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ABSTRACT. We propose a finite dimensional setup for the study of lightlike
geodesics starting orthogonally to a spacelike (n− 2)-submanifold and arriving
orthogonally to the time-slices of an (n − 1)-dimensional timelike submanifold
of a n-dimensional spacetime. Under a transversality and a nonfocality assump-
tion, we prove a finite dimensional reduction of a general relativistic Fermat
principle, and we give a formula for the Morse index. We present some appli-
cations to bifurcation theory, and we conclude the paper with the discussion of
some examples that illustrate our results.

1. INTRODUCTION

In a general relativistic space-time, light rays from an extended light source to an
extended receiver (a screen) are modeled by lightlike geodesics that are orthogonal
at their endpoints to two given spacelike submanifolds. Considering the worldline
Γ of a receiver, and assuming that this set is a stably causal Lorentzian hypersur-
face of the space-time, i.e., a hypersurface that admits a (smooth) time function as
a Lorentzian manifold of its own, then the light rays starting orthogonally to the
initial submanifold and terminating orthogonally to the time slices of Γ are charac-
terized by Fermat’s principle as stationary points of the arrival time functional, see
ref. [17].

This variational principle lacks regularity, in that the set of trial paths on which
the arrival time is to be considered, which consists of all (future pointing, piece-
wise smooth) lightlike curves between the source and the receiver, does not admit a
differentiable structure. This is an obstruction to the application of analytical tech-
niques, such as Lusternik–Schnirelman theory, Morse theory, or bifurcation theory,
whose setup requires a quite elaborate functional framework, and it makes unfea-
sible the use of singularity theory. In this paper we propose a finite dimensional
(smooth) reduction of the Fermat principle, which is suited to give a local descrip-
tion of the orthogonal light rays near a degenerate one, and that in particular allows
a direct application of bifurcation theory and singularity theory to study the caus-
tics. This aims naturally at establishing multiplicity results for light rays between
sources and observers, which models the so-called multiple image effect and the
gravitational lensing phenomenon in General Relativity. The interested reader will
find a very extensive literature on the subject, see for instance reference [13], or
the living review [16] for a detailed account of the recent bibliography. Fermat’s
principle in general relativistic optics, and its applications to gravitational lensing
are discussed thoroughly in the monograph [15]. Important aspects of the theory
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of gravitational lensing are presented in the survey [18]. Of course, a finite dimen-
sional approach to light rays can be obtained using the normal exponential map.
However, an essential point of the finite dimensional reduction which is presented
here is the fact that it preserves the variational structure of the problem, and there-
fore also suited for developing Morse theoretical techniques, or to assess stability
results.

Our model proposes to study orthogonal light rays using the arrival time func-
tional restricted to the finite dimensional manifold of lightlike geodesics issuing
orthogonally to the initial spacelike manifold P0 (the extended light source), and
arriving transversally onto a timelike hypersurface Γ (the worldline of an extended
receiver). The arrival time of lightlike geodesics in Lorentzian geometry plays the
same role that the (squared) distance function plays in the study of focal properties
of submanifolds in Riemannian geometry. Generically, the focal set is the bifurca-
tion or catastrophe set for the family of distance functions from ambient points, see
[21, 22]. We assume that, with the induced metric, Γ is a stably causal Lorentzian
manifold in itself, i.e., it admits a smooth time function T : Γ → R; for τ ∈ R,
Γτ will denote the time slice T−1(τ). In this situation, the arrival time is a smooth
function in the space of light rays issuing from P0 and arriving on Γ , and under
a nonfocality assumption (Section 2.3), its critical points correspond to light rays
that arrive orthogonally to the time slices of Γ (Theorem 3.1). Moreover, a second
order variational principle also holds, in the following sense. First, nondegenerate
critical points p of the arrival time functional correspond exactly to nondegenerate
orthogonal light rays `p. Second, the Morse index of the critical point p is equal
to the Morse index of the geodesic action functional at `p minus the focal index
of `p. Such difference can be easily interpreted geometrically: it is the so-called
concavity index that appears in the Morse index theorem for orthogonal geodesics
(see Theorem 2.1), and it is given in terms of the second fundamental form of the
target manifold, computed in a space associated to the P0-Jacobi fields. Our Morse
index theorem provides a physical interpretation of the concavity index form along
an orthogonal lightlike geodesic, which is now seen as the second variation of the
arrival time functional.

As to the nonfocality assumption needed for our theory, a simple counterex-
ample shows that it cannot be omitted, see Example 1. A discussion on this as-
sumption is presented in Section 3.2, where we show that focal points correspond
indeed to focusing points of families of lightlike geodesics issuing orthogonally
from P0. We will also show here that the nonfocality assumption can be replaced
by the assumption that τ, defined in (3.1), has only nondegenerate critical points,
see Corollary 3.4.

Also, using the variational principle introduced in this paper, we give a notion of
stability for light rays between an extended light source and an extended receiver.
By the Morse index theorem, stability is equivalent to the positive-definiteness of
the concavity index form (Corollary 4.8). In the case of lightlike geodesics between
a pointwise source and a pointwise observer, the Morse index is always given by
the number of conjugate instants along the ray, which happens to be independent
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on the orientation of the geodesic, i.e., a future-pointing is stable if and only if
its backwards past-point reparameterization is stable. One of the interesting con-
sequences of our theory is the fact that, when one considers extended source and
receiver, the Morse index and the notion of stability do indeed depend on the time
orientation of the lightlike geodesic. Thus, an observer may have different notions
of stability for the image of an extended source on an extended receiver depend-
ing on whether he/she is located at the source or at the target. This is discussed
in Section 4.3, where a formula relating the Morse indices of a lightlike geodesics
and its backwards reparameterization is given (Proposition 4.6). Explicit examples
of situations of orthogonal lightlike geodesics whose Morse index (and stability)
changes according to its orientation are illustrated in Section 5. It is also interest-
ing to observe that one can have stability for light rays that have focal points, and
instability for light rays that do not contain focal points, see Example 3.

A remarkable interpretation of the result of this paper arises in a general rel-
ativistic context, in particular concerning the quasi–local analysis of spacetime
singularities. Indeed, it is well known that the classical singularity theorems by
Hawking and Penrose, requiring the existence of a global horizon, can be of cum-
bersome application in terms of the Cauchy problem for the Einstein field equations
[20]. This problem can be overcome, in some sense, introducing the so–called
marginally outer trapped surface (MOTS), and considering the (global) horizon as
foliated by a family of these MOTS, each a 2–codimensional closed spacelike sur-
face [1, 2]. In view of this, one can interpret the manifold P0 ⊂ M as a MOTS
lying on a initial data Cauchy hypersurface.

As for the submanifold Γ , it can play a prominent role in relativistic holography,
in case (M,g) is the conformal compactification of an asymptotically anti–deSitter
spacetime. In this case the conformal infinity is in fact a (n − 1)–codimensional
timelike hypersurface, and its intersection with the horizon is of interest in the
so–called topological censorship context [5].

We emphasize that the finite dimensional reduction discussed in the present pa-
per does not aim at the development of an existence theory for light rays, but rather
to the study of the local geometry of nontransversal intersections of the images of
normal exponential map along a lightlike geodesic. Given a future-pointing light-
like geodesic `0 : [0, 1] → M which is orthogonal at the endpoints to two space-
like submanifolds P0 and Γ0, then the finite dimensional setup can be applied to a
neighborhood of ` ′0(0) in the normal lightlike bundle of P0. This yields interesting
results when one considers the time evolutions Pτ of the light source P0 and Γτ of
Γ0, τ ∈ [−ε, ε]: when the concavity index form of `0 is degenerate, and it changes
its index as t crosses 0, then bifurcation of orthogonal lightlike geodesics occurs
(Proposition 4.5). In this situation, the type of bifurcation is determined by the
singularities of a smooth real valued map on a finite dimensional manifold. This
provides a simplified approach to the study of the singularities of the exponential
map and the geometry of caustics, which constitutes a quite active research area
both in the classical and in the modern literature (see for instance [3, 11, 23] and
the references therein).
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Using a Riemannian setup, several explicit examples are illustrated in Section 5
in the case of standard static spacetimes. As to bifurcation of orthogonal light rays,
we obtain interesting examples which show the role of focal points. Unlike the
fixed endpoint case, bifurcation may occur in absence of focal points, see Exam-
ple 2, and may not occur in presence of focal points, see Example 4.

Finally, in Section 6 we will discuss an application of our theory in a general
relativistic optical model. Here, the finite dimensional reduction is employed to
obtain a noncompactness result for the visible region of a light emitting body in a
null concave optical domain.

Acknowledgement. The authors gratefully acknowledge the support of Ivan Pon-
tual Costa e Silva, who made several interesting remarks and suggested the applica-
tion in Section 6. This work was carried out during a sabbatical semester of P.P. at
the Department of Mathematics of the University of Notre Dame. P.P. would like to
thank all staff and faculty at Notre Dame who provided this wonderful opportunity
to him.

