pure desired tetrahydroquinoline product.

(2)-[4a5,5S,10bS]-5-(Furan-2-yl)-3,4,4a,5,6,10b-hexahydro-2H- pyran-3,2-c-quinoline (4ae)

Prepared from aniline (1a), 2-furancarbaldehyde (2e), and 2,3-dihydroquinan (3a) according to the general procedure; yield: 45 mg (18%); white solid; mp 158–160 °C.

FT-IR (neat): 3317, 2925, 2856, 1626, 1265, 1124, 1073, 1026, 749 cm⁻¹.

1H NMR (CDCl₃, 400 MHz): δ = 7.43 (d, J = 7.5 Hz, 1 H), 7.42–7.41 (m, 1 H), 7.12–7.08 (m, 1 H), 6.82 (t, J = 7.5 Hz, 1 H), 6.61 (d, J = 8.0 Hz, 1 H), 6.40–6.39 (m, 1 H), 6.31 (dd, J = 3.3, 0.8 Hz, 1 H), 5.24 (d, J = 5.6 Hz, 1 H), 4.72 (d, J = 2.6 Hz, 1 H), 4.00 (br s, 1 H), 3.63–3.59 (m, 1 H), 3.43 (td, J = 11.8, 1.9 Hz, 1 H), 2.42–2.36 (m, 1 H), 1.70–1.46 (m, 4 H).

13C NMR (CDCl₃, 100 MHz): δ = 154.3, 144.6, 141.8, 128.3, 127.9, 120.3, 118.8, 114.8, 110.4, 106.3, 72.0, 60.9, 54.0, 36.5, 25.5, 19.0.

GC-MS (EL 70 eV): m/z = 255 [M⁺], 196 (100%), 184, 168, 167, 130.

Paper C. Cimarelli et al.
Prepared from aniline (1a), 2-fluorobenzaldehyde (2f), and 2,3-dihydropyran (3a) according to the general procedure; yield: 155 mg (56%); white foamy solid; mp 47–50 °C.

1H NMR (CDCl3, 400 MHz): δ = 7.54 (dd, J = 7.5, 1.6 Hz, 1 H), 7.34–7.24 (m, 2 H), 7.18 (td, J = 7.5, 1.1 Hz, 1 H), 7.14–7.04 (m, 2 H), 6.74 (td, J = 7.4, 1.1 Hz, 1 H), 6.56 (d, J = 8.1 Hz, 1 H), 5.13 (d, J = 10.4 Hz, 1 H), 4.43 (d, J = 2.9 Hz, 1 H), 4.10–4.04 (m, 1 H), 4.09 (br s, 1 H), 3.72 (td, J = 11.3, 2.6 Hz, 1 H), 2.21–2.11 (m, 1 H), 1.92 (qt, J = 12.5, 4.2 Hz, 1 H), 1.72 (tt, J = 13.2, 4.7 Hz, 1 H), 1.56–1.46 (m, 1 H), 1.44–1.35 (m, 1 H).

13C NMR (CDCl3, 100 MHz): δ = 161.3 (d, JCF = 246.8 Hz), 144.7, 130.9, 129.5, 129.4 (d, JCF = 8.4 Hz), 129.2 (d, JCF = 4.0 Hz), 128.4 (d, JCF = 3.4 Hz), 128.0, 118.0, 115.7 (d, JCF = 22.5 Hz), 114.5, 74.3, 68.4, 47.9, 38.6, 24.6, 22.5.

GC-MS (EI, 70 eV): m/z = 293 [M]+, 252, 224 (100%), 212, 130, 109, 77.

Anal. Calcd for C19H20N2O3S (352.430): C, 70.71; H, 6.85; N, 6.29. Found: C, 70.64; H, 6.94; N, 6.91.

(2)-(4aS,5S,10bS)-5-(1-Tosyl-1H-indol-3-yl)-3,4,4a,5,6,10b-hexahydro-2H-pyran[3,2-c]quinoline (4ag)

Prepared from aniline (1a), N-tosylindole-3-carboxaldehyde (2g), and 2,3-dihydropyran (3a) according to the general procedure; yield: 257 mg (58%); white solid; mp 121 °C (dec.).

1H NMR (CDCl3, 400 MHz): δ = 8.03 (dd, J = 8.3, 0.8 Hz, 1 H), 7.78 (d, J = 8.2 Hz, 2 H), 7.64 (s, 1 H), 7.53 (dd, J = 7.8, 0.7 Hz, 1 H), 7.45 (d, J = 7.6 Hz, 1 H), 7.37–7.34 (m, 1 H), 7.28–7.26 (m, 1 H), 7.23 (d, J = 8.6 Hz, 2 H), 7.14–7.11 (m, 1 H), 6.83 (L JCF = 7.5 Hz, 1 H), 6.65 (d, J = 8.0 Hz, 1 H), 5.35 (d, J = 5.6 Hz, 1 H), 4.95–4.94 (m, 1 H), 3.91 (br s, 1 H), 3.60–3.57 (m, 1 H), 3.42 (td, J = 11.4, 2.6 Hz, 1 H), 2.53 (s, 3 H), 2.33–2.27 (m, 1 H), 1.53–1.41 (m, 3 H), 1.16–1.12 (m, 1 H).