2. THE SETUP

2.1. The objects. Let us consider a setup similar to [17]:

• (M,g) is an n-dimensional time-oriented Lorentzian manifold, n > 4,
and exp is its exponential map;
• P0 ⊂M is a (n−2)-dimensional spacelike submanifold, to be interpreted

as the surface of the light source;
• Γ is a (n − 1)-dimensional timelike submanifold of M which is stably

causal as a Lorentz manifold itself, i.e., it admits a smooth time function
T : Γ → R. We can assume that T is future-pointing with respect to the
time orientation on Γ induced by that of (M,g). Such a Γ represents the
history of the surface of the receiver.

In order to avoid trivialities, we will assume that P0 ∩ Γ = ∅; it will also be
assumed later that Γ has nonempty intersection with the causal future of P0, see
(HP1) below.

For τ ∈ R, let Γτ denote the time-slice T−1(τ) of Γ , which is an (n − 2)-
dimensional spacelike submanifold of Γ (and of M). We will be interested in light
rays issuing orthogonally from P0 and arriving orthogonally to a time-slice of Γ .
We will first recall a few general facts on lightlike geodesics orthogonal to space-
like endmanifolds.

2.2. Generalities on lightlike geodesics with endpoints orthogonal to two space-
like submanifolds. Let us consider an affinely parameterized lightlike geodesic
` : [a, b] → M joining orthogonally two spacelike surfaces Σ1 and Σ2, i.e., with
`(a) ∈ Σ1, `(b) ∈ Σ2, ` ′(a) ∈ T`(a)Σ⊥1 and ` ′(b) ∈ T`(b)Σ⊥2 .

2.2.1. The index form. Associated to this triple (Σ1, Σ2, `) one has the index form
I`Σ1,Σ2 , which is a symmetric bilinear form on the space of vector fields V along `,
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satisfying V(a) ∈ T`(a)Σ1, V(b) ∈ T`(b)Σ2, defined by:

(2.1) I`Σ1,Σ2(V,W) =

∫b
a

g
(DV

dt ,
DW
dt

)
+ g
(
R(` ′, V)` ′,W

)
dt

+ S2` ′(b)
(
V(b),W(b)

)
− S1` ′(a)

(
V(a),W(a)

)
,

where D
dt is the Levi–Civita covariant derivative operator along the curve `, R is the

curvature tensor of the Levi-Civita connection∇ of g, chosen with the sign conven-
tion R(X, Y) = ∇X∇Y −∇Y∇X−∇[X,Y], and S1` ′(a) (resp., S2` ′(b)) is the second

fundamental form1 of the surface Σ1 (resp., Σ2) at the point `(a) (resp., `(b)), in
the orthogonal direction ` ′(a) (resp., ` ′(b)). We will use the same symbol S1` ′(a)
(reps. S2` ′(b)) to denote the g-symmetric the linear endomorphism of T`(a)Σ1
(resp., T`(b)Σ2) that represents the second fundamental form S1` ′(a) (resp., S2` ′(b)).
Considered the restriction of I`Σ1,Σ2 to the (infinite dimensional) space of (piece-
wise smooth) vector fields V along γ satisfying V(a) ∈ T`(a)Σ1, V(b) ∈ T`(b)Σ2,
and g

(DV
dt , `

′) = 0, its index is a nonnegative finite integer, that will be denoted by
i(Σ1, Σ2; `). This number is the Morse index of ` as a critical point of the geodesic
action functional defined in the (infinite dimensional) space of all curves with free
endpoints on Σ1 and Σ2.

2.2.2. Jacobi fields. The kernel of I`Σ1,Σ2 is the space of (Σ1, Σ2)-Jacobi fields
along `, which is the space of all Jacobi fields J along ` satisfying the boundary
conditions:

(2.2) J(a) ∈ T`(a)Σ1, DJ
dt (a) + S

1
` ′(a)

(
J(a)

)
∈ T`(a)Σ⊥1 .

and

(2.3) J(b) ∈ T`(b)Σ2, DJ
dt (b) + S

2
` ′(b)

(
J(b)

)
∈ T`(b)Σ2.⊥

The geodesic `, or more precisely the triple (Σ1, Σ2, `), is said to be nondegenerate
if I`Σ1,Σ2 is a nondegenerate bilinear form, i.e., if Ker

(
I`Σ1,Σ2

)
= {0}.

A Σ1-Jacobi field along ` is a Jacobi field J satisfying the initial condition (2.2).
Let us denote by J(Σ1, `) the space of all Σ1-Jacobi fields along `; moreover, for
t ∈ ]a, b], we will denote by J(Σ1, `)[t] ⊂ T`(t)M the space:

J(Σ1, `)[t] =
{
J(t) : J ∈ J(Σ1, `)

}
.

An instant t0 ∈ ]a, b] is said to be Σ1-focal if there exists J ∈ J(Σ1, `) \ {0}
with J(t0) = 0. The multiplicity of a Σ1-focal point t0 is the dimension of the
space of all Σ1-Jacobi fields along ` vanishing at t0. Equivalently, t0 is Σ1-focal
along ` iff J(Σ1, `)[t0] 6= T`(t0)M, and the multiplicity of t0 is the codimension
of J(Σ1, `)[t0] in T`(t0)M.

The Σ1-focal instant along ` form a finite set; the sum of their multiplicity is
called the Σ1-focal index of `, and it will be denoted by i(Σ1; `).

1S1`′(a)(v1, v2) = g
(
` ′(a),∇v1V2

)
for all v1, v2 ∈ T`(a)Σ1, where V2 is any extension of v2 to

a local field tangent to Σ1
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Alternatively, an instant t0 ∈ ]a, b] is Σ1-focal along ` if and only if the vector
(t0 − a)`

′(a) is a singular point of the normal exponential map exp : TΣ⊥1 →M.
In particular, if t0 is not Σ1-focal along `, then exp gives a smooth diffeomorphism
between a neighborhood of (t0 − a)` ′(a) in the normal bundle TΣ⊥1 of Σ1 and an
open neighborhood of `(t0) inM.

2.2.3. The Morse index theorem. Consider now the vector space J(Σ1; `)Σ2 of all
Σ1-Jacobi fields J along ` satisfying J(b) ∈ T`(b)Σ2. Let us emphasize that the
Jacobi fields in J(Σ1; `)Σ2 are not (Σ1, Σ2)-Jacobi fields along `, in that they only
satisfy the first of the two boundary conditions (2.3) at b.

Denote by C`Σ1,Σ2 the restriction of the index form I`Σ1,Σ2 defined in (2.1) to
the space J(Σ1; `)Σ2 ; this is called the concavity index form of (Σ1, Σ2; `). Using
partial integration, it is easily computed:

(2.4) C`Σ1,Σ2(J1, J2) = g
(DJ1

dt (b), J2(b)
)
+ S2` ′(b)

(
J1(b), J2(b)

)
,

for all J1, J2 ∈ J(Σ1; `)Σ2 . Let us denote by iconc(Σ1, Σ2; `) the index of C`Σ1,Σ2 in
J(Σ1; `)Σ2 .

The reader must observe that we have associated to the triple (Σ1, Σ2, `) three
different integers: i(Σ1, Σ2; `), i(Σ1, `) and iconc(Σ1, Σ2; `). These three numbers
are related by a Morse index theorem.

A Morse index theorem in this situation has been proved first by Ehrlich and
Kim in [4], then by Perlick and Piccione in [17], while a different and more general
statement for arbitrary geodesics with endpoints orthogonal to arbitrary submani-
folds can be found in [19]. Let us recall here the index theorem in its formulation
given in [19].

2.1. Morse Index Theorem. Under the assumption:

(2.5) T`(b)Σ2 ⊂ J(Σ1; `)[b],

the following equality holds:

(2.6) i(Σ1, Σ2; `) = i(Σ1; `) + iconc(Σ1, Σ2; `). �

Let us observe that assumption (2.5) holds in particular when b is not a Σ1-focal
instant along `, in which case J(Σ1; `)[b] = T`(b)M. See Section 3.2 for a further
discussion on this.

2.3. Transversality and nonfocality assumptions. Let us now consider assump-
tions on the above objects, following the lines of [8]. The central assumption is
that, for each point p ∈ P0, there exists an orthogonal (future-pointing) lightlike
geodesic `p issuing from p orthogonally to P0, which eventually meets Γ transver-
sally at some nonfocal instant. More precisely, let L+

P0
denote the future pointing

lightlike normal bundle along P0; observe that, since dim(P0) = n − 2, for all
p ∈ P0, the fiber L+

P0
(p) consists of two directions. Let L be a smooth section of

L+
P0

, and for all p ∈ P0 let `p(t) = expp
(
t · Lp

)
be defined for all t ∈ [0, 1].

Consider the following three assumptions:
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(HP1) `p(t) 6∈ Γ for all t ∈ [0, 1[, and `p(1) ∈ Γ ;

(HP2) ` ′p(1) 6∈ T`(1)Γ ;

(HP3) t = 1 is not a P0-focal instant along `p.

Clearly, (HP1), (HP2) and (HP3) are open condition on P0, and therefore if they
hold at some point p, they will hold in a neighborhood of p in P0. A general ex-
istence theory for light rays from P0 to Γ can be developed using global causality
assumptions on the spacetime (M,g), as for instance [9, 12]. We stress however
that no global assumptions are needed for the results of the present paper. A discus-
sion on the nonfocality assumption (HP3) will be presented in Section 3.2. Loosely
speaking, one can say that it holds generically, at least in stationary spacetimes, see
[7].

Remark. Let us observe here that the above transversality and nonfocality assump-
tions only depend on P0 and Γ , and they could be stated without referring to par-
ticular choice of the section L of L+

P0
. However, (HP1) makes L a somewhat spe-

cial section of this bundle as far as focality is concerned: an instant t ∈ ]0, 1]
is focal along `p if and only if there exists a Jacobi field J along `p satisfying
J(0) ∈ TpP0 \ {0}, DJ

dt (0) = ∇J(0)L and J(t) = 0, see Section 3.2.

3. A FINITE DIMENSIONAL REDUCTION FOR THE FERMAT PRINCIPLE

The Fermat principle for extended light sources and extended receivers proved
in [17] characterize the (future-pointing) lightlike geodesics starting orthogonally
from P0 and arriving spatially orthogonally to Γ as those lightlike piecewise-smooth
curves from P0 to Γ that extremize the arrival time functional.

3.1. The Fermat principle. Using the setup described above, we will now give
a simplified finite dimensional reduction of this variational principle. We first ob-
serve that, under assumptions (HP1) and (HP2), the function τ : P0 → R+ defined
by:

(3.1) τ(p) = T
(
`p(1)

)
is smooth. This follows easily from the implicit function theorem, using the transver-
sality assumption (HP2). Our aimed finite dimensional reduction of the Fermat
principle has the following statement:

Theorem 3.1. In the above setup, assume that (HP1), (HP2) and (HP3) hold at
every point p ∈ P0.

(1) A point p ∈ P0 is critical for τ if and only if `p is spatially orthogonal to Γ
at t = 1, i.e., if ` ′p(1) ∈ (T`p(1)Γτ(p))

⊥.

(2) A critical point p ∈ P0 for τ is nondegenerate if and only if the lightlike
geodesic `p is nondegenerate as an orthogonal geodesic inM between the
spacelike submanifolds P0 and Γτ(p).
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(3) If p ∈ P0 is a critical point of τ, then the Morse index iMorse(τ, p) of τ at
p is equal to the concavity index iconc(P0, Γτ(p); `p), which is given by the
difference:

(3.2) i(P0, Γτ(p); `p) − i(P0; `p).

Proof. For the proof of (1), observe that, for p ∈ P0 and v ∈ TpP0, choosing a
smooth curve ]−ε, ε[ 3 s 7→ ps ∈ P0 with p0 = p and p ′0 = v, the differential
dτ(p)v is given by:

dτ(p)v =
d
ds

∣∣∣
s=0

T
(
`ps
)
= dT

(
`p(1)

)
Jv(1),

where Jv(1) is the P0-Jacobi field along `p satisfying:2

(3.3) Jv(0) = v, and
DJv
dt

(0) = ∇vL.

Thus, p is a critical point of τ if and only if the vector space Ep ⊂ T`p(1)Γ defined
by:

(3.4) Ep :=
{
Jv(1) : v ∈ TpP0

}
is contained in T`p(1)Γτ(p). By Gauss Lemma, ` ′p(1) is orthogonal to Ep; more-
over, since ` ′p(1) is lightlike and Γ is timelike, then dim

(
` ′p(1)

⊥∩T`p(1)Γ
)
= n−2.

Since 1 is not a focal instant3 along `, then also dim(Ep) = dim(P0) = n − 2 =

dim(Γτp). Thus, ` ′p(1)
⊥ ∩ T`p(1)Γ = Ep, and p is critical if and only if

(3.5) Ep = T`p(1)Γτ(p).

In other words, p is critical if and only if ` ′p(1) ∈ (T`p(1)Γτ(p))
⊥.

For the proof of the remaining two statements, we need a second variational
formula for the function τ at a given critical point p ∈ P0. To this aim, let us choose
a differentiable curve ]−ε, ε[ 3 s 7→ ps ∈ P0, with p0 = p, and p ′0 = v ∈ TpP0.
Define the following two-parameter map inM:

]−ε, ε[× [0, 1] 3 (s, t) 7−→ η(s, t) ∈M,

by:

(3.6) η(s, t) = expps(t · Lps) = `ps(t),

and denote by ∂η∂t , ∂η∂s the corresponding vector fields along η. We want to compute

(3.7) d2τ(p0)[v, v] =
d2

ds2
∣∣
s=0

τ(ps) =
∂2

∂s2

∣∣
s=0

T
(
η(s, 1)

)
.

Since t 7→ η(s, t) is a geodesic, then:

g
(
∂η
∂t ,

∂η
∂t

)
= 0,

2Let us observe that a Jacobi field along `p satisfying (3.3) is automatically a P0-Jacobi field.
3We will show in Section 3.2 that the condition dim(Ep) = 2 is equivalent to the nonfocality of

the instant t = 1.
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from which it follows:

(3.8) 0 =
1

2

∂

∂s
g
(
∂η
∂t ,

∂η
∂t

)
= g

(
∇∂η
∂s

∂η
∂t ,

∂η
∂t

)
.

From the symmetry of the Levi-Civita connection we also have:

(3.9) ∇∂η
∂s

∂η

∂t
= ∇∂η

∂t

∂η

∂s
,

which substituted in (3.8) gives:

(3.10) g
(
∇∂η
∂t

∂η
∂s ,

∂η
∂t

)
= 0.

For s ∈ ]−ε, ε[, let Us ∈ Tη(s,1)Γ be the vector defined by:

Us = −∇T
(
η(s, 1)

)
/g
(
∇T
(
η(s, 1)

)
,∇T

(
η(s, 1)

))
,

where ∇T is the vector field along Γ given by the gradient of the time function T .
Set

Cs = −g
(
∂η
∂t (s, 1), Us

)
,

this is a positive constant for all s, because ∂η∂t (s, 1) and Us are future-pointing
causal vectors. Let us consider a decomposition of the vector ∂η∂s (s, 1) as:

(3.11)
∂η

∂s
(s, 1) = asUs +

∂η

∂s
(s, 1)⊥,

where g
(
∂η
∂s (s, 1)

⊥, Us
)
= 0. A direct computation gives:

(3.12) as = g
(
∂η
∂s (s, 1),∇T

(
η(s, 1)

))
=
∂

∂s
T
(
η(s, 1)

)
.

Using (3.10), we obtain:

(3.13) 0 =

∫1
0

g
(
∇∂η
∂t

∂η
∂s ,

∂η
∂t

)
dt = g

(
∂η
∂t ,

∂η
∂s

)∣∣t=1
t=0

= g
(
∂η
∂t (s, 1),

∂η
∂s (s, 1)

)
− g
(
∂η
∂t (s, 0),

∂η
∂s (s, 0)

)
by (3.11)
= −Cs · as + g

(
∂η
∂t (s, 1),

∂η
∂s (s, 1)

⊥)− g(∂η∂t (s, 0), ∂η∂s (s, 0))
by (3.12)
= −Cs ·

∂

∂s
T
(
η(s, 1)

)
+ g
(
∂η
∂t (s, 1),

∂η
∂s (s, 1)

⊥)−g(∂η∂t (s, 0), ∂η∂s (s, 0)),
which gives:

(3.14) Cs ·
∂

∂s
T
(
η(s, 1)

)
= g

(
∂η
∂t (s, 1),

∂η
∂s (s, 1)

⊥)− g(∂η∂t (s, 0), ∂η∂s (s, 0)).
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Keeping in mind that ∂∂s
∣∣
s=0

T
(
η(s, 1)

)
= 0, differentiating (3.14) gives:

(3.15) C0
∂2

∂s2

∣∣∣
s=0

T
(
η(s, 1)

)
=
[
g
(
∇∂η
∂s

∂η
∂t ,

∂η
∂s

⊥)
+ g
(
∂η
∂t ,∇∂η

∂s

∂η
∂s

⊥)]∣∣∣
s=0, t=1

−
[
g
(
∇∂η
∂s

∂η
∂t ,

∂η
∂s

)
+ g
(
∂η
∂t ,∇∂η

∂s

∂η
∂s

)]∣∣∣
s=0, t=0

by (3.9)
=

[
g
(
∇∂η
∂t

∂η
∂s ,

∂η
∂s

⊥)
+ g
(
∂η
∂t ,∇∂η

∂s

∂η
∂s

⊥)]∣∣∣
s=0, t=1

−
[
g
(
∇∂η
∂t

∂η
∂s ,

∂η
∂s

)
+ g
(
∂η
∂t ,∇∂η

∂s

∂η
∂s

)]∣∣∣
s=0, t=0

.