13C NMR (CDCl3, 100 MHz): δ = 145.2, 145.1, 135.7, 135.3, 130.1, 129.1, 128.4, 127.9, 127.0, 125.3, 123.6, 123.5, 123.0, 120.4, 119.8, 119.0, 114.9, 114.2, 72.5, 60.8, 52.4, 36.7, 25.5, 21.8, 18.7.

LC-MS (ESI): m/z = 457 [M–H]–.

Anal. Calcd for C19H19N3O3S (358.416): C, 71.34; H, 6.77; N, 6.86. Found: C, 71.27; H, 6.80; N, 6.89.

(2)-(4aS,5R,10bS)-5-(1-Tosyl-1H-indol-3-yl)-3,4,4a,5,6,10b-hexahydro-2H-pyran[3,2-c]quinoline (5ag)

Prepared from aniline (1a), N-tosylindole-3-carboxaldehyde (2g), and 2,3-dihydropyran (3a) according to the general procedure; yield: 283 mg (58%); white solid; mp 121 °C (dec.).

1H NMR (CDCl3, 400 MHz): δ = 8.03 (dd, J = 8.3, 0.8 Hz, 1 H), 7.78 (d, J = 8.2 Hz, 2 H), 7.64 (s, 1 H), 7.53 (dd, J = 7.8, 0.7 Hz, 1 H), 7.45 (d, J = 7.6 Hz, 1 H), 7.37–7.34 (m, 1 H), 7.28–7.26 (m, 1 H), 7.23 (d, J = 8.6 Hz, 2 H), 7.14–7.11 (m, 1 H), 6.83 (L JCF = 7.5 Hz, 1 H), 6.65 (d, J = 8.0 Hz, 1 H), 5.35 (d, J = 5.6 Hz, 1 H), 4.95–4.94 (m, 1 H), 3.91 (br s, 1 H), 3.60–3.57 (m, 1 H), 3.42 (td, J = 11.4, 2.6 Hz, 1 H), 2.53 (s, 3 H), 2.33–2.27 (m, 1 H), 1.53–1.41 (m, 3 H), 1.16–1.12 (m, 1 H).

13C NMR (CDCl3, 100 MHz): δ = 145.2, 145.1, 135.7, 135.3, 130.1, 129.1, 128.4, 127.9, 127.0, 125.3, 123.6, 123.5, 123.0, 120.4, 119.8, 119.0, 114.9, 114.2, 72.5, 60.8, 52.4, 36.7, 25.5, 21.8, 18.7.

LC-MS (ESI): m/z = 457 [M–H]–.

Anal. Calcd for C19H19N3O3S (358.416): C, 71.34; H, 6.77; N, 6.86. Found: C, 71.27; H, 6.80; N, 6.89.
Ethyl (5)- (3aS,4S,9bS)-5-Methyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline-4-carboxylate (syn-10d)
Prepared from N-methylaniline (1d), ethyl glycolate (2i), and 2,3-di-4h)drofuran (3b) according to the general procedure at r.t.; yield: 47 mg (19%); colorless oil.

FT-IR (neat): 3389, 2878, 1721, 1497, 1185, 1026, 748 cm⁻¹.

1H NMR (CDCl₃, 400 MHz): δ = 7.32 (dd, J = 7.6, 1.2 Hz, 1 H), 7.26–7.20 (m, 1 H), 6.79 (td, J = 7.4, 1.1 Hz, 1 H), 6.74 (td, J = 8.3, 1 Hz, 1 H), 4.60 (d, J = 5.1 Hz, 1 H), 4.12–3.99 (m, 2 H), 3.88 (d, J = 6.0 Hz, 1 H), 3.84–3.68 (m, 2 H), 2.91 (s, 3 H), 2.88–2.78 (m, 1 H), 2.48–2.40 (m, 1 H), 2.19–2.10 (m, 1 H), 1.13 (t, J = 7.1 Hz, 3 H).

13C NMR (CDCl₃, 100 MHz): δ = 171.4, 145.9, 130.5, 129.4, 121.3, 118.0, 75.1, 65.6, 63.2, 61.1, 39.7, 39.1, 27.6, 14.2.

GC-MS (EI, 70 eV): m/z = 257 [M⁺], 226, 214, 212 (100%), 182, 168, 167, 144, 55.

An Calc for C₁₉H₁₉NO₃ (257:333): C, 74.68; H, 7.44; N, 5.44. Found: C, 74.68; H, 7.53; N, 5.48.

Supporting Information
This work was supported by grants from University of Camerino (Fondo di Ateneo per la Ricerca 2014-2015).

References
(9) For recent reviews on this argument, see: (a) Dalpozzo, R.; De Nino, A.; Bartoli, G.; Sambri, L.; Marcantoni, E. Recent Res. Dev. Org. Chem. 2001, 5, 181. (b) Bartoli, G.; Marcantoni, E.; Sambri,

(14) Bartoli, G.; Marcantoni, E.; Sambri, L. Synlett 2003, 2101; and references cited therein.

(24) Bartoli, G.; Marcantoni, E.; Sambri, L. Synlett 2003, 2101; and references cited therein.