From (3.6), we have:
∂η

∂t
(0, 0) = ` ′p(0),

∂η

∂s
(0, 0) = v,

∂η

∂t
(0, 1) = ` ′p(1),

and

(3.16)
∂η

∂s
(0, 1)⊥

by (3.5)
=

∂η

∂s
(0, 1) = Jv(1),

where4 Jv is the P0-Jacobi field along `p defined by the initial conditions (3.3).
Substituting in (3.15) and using the definition of the second fundamental form, we
obtain:

(3.17) C0 · d2τ(p)[v, v] = g
(DJv

dt (1), Jv(1)
)
+ S

τ(p)
` ′p(1)

(
Jv(1), Jv(1)

)
,

where Sτ(p)
` ′p(1)

is the second fundamental form of the spacelike submanifold Γτ(p)
in the orthogonal direction ` ′p(1). Note that:[
g
(
∇∂η
∂t

∂η
∂s ,

∂η
∂s

)
+ g
(
∂η
∂t ,∇∂η

∂s

∂η
∂s

)]∣∣∣
s=0, t=0

= g
(DJv

dt (0), Jv(0)
)
+ SP0

` ′p(0)

(
Jv(0), Jv(0)

)
= 0

because Jv is a P0-Jacobi field.
Summarizing, formula (3.5) proves that the map v 7→ Jv gives an isomorphism

between TpP0 and the space J(P0; `p)Γτ(p) consisting of P0-Jacobi fields J along
`p such that J(1) ∈ T`p(1)Γτ(p) (see Section 2.2.3). Moreover, formula (3.17)
shows that, using this isomorphism, the second variation of τ at a critical point p
is identified with the concavity index form C

`p
P0,Γτ(p)

of (P0, Γτ(p); `p), which was
defined in (2.4). From these facts, we can draw the desired conclusions.

First, a vector v ∈ TpP0 is in the kernel of d2τ(p) if and only if the correspond-
ing P0-Jacobi field Jv is in the kernel of the concavity index form C

`p
P0,Γτ(p)

, i.e.,

4 Observe that equality (3.16) holds in fact also when assumption (HP3) is not satisfied, i.e., when
(3.5) does not necessarily hold. Namely, for (3.16) it suffices to have the inclusion Ep ⊂ T`p(1)Γτ(p),
which holds for all critical points of τ, regardless of the nonfocality assumption.
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if and only if Jv is a (P0, Γτ(p))-Jacobi field along `p. Thus, p is a nondegenerate
critical point of τ if and only if `p is a nondegenerate orthogonal geodesic between
P0 and Γτ(p), which proves part (2) of the statement.

Second, the Morse index of τ at p is equal to the index of the concavity index
form C

`p
P0,Γτ(p)

. By the Morse index theorem, see formula (2.6), this index is given
by the difference i(P0, Γτ(p); `p) − i(P0; `p), proving (3.2). �

3.2. Focusing of orthogonal light rays. While assumptions (HP1) and (HP2)
are certainly essential for the statement of Theorem 3.1, the reader may wonder
whether assumption (HP3) is really necessary for the conclusion. Let us observe
here that such assumption has been used in order to obtain that p is critical for τ
if and only if equality (3.5) holds. More generally, without the assumption (HP3),
one would deduce that p is critical if and only if Ep ⊂ T`p(1)Γτ(p); recall that the
space Ep was defined in (3.4).

Observe that Gauss Lemma only guarantees that ` ′p(1) is orthogonal to Ep, so
that orthogonality to the whole space T`p(1)Γτ(p) may fail when Ep ( T`p(1)Γτ(p).
Indeed, in Section 5 we will show an explicit example where (HP3) is not satisfied,
and Ep ( T`p(1)Γτ(p) at some critical point p, and for which the corresponding
geodesic `p does not arrive orthogonally to Γτ(p).

Let us observe here that this phenomenon can only occur at degenerate critical
points of the arrival time function.

Lemma 3.2. Assume that (HP1) and (HP2) hold at p, and that p is a nonde-
generate critical point of τ. Then, Ep = T`p(1)Γτ(p), and therefore `p arrives
orthogonally onto Γτ(p).

Proof. The crucial observation is that the second variational formula (3.17) holds
for all critical points of the function τ, regardless of the nonfocality assumption.
This has been observed in footnote 4 on page 10. The equality Ep = T`p(1)Γτ(p)
follows once we show that Jv(1) 6= 0 for all v ∈ TpP0\{0}. But this follows readily
from the nondegeneracy assumption and the observation that, by formula (3.17),
Ker
(
d2τ(p)

)
=
{
v ∈ TpP0 : Jv(1) = 0

}
. �

One could then wonder whether some assumption weaker than (HP3) implies
the equality Ep = T`p(1)Γτ(p) at every critical point p. Note that Ep 6= T`p(1)Γτ(p)
when there exists v ∈ TpP0 \ {0} such that Jv(1) = 0, and this occurs if and only
if `p(1) is a focusing point for a family of lightlike geodesics starting orthogonally
from P0. More precisely, Jv(1) = 0 if and only if there exists a smooth curve
]−ε, ε[ 3 s 7→ ps ∈ P0, with p0 = p and p ′0 = v, such that:

d
ds

∣∣∣
s=0

`ps(1) = 0,

recalling that `ps is the geodesic defined in (3.6).
However, the usual focality property is equivalent to the focusing of geodesics

starting orthogonally from P0 having arbitrary causal character. Thus, it is not
clear in principle whether one could have a situation where `p(1) is a P0-focal
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point along `p, and yet Ep = T`p(1)Γτ(p). Next Lemma establishes that this is
never the case.

For p ∈ P0, set:

(3.18) JP0p =
{
P0-Jacobi fields J along `p with J(1) = 0

}
;

clearly, `p(1) is P0-focal iff JP0p 6= {0}.

Proposition 3.3. Assume that (HP1) and (HP2) hold at p ∈ P0. Then, the follow-
ing conditions are equivalent:

(a) `p(1) is a P0-focal point along `p;
(b) dim(Ep) < n− 2;

Proof. We have seen in the proof of Theorem 3.1 that (b) implies (a).
Assume now that (a) holds, and let J ∈ JP0p be a nontrivial P0-Jacobi field along

`p satisfying J(1) = 0; let us prove that

(3.19)
DJ
dt

(0) = ∇J(0)L+ α · Lp

for some α ∈ R. By definition of P0-Jacobi field, one has:

(3.20) DJ
dt (0) + S

P0
Lp

(
J(0)

)
= DJ

dt (0) −∇J(0)L ∈ (TpP0)
⊥.

Since both DJ
dt (0) and ∇J(0) are orthogonal to Lp, from (3.20) we get:

(3.21) DJ
dt (0) + S

P0
Lp

(
J(0)

)
= DJ

dt (0) −∇J(0)L ∈ (TpP0)
⊥ ∩ L⊥p .

Since dim
(
(TpP0)

⊥) = 2, then (TpP0)
⊥ ∩ L⊥p = R · Lp, which proves (3.19).

Set v = J(0); we now claim that v 6= 0. For, otherwise it would be α 6= 0, and J
would be the variational vector field associated to the variation of `p by orthogonal
geodesics (`s)s∈]−ε,ε[:

`s(t) = `p
(
(1+ αs)t

)
, t ∈ [0, 1].

Observe indeed that `0 = `p, d
ds

∣∣
s=0

`s(0) = 0, and:

D
ds

∣∣∣
s=0

` ′s(0) =
d
ds

∣∣∣
s=0

(1+ αs)` ′p(0) = α · ` ′p(0) = α · Lp.

Hence, J = d
ds

∣∣
s=0

`s. However, for such a field J, it must be:

J(1) =
d
ds

∣∣∣
s=0

`s(1) =
d
ds

∣∣∣
s=0

`p(1+ αs) = α · ` ′p(1) 6= 0,

i.e., J cannot belong to JP0p . This proves the claim that v 6= 0.
Now, we claim that since J(1) = 0, then it must be α = 0, i.e., J is equal to the

P0-Jacobi field Jv defined by the initial conditions (3.3). Observe indeed that the
field Jα(t) = α·` ′p(t) is a P0-Jacobi field along `p, and that J = Jv+Jα. However,
if α 6= 0, then Jα(1) = α` ′p(1) 6= 0. On the other hand, Jv(1) ∈ Ep, which is a
spacelike subspace of T`p(1)Γ and it does not contain nontrivial multiples of ` ′p(1).
It follows that if α 6= 0, then J(1) cannot vanish, proving our claim.
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The conclusion is that Jv(1) = 0, and therefore (b) holds. This concludes the
proof. �

Using Lemma 3.2 and Proposition 3.3, we obtain readily the following:

Corollary 3.4. Under assumption (HP1) and (HP2), if p is a nondegenerate criti-
cal point of τ, then `p(1) is not P0-focal along `p. �

4. APPLICATION: BIFURCATION OF LIGHT RAYS AND THE GRAVITATIONAL
LENSING EFFECT

As an application of our finite dimensional reduction for the Fermat principle,
we will discuss here a bifurcation result for light rays between an extended light
source and an extended receiver. Having the path paved by the finite dimensional
Fermat principle, the main results of this section will require no formal proof, as
they follow immediately from standard variational bifurcation theory and the im-
plicit function theorem. In view to a physical interpretation, the interesting case
is when n = 4; nevertheless, this assumption will not be necessary in our theory.
Bifurcation of light rays has been studied in reference [6]. We discuss here a dif-
ferent type of approach, which is more directly related to the multiple image effect
and gravitational lensing in General Relativity.

4.1. Worldline of the light source. Let us consider the setup in Section 2.1, with
the additional requirement that the spacelike submanifold P0 is an element of a
continuous 1-parameter family of spacelike (n− 2)-dimensional submanifolds:

(4.1) [−ε, ε] 3 r 7−→ Pr,

for some ε > 0. More precisely, we will assume the existence of a 1-parameter
group of local diffeomorphisms {φr}r of M , which is continuous with respect to
the C2-topology, such that Pr = φr(P0). The interesting case is when φr is the
local flow of some future-pointing timelike vector field defined in a neighborhood
of P0; in this situation, (4.1) is interpreted as the worldline of the extended light
source P0. Note that we use a different symbol for the time parameter r, which in
principle is distinct from the time τ measured on the target manifold Γ .

Up to considering a sufficiently small ε, we can assume that the line bundle L+
P0

can be continuously extended to an orthogonal lightlike line bundle L+
P on

P =
⋃

r∈[−ε,ε]

(
Pr × {r}

)
.

Thus, for all (p, r) ∈ P0 × [−ε, ε], we have a future-pointing lightlike direction at
the point φr(p) which is orthogonal to the spacelike submanifold Pr, and which
depends continuously on p and r.

Let us now assume that assumptions (HP1) and (HP2) hold on P0, and let us
observe that these conditions are stable by sufficiently C1-small perturbations of
the manifold P0. This means that we have the existence of a continuous section L
of L+

P , such that Lp,r is smooth in p for all fixed r, and such that, setting:

`p,r(t) = expφr(p)(Lp,r · t)
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the following hold, ∀r ∈ [−ε, ε]:
(HP1)P `p,r(t) 6∈ Γ for all t ∈ [0, 1[, and `p,r(1) ∈ Γ ;
(HP2)P `

′
p,r(1) 6∈ T`(1)Γ .

We therefore have a map:
τ : P −→ R+

defined by τ(p, r) = T
(
`p,r(1)

)
, which is smooth in the variable p ∈ P and

continuous in r. For r ∈ [−ε, ε], we also set τr : P0 → R+:

τr = τ(·, r).
A similar observation can be made on assumption (HP3): if it holds on P0, then
for ε small enough:
(HP3)P t = 1 is not a (lightlike) Pr-focal instant along `p,r, for all r ∈ [−ε, ε].
The above discussion can be summarized as follows. Denote by OP,Γ the set of
initial points in P of future pointing lightlike geodesics starting orthogonally to P
and arriving spatially orthogonally to Γ , i.e.:

(4.2) OP,Γ =
{
(p, r) ∈ P : ` ′p,r(1) ∈

(
T`p,r(1)Γτr(p)

)⊥}
.

Proposition 4.1. Under assumptions (HP1)P, (HP2)P and (HP3)P:

OP,Γ =
{
(p, r) ∈ P : ∂τ∂p(p, r) = 0

}
.

Moreover, given (p, r) ∈ OP,Γ , then `p,r is nondegenerate as an orthogonal ge-
odesic between Pr and Γτr(p) if and only if the second derivative ∂2τ

∂p2
(p.r) is a

nondegenerate bilinear form on TpP0. �

4.2. The bifurcation setup. We will now assume that the 1-parameter family of
local diffeomorphisms {φr}r depends smoothly on r, which makes the set P a
smooth manifold, and L+

P a smooth line bundle over P. Suppose that we are given
a continuous curve [−ε, ε] 3 r 7→ pr ∈ P0 such that the lightlike geodesic

`r : = `pr,r

arrives spatially orthogonally to Γ , i.e., such that ` ′r(1) is orthogonal to Γτr(pr) for
all r. This is interpreted as the fact that an image of the extended source is seen by
the (extended) receiver along the time. An immediate application of the implicit
function theorem to the equation ∂τ∂p = 0 gives the following:

Proposition 4.2. Given r∗ ∈ ]−ε, ε[, if `r∗ is a nondegenerate orthogonal geodesic
between Pr∗ and Γτr∗(pr∗), then the map r 7→ pr is smooth near r = r∗, and a
sufficiently small neighborhood of (pr∗ , r∗) in OP,Γ consists of points of the form
(pr, r), with r near r∗. �

As to the geometry of OP,Γ near a degenerate geodesic, this can be studied
by looking at the singular zeros of the map (p, r) 7→ ∂τ

∂p(p, r). In this situation, a
basic question is about the existence of bifurcating branches of orthogonal lightlike
geodesics that converge to a degenerate one. Let us give the following definition.
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Definition 4.3. We say that r∗ ∈ [−ε, ε] is an instant of bifurcation of images of P
on Γ if there exists a sequence (pn, rn)n∈N in P, with pn 6= prn for all n, such
that:

(a) lim
n→∞(pn, rn) = (pr∗ , r∗);

(b) (pn, rn) ∈ OP,Γ , for all n ∈ N.

As an immediate corollary of Proposition 4.2 and Definition 4.3, we have:

Corollary 4.4. If r∗ ∈ [−ε, ε] is an instant of bifurcation of images of P on Γ , then
pr∗ is a degenerate critical point of τr∗ in P. �

It is well known that degeneracy is a necessary condition for bifurcation, which
is not sufficient in general. Sufficient conditions for bifurcation are given in terms
of jump of topological invariants associated to critical points, such as the Morse
index. Given r ∈ [−ε, ε] and a critical point p of τr, we will denote by iMorse(τr;p)
the Morse index of τr at p.

Proposition 4.5. Assume that:
(1) p±ε is a nondegenerate critical point of τ±ε on P0;
(2) iMorse(τ−ε;p−ε) 6= iMorse(τε;pε).

Then, there exists an instant r∗ ∈ ]−ε, ε[ of bifurcation of images of P on Γ . �

We emphasize that, in the case of an extended source and an extended receiver,
bifurcation of light rays is not related to focal points, see Example 2 in Section 5.

4.3. Interchanging the role of P and Γ . Let us now assume that also the worldline
of the light source can be described as a stably causal Lorentzian hypersurface of
M, where the sets Pr are the time slices of the time function defined on the disjoint
union P =

⋃
r Pr. In this situation, the role of P and Γ can be reversed, and one can

consider past-pointing lightlike geodesics starting orthogonally from a time slice
of Γ , and ending on P. In this situation, let us assume that `0 is a lightlike geodesic
with endpoints orthogonal to a time slice P0 of P at the initial point, and to a time
slice Γ0 of Γ at the final instant. Then, `0 is obtained from a critical point p0 on P

off the arrival time function τΓ on Γ , and also from a critical point γ0 on Γ of the
departure time τP. Let us also assume that the endpoint of `0 on Γ0 is not P0-focal,
and that the endpoint of `0 on P0 is not Γ0-focal.

Proposition 4.6. In the above situation, p0 is a nondegenerate critical point of τΓ

if and only if `0 is a nondegenerate critical point of τP. The difference of the Morse
indices iMorse(τ

P; `0) − iMorse(τ
Γ , p0) is equal to the number of P0-focal instants

minus the number of Γ0-focal instants along `0:

(4.3) iMorse(τ
P; `0) − iMorse(τ

Γ ;p0) = i(P0; `0) − i(Γ0; `−0 ),

where `−0 denotes the backwards reparametrization of `0.

Proof. The first statement follows easily from the fact that the nondegeneracy of a
critical point for both the arrival and the departure time, from Theorem 3.1, part (2)
is equivalent to the nondegeneracy of `0 as an orthogonal geodesic between the
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two end submanifolds, which does not depend on the orientation chosen for `0.
Formula (4.3) follows readily from Theorem 3.1, part (3), and formula (2.6), as
i(P0, Γ0; `0) = i(Γ0,P0; `−0 ). �

Thus, as a critical point of the arrival time functional, the Morse index of a
lightlike geodesic `0 and the Morse index of its backwards reparameterization `−0
will change if the number of P0-focal points along `0 is different from the number
of Γ0-focal points along `−0 . An explicit example of this situation will be given in
Section 5.

4.4. On a notion of stability for orthogonal light rays. Using the variational
characterization of Theorem 3.1, we can introduce the following notion of stability
for light rays.

Definition 4.7. A (future-pointing) light ray ` : [0, 1] → M which is orthogonal
to the initial spacelike surface P0 and spatially orthogonal to the final timelike
submanifold Γ is said to be stable if the point `(0) is a local minimum of the arrival
time function τP0 .

Equivalently, ` is stable if the Morse index of τP0 at p0 = `(0) is equal to 0.
Recalling part (3) of Theorem 3.1, we obtain immediately:

Corollary 4.8. ` is stable if and only if the concavity index form C`P0,Γτ(p0)
is

positive semidefinite. �

As explained above, when one interchanges the role of the initial and the final
manifold, the stability of ` and its backwards reparameterization `− may change,
depending on the number of focal points, see Figure 4.

5. EXAMPLES

In this section we will exhibit explicit examples to illustrate our results. For most
of our constructions, we will use standard static Lorentz manifolds, in which case
lightlike geodesics project onto Riemannian geodesics in the spatial part. More
precisely, let us assume that (M̃, g̃) is a Riemannian manifold, with dim(M̃) =

n − 1 > 2, and let us consider the manifold M = M̃ × R, endowed with the
Lorentz metric g = g̃ − dτ2, where τ denotes the coordinate in R, and time-
oriented by the timelike Killing vector field ∂

∂τ . A curve ` = (x, τ) : [a, b] → M

is a geodesic in (M,g) if and only if x : [a, b] → M̃ is a geodesic in (M̃, g̃) and
τ : [a, b]→ R is an affine map; in this situation, ` is lightlike (and future-pointing)
when g̃(ẋ, ẋ) = τ̇2 (and τ̇ > 0).

Assume that P̃0 ⊂ M̃ is a hypersurface, that Γ̃0 is an (n − 2)-dimensional
manifold, and that φτ : Γ̃0 → M̃ is a smooth 1-parameter map of embeddings,
with τ ∈ [−ε, ε], ε > 0; we identify Γ̃0 with φ0(Γ̃0), and we set Γ̃τ = φτ(Γ̃0).

Let x0 : [0, L0]→ M̃ be a unit speed geodesic in (M̃, g̃) with

• x0(0) ∈ P̃0,
• ẋ(0) ∈ (Tx(0)P̃0)

⊥,
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• x0
(
[0, L0[

)
∩ Γ̃0 = ∅,

• x0(L0) ∈ Γ̃0, and ẋ0(L0) 6∈ Tx(L0)Γ̃0.

Set Γ =
⋃

τ∈[−ε,ε]

(
Γ̃τ×{τ+L0}

)
⊂M, and P0 = P̃0×{0} ⊂M; clearly, P0 is a

spacelike (n−2)-dimensional submanifold ofM, and Γ is a timelike hypersurface
of (M,g). The map T : M̃×R→ R defined by:

T(x, τ) = τ+ L0

gives an everywhere defined smooth future pointing timelike function on (M,g),
and the time slices of Γ are precisely the spacelike submanifolds Γτ = Γ̃τ×{τ+L0}.

The curve `0 : [0, 1] → M, defined by `0(t) =
(
x0(tL0), tL0

)
is a future

pointing lightlike geodesic starting orthogonally from P0 and arriving transversally
on Γ . By replacing P0 with a suitable neighborhood of p0 =

(
x0(0), 0

)
in P0, we

are in the setup described in Section 2.1, and assumptions (HP1) and (HP2) of
Section 2.3 are satisfied. Moreover, it is easy to prove the following:

• the instant L0 is P̃0-focal along the geodesic x0 in (M̃, g̃) if and only if
`p(1) is a lightlike P0-focal point along `0;
• `0 is spatially orthogonal to Γ (i.e., orthogonal to Γ0) if and only if x0

arrives orthogonally to Γ̃0.
It is also clear that, in the above situation, the arrival time function τ defined in
(3.1) corresponds to the Riemannian g̃-length of geodesics starting orthogonally
from P̃0 and arriving (transversally) onto Γ̃τ. There is a one-to-one correspondence
between P0-Jacobi field along `0 that are tangent at Γ0 at `0(1) and P̃0-Jacobi
fields along x0 that are tangent to Γ̃0 at x0(1). Using this correspondence, when
`0 is spatially orthogonal to Γ , the concavity index form C

P0,Γ0
`0

determined by `0

corresponds to the concavity index form C
P̃0,Γ̃0
x0 of the g0-geodesic x0. Thus, de-

generacy and Morse index for a (P0, Γ0)-orthogonal lightlike geodesic `0 in (M,g)

are the same as degeneracy and Morse index for the (P̃0, Γ̃0)-orthogonal geodesic
x0 in (M̃, g̃).

For the bifurcation setup, we will consider Pr = P0 × {r}, r ∈ [−ε, ε], so
that P =

⋃
r

(
P0 × {r}

)
; in this situation, lightlike geodesics that are spatially

orthogonal to P and Γ correspond to geodesics in (M̃, g̃) that are orthogonal to P̃0

and to Γ̃t at their endpoints for some t.
Keeping in mind this Riemannian setup, we will now describe our examples.

Example 1. This example shows that assumption (HP3) cannot be omitted in Theo-
rem 3.1. Consider the case where (M̃, g̃) is the Euclidean planeR2. The hypersur-
face P̃0 is a neighborhood of the point (0, 1) in the circle centered at (0, 0) having
radius 1, and Γ̃0 is a neighborhood of (0, 0) of the line y = x. The origin (0, 0)

belongs to Γ̃0, and it is a P̃0-focal point. All the segments starting orthogonally
from P̃0 arrive on Γ̃0 at (0, 0), so that the length function is constant on P̃0, i.e.,
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FIGURE 1. Critical points of the length functional do not corre-
spond to orthogonal geodesics when (HP3) is not satisfied. In the
picture, the segments starting orthogonally to the circular curve are
rays that meet at the center of the circle. In this case, the length
function is constant.

all the points of P̃0 are critical for the distance function. However, none of these
critical points correspond to a segment that arrive orthogonally to Γ̃0. See Figure 1.

A perturbation of this situation produces an example of an isolated (degenerate)
critical point of the distance function on P̃0 which does not correspond to a segment
that arrives orthogonally to Γ̃0, see Figure 2 .

Example 2. This example shows that one can have bifurcation of spatially orthog-
onal light rays also when there are no focal points. Consider again the case where
(M̃, g̃) is the Euclidean plane R2. The hypersurface P̃0 is the circle centered at
(−2, 0) having radius 2; given τ ∈ [1, 3], the hypersurface Γ̃τ is a neighborhood of
the point (1, 0) in the circle with center in (−τ, 0) and radius equal to τ + 1. For
all τ, the segment x0(t) = (t, 0), t ∈ [0, 1], is an orthogonal geodesic from P̃0 to
Γ̃τ. For τ ∈ [1, 2[, the curve x0 realizes the minimum distance between P̃0 and Γ̃τ.
For τ ∈ ]2, 3], the curve x0 gives a local maximum of the distance function, so that
a jump of Morse index occurs at τ = 2. As expected, bifurcation of orthogonal
geodesics occurs at τ = 2, when P̃0 and Γ̃τ have the same center: all the segments
starting orthogonally from P̃0 arrive orthogonally to Γ̃2. Observe that x0 does not
contain neither P̃0-focal instants nor Γ̃τ-focal instants. See Figure 3. This is an
example of supercritical pitchfork bifurcation.

Example 3. In Figure 4 there is an example where, interchanging the role of the ini-
tial and the final submanifold, the Morse index of the orthogonal geodesic changes.
This is due to the presence of focal points, as explained in Section 4.3. Observe
that on the left we have a stable critical point of the arrival time which is a geodesic



A FINITE DIMENSIONAL APPROACH TO LIGHT RAYS 19

�����

�����

�����

t

������

FIGURE 2. On the left, P̃0 is the arc of an ellipse containing a
vertex along the greater axis (horizontal), and Γ̃0 is a straight non-
vertical segment through the closest focal point of the ellipse (this
is not the focus of the ellipse!). Thus, assumption (HP3) is not sat-
isfied. Segments that depart orthogonally from P̃0 arrive transver-
sally, but never orthogonally, to Γ̃0. In red, the segment along the
axis, which gives a critical point of the length function, but it does
not arrive orthogonally to Γ̃0. On the right, a graph of the distance
function, with a degenerate critical point at t = 0 corresponding to
the vertex of the ellipse. Note that, as in the example of Figure 1,
we have here a degenerate critical point of length function, see
Lemma 3.2.

that contains a focal point. On the right, an unstable critical point with no focal
points.

Example 4. In the Euclidean plane, the hypersurface P̃0 is (a neighborhood of the
point (−1, 0) of) the circle centered at (0, 0) having radius 1. For τ ∈ [−ε, ε], the
hypersurface Γ̃τ is the vertical line of equation y = τ. For all τ, the horizontal
segment xτ(t) =

(
− 1 + (τ + 1)t, 0

)
, t ∈ [0, 1], is the unique geodesic starting

orthogonally on P0 and ending orthogonally to Γ̃τ. For τ = 0, the final endpoint
x0(1) = (0, 0) is P̃0-focal.

Let us observe that for τ < 0, xτ gives a maximum of the length function in
the set of segments that start orthogonally from P̃0 and terminate on Γ̃τ. Thus, the
Morse index of the corresponding arrival time function is equal to 1; this is also
easily computed as the index of the concavity form, which in this case is defined on
a 1-dimensional space and it is negative definite. On the other hand, for τ > 0, xτ
realizes the minimum of the length function, and it gives Morse index equal to 0.
Also in this case, a direct elementary computation shows that the concavity index
form is positive definite. Thus, we have jump of the Morse index, but no bifurcation
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FIGURE 3. In black two circular curves, with segments starting
orthogonally from the circle on the left. Bifurcation occurs when
the center of the circles coincide, in which case there are infinitely
many segments that arrive orthogonally to the right circle. This
is an example of supercritical pitchfork bifurcation: on the left,
the orthogonal geodesic is stable, and it becomes unstable after
the bifurcation instant. The bifurcating branch consists of stable
orthogonal geodesics.

of orthogonal geodesics. This is due to the fact that at τ = 0 the assumption (HP3)
is not satisfied. More precisely, one has bifurcation of critical points for the arrival
time function, but they do not correspond to orthogonal geodesics (they are rays of
the circle P̃0 terminating at the center, see Figure 5).

We should also note that the Morse index of the geodesic xτ as a critical point
of the geodesic action functional in the space of all paths from P̃0 to Γ̃τ has Morse
index equal to 1 for all τ 6= 0. Namely, by Theorem 2.1, this index is given by the
sum of the index of the concavity index form and the number of P̃0-focal points.
Thus, we have an elementary geometric example that shows that degeneracy with-
out jump of Morse index does not produce bifurcation in general.

Example 5. Let us consider the setup of Section 4.1. Besides bifurcation theory,
other techniques from Singularity Theory can be employed to study the geometry
of the set

OP,Γ =
{
(p, r) ∈ P0 × [−ε, ε] : ` ′p,r(1) ∈ (T`p,r(1)Γτr(p))

⊥}
near a degenerate orthogonal light ray. Recalling Proposition 4.1:

OP,Γ =
{
(p, r) ∈ P0 × [−ε, ε] : ∂τ∂p(p, r) = 0

}
,
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FIGURE 4. Interchanging the role of the initial and the final man-
ifold, the same orthogonal geodesic has different Morse indices.
On the left, the orthogonal segment in red corresponds to a min-
imum of the length functional on the space of segments starting
orthogonally from the larger circle. On the right, the same geo-
desic corresponds to a maximum of the length functional on the
space of segments that start orthogonally from the smaller circle.

FIGURE 5. Jump of the Morse index that does not produce bi-
furcation. On the left, the orthogonal geodesic corresponds to a
maximum of the length function. On the right, to a minimum.

where τ : P0 × [−ε, ε] → R is the smooth function that represents the arrival
time functional defined in the set of (future pointing) lightlike geodesics issuing
orthogonally from P and arriving on Γ .

Let us assume that we are given a smooth curve [−ε, ε] 3 r 7→ pr ∈ P0 such
that:

(a) (pr, r) ∈ OP,Γ for all r;

(b) the Hessian
∂2τ

∂p2
(pr, r) is degenerate only at r = 0.
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In order to study the geometry of the set OP,Γ near (p0, 0), one can use local
coordinates on P0 around p0, and consider the situation of a smooth one-parameter
family of real valued maps τr = τ(·, r) defined on a neighborhood of 0 in Rn−2.

Let us consider for simplicity the case n = 4, so that the maps τr are defined
on an open neighborhood of (0, 0) in R2, and the gradient Gr = ∇τr is seen as a
map from R2 to itself. The set OP,Γ corresponds to the inverse image G−1

r (0, 0).
Condition (b) above tells us that (0, 0) is a singularity ofG0. Let us assume that the
differential dG0(0, 0) (or equivalently, the Hessian ∂2τ

∂p2
(p0, 0)) is not identically

0, i.e., its kernel has dimension equal to 1. By a classical result of Whitney, see
[24], in a generic situation the map G0 is given, in suitable coordinates, in one of
the following two forms:

• Rn 3 (x, y) 7→ (x2, y) ∈ R2 (fold singularity);
• Rn 3 (x, y) 7→ (x3 − xy, y) ∈ R2 (cusp singularity).

These local forms are stable by C3-small perturbations, hence we can assume that,
for |r| small, also the maps Gr have the same form after a change of coordinates
that depends on r. Such a change of coordinates carries (0, 0) to some other point
(ar, br) in a neighborhood of (0, 0); the two functions r 7→ ar and r 7→ br are
smooth, and they satisfy a0 = b0 = 0. Again, by assumption (b) above, for all
r 6= 0, (ar, br) does not belong to the singular set of the map Gr, which is:

• the single point (0, 0) in the fold case;
• the parabola y = 3x2 in the cusp case.

Assumption (a) tells us also that (ar, br) belongs to the image of Gr for all r.
Set Hfold(x, y) = (x2, y) and Hcusp(x, y) = (x3 − xy, y). In the fold case,

G−1
r (ar, br) = H−1

fold(ar, br) consists of exactly two points (±√ar, br) when
r 6= 0. One of them corresponds to the point pr (the curve r 7→ pr is the “trivial
branch” of solutions of the equation dτr(p) = 0). The other solution belongs to
the bifurcation branch. This is a continuous path r 7→ qr, with q0 = p0, which
is smooth for r < 0 and for r > 0, by the implicit function theorem, using as-
sumption (b). Since −

√
ar < ar <

√
ar for ar > 0 small, then the two smooth

portions of the bifurcating branch lie on different sides of the trivial branch. A
typical bifurcation picture in the fold case is illustrated in Figure 6.

In the cusp case, it is easy to see that the equation Hcusp(x, y) = (ar, br), with
(ar, br) near (0, 0) admits one, two or three solutions near (0, 0). More precisely,
it admits three solutions when (ar, br) is in the region R given by x2 < 4

27y
3

(shaded region in Figure 7), two solutions when a2r = 4
27b

3
r , and one solution

when (ar, br) is in the region x2 > 4
27y

3. Thus, in this situation bifurcation may or
may not occur, with possibly continuous or discrete bifurcating branch, depending
on the intersections of the curve r 7→ (ar, br) with the region R. See Figure 7.

A similar analysis can be carried out also when n > 4, using canonical forms of
singularities for maps on manifolds of arbitrary dimensions, see [10, 14].
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FIGURE 6. In black the trivial branch of solutions for the equation
dτr(p) = 0 near the bifurcation instant. In red, the two smooth
portions of the bifurcating branch.

x

y

FIGURE 7. On the left, shaded, the region x2 < 4
27y

3; when
(ar, br) is in this region, the equation (x3 − xy, y) = (ar, br)
has three solutions. When (ar, br) is on the boundary of this re-
gion, there are two solutions. Elsewhere, there is a unique so-
lution. Correspondingly, bifurcation may or may not occur, and
the bifurcation branch can be either discrete or continuous. On
the right, a possible picture: in red, a discrete bifurcation branch
consisting of two or four sequences of solutions converging to the
bifurcation point on the trivial branch.

6. AN APPLICATION: NULL CONCAVE OPTICAL DOMAINS

6.1. The physical setting. We will now discuss an example with a sensible phys-
ical interpretation as further illustration of our results. Consider a celestial body B,
say a star going supernova, whose surface suddenly gives off an outburst of light or



24 R. GIAMBÒ, F. GIANNONI, AND P. PICCIONE

gravitational radiation at an instant t = 0 as measured on Earth. The pulse travels
into our solar system, and a portion of it is captured by a network of satellite de-
tectors orbiting around the Earth. For simplicity of the description we may assume
that the detectors are so densely distributed that we may effectively imagine they
span the surface of a round sphere D concentric with Earth, but with some larger
radius.

6.2. The mathematical model.

Definition 6.1. An optical domain in a spacetime (Mn+1, g) (n > 3) is a pair
(T,Ω) such that

(a) Ω ⊂ M is a connected open set whose boundary ∂Ω is a smooth time-
like hypersurface inM, with exactly two connected components which we
denote by Σ and Γ ;

(b) T : ∂Ω → R is a smooth time function with past pointing timelike gradi-
ent, that can be assumed to be surjective.

The set Σ0 := Σ ∩ T−1{0} is the emitting body for (T,Ω).

Fix an optical domain (T,Ω) in (M,g). We can view (Ω,g|Ω) as a spacetime
with smooth boundary and effectively “forget” the “outer” region M \ Ω. Here,
the two boundary components Σ and Γ purport to describe the spacetime history of
B and of D, respectively.

It might well happen that only part of the emitted pulse reaches D, and we can
consider an open submanifold P0 of Σ0 describing the “visible” region of B for
the detector, which may or may not be equal to Σ0. If the wavelength of the pulse
radiation is very small compared with the distance traveled to the detector, we may
adopt a geometric optical approximation, and describe the pulse by a family F of
normal future pointing affinely parametrized null geodesics emanating from P0
and arriving at Γ .

More precisely, we adopt the following definition.

Definition 6.2. Let (T,Ω) be an optical domain for the spacetime (M,g). Let
N be the unit spacelike inward pointing normal vector field on ∂Ω. We define a
section L0 of the future pointing lightlike normal bundle L+

Σ0
of the emitting body

Σ0 by

(6.1) L0 := −
∇ΣT∣∣∇ΣT | ∣∣Σ0 +N∣∣Σ0 ,

where ∇Σ denotes the gradient with respect to the induced metric on Σ, and∣∣∇ΣT | = [− g(∇ΣT,∇ΣT)] 12 .
Let Σ0 3 p 7→ Lp ∈ [0,+∞[ be a smooth function. The collection F of future

pointing null geodesics `p : [0, 1] → M given by `p(t) = expp(t · Lp) for all
t ∈ [0, 1], and all p ∈ Σ0, is called a pulse for the optical domain. The set

P0 :=
{
p ∈ Σ0

∣∣ `p satisfies (HP1)—(HP3) (Section 2.3)
}
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is called the visible region of the emitting body Σ0. Clearly, P0 is a (possibly
empty) open subset of Σ0.

Definition (6.1) is meant to describe the fact that the pulse moves outwardly
from the body B. This translates into certain null convexity assumptions on Σ0.
The convergence/divergence of the family F of null geodesics is described by the
(trace of the) second fundamental form SΣ0 of Σ0 in the orthogonal direction L:
the fact that the family is diverging is indicated by the condition:

(6.2) tr(SΣ0) 6 0.

Analogously, for each level set Γt in Γ we define a section Lt of the future pointing
lightlike normal bundle L+

Γt
of Γt pointing to the outside ofΩ by

(6.3) Lt := −
∇ΓTΓ
|∇ΓTΓ

∣∣
Γt

−N
∣∣
Γt
.

Future pointing lightlike inbound geodesics normal to Γt arrive parallel to Lt. We
assume they converge as they arrive, and hence we assume that the trace of the
second fundamental form SΓt of Γt with respect to Lt is positive:

(6.4) tr(SΓt) > 0.

We embody these concepts into an appropriate definition.

Definition 6.3. An optical domain (T,Ω) is said to be null concave if
(i) all the null geodesics in the pulse F starting at the visible region P0 of the

emitting body Σ0 are entirely contained inΩ;
(ii) (6.2) holds on the emitting body Σ0 and (6.4) holds on Γt for each t ∈ R;

(iii) for every lightlike vector v ∈ TΩ and every w ∈ TΩ orthogonal to v

(6.5) g
(
R(v,w)v,w

)
> 0.

Remark. Inequality (6.5) may be interpreted as a non-convergence condition on
null geodesics. Geometrically, this will help avoiding premature focal points, but
how realistic is that from a physical perspective? It obviously holds in a flat
spacetime. Thus, in a region of our Universe away from large curvature regions
such as the vicinity black holes, such an assumption would not be too restric-
tive. Globally, our Universe is usually described by a Robertson–Walker spacetime
(I× S,−dt2 ⊕ f2 · h) with I ⊆ R an open interval, (S, h) a Riemannian manifold
of constant curvature k and f : I→ ]0,+∞[ is a smooth positive function. We can
normalize k to be 0, 1 or −1. In such a spacetime, any future-directed null vector
is a multiple of

v = ∂t +
z

f
,

where z ∈ TS is a unit vector with respect to h. For any w ∈ TS orthogonal to v,
we then have

g
(
R(v,w)v,w

)
= −

f ′′

f
+

(
f ′

f

)2
+
k

f2
.
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According to current observations, k = 0 and the universe is expanding with posi-
tive acceleration, so f ′ > 0 and f ′′ > 0. However, the acceleration is very small, so
the second term in the previous equation dominates, and condition (6.5) is satisfied.

We are ready to state our results.

Proposition 6.4. Let (T,Ω) be a null concave optical domain in a spacetime, with
emitting body Σ0 and visible region P0 ⊂ Σ0. Let p ∈ P0 and assume that `p
arrives orthogonally to some Γt. Then, the concavity index form C

`p
P0,Γt

(see (2.4))
is not negative semidefinite. In particular, none of the null geodesics of the pulse F
emanating from P0 maximize the arrival time.

Proof. Let {e1, . . . , en−1} be an orthonormal basis of TpΣ0, and consider:

(6.6) tr
(
C
`p
P0,Γt

)
=

n−1∑
s=1

C
`p
P0,Γt

(es, es)
by (2.4)
=

n−1∑
s=1

g
(
J ′es(1), Jes(1)

)
+ tr(SΓt)

by (6.4)
>

n−1∑
s=1

g
(
J ′es(1), Jes(1)

)
.

Note that, since Jes is a Σ0-Jacobi field, then g
(
J ′es(0), w

)
+ SΣ0

(
Jes(0), w

)
= 0

for all w ∈ Tp0Σ0, and in particular:

(6.7) g
(
J ′es(0), Jes(0)

)
+ SΣ0

(
Jes(0), Jes(0)

)
= 0, ∀ s = 1, . . . , n− 1.

Now, set:

h(t) =

n−1∑
s=1

g
(
J ′es(t), Jes(t)

)
;

the derivative h ′(t) is computed as follows:

(6.8) h ′(t) =

n−1∑
s=1

g
(
J ′es(t), J

′
es
(t)
)
+

n−1∑
s=1

g
(
J ′′es(t), Jes(t)

)
=

n−1∑
s=1

g
(
J ′es(t), J

′
es
(t)
)
+

n−1∑
s=1

g
(
R(t)Jes(t), Jes(t)

) by (6.5)
> 0.

By R(t) we mean the endomorphism of ` ′p(t)
⊥ given by:

R(t)w = g
(
` ′p(t), w)`

′
p(t).

For the last inequality in (6.8) above observe that Jes(t) is orthogonal to the light-
like vector ` ′p(t), and in particular g

(
R(t)Jes(t), Jes(t)

)
> 0 for all s.

Thus, h is nondecreasing, and therefore:
(6.9)

n−1∑
s=1

g
(
J ′es(1), Jes(1)

)
>
n−1∑
s=1

g
(
J ′es(0), Jes(0)

) by (6.7)
= −tr(SΣ0)

by (6.2)
> 0.



A FINITE DIMENSIONAL APPROACH TO LIGHT RAYS 27

Visible
region

Σ0 Γ
here (HP2) is not satisfied

FIGURE 8. A noncompact visible region

From (6.6) and (6.9) we get tr(C`pP0,Γt) > 0, which proves the first statement. Now,

recall from Theorem 3.1, part (3), that C`pP0,Γt is the second variation of the arrival
time. The conclusion is that p is not a local maximum of the arrival time. �

An immediate consequence is the following.

Corollary 6.5. With the notation and assumptions of Proposition 6.4, the visible
region P0 ⊆ Σ0 cannot be compact. �

Note that the fact that although the visible region is never compact for a null
convex optical domain, the emitting body Σ0 can of course be compact, and there
might well exist a null geodesic in the pulse F which maximizes the arrival time.
However in this situation conditions (HP1–HP3) must be violated. This is illus-
trated by the following situation. TakeM = Rn+1 with n > 3 with the flat metric

g = −dx20 +
n∑
i=1

dx2i ,

and time-orientation such that the timelike vector field ∂x0 is future pointing.
Adopt the time function T : (x0, . . . , xn) ∈ Rn+1 7→ x0 ∈ R, and fix any
number c > 3. Let

Ωc =
{
(x0, . . . , xn) ∈ Rn+1

∣∣ n∑
i=1

x2i > 1 and (x1 − c)
2 +

n∑
i=2

x2i > 1
}
.

It is easy to see that (T,Ωc) is a null concave optical domain. The boundaries are
the cylinders

Σ =
{
(x0, x1, . . . , xn) ∈ Rn+1

∣∣ n∑
i=1

x2i = 1
}
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and

Γ =
{
(x0, x1, . . . , xn) ∈ Rn+1

∣∣ (x1 − c)2 + n∑
i=2

x2i = 1
}
,

so that the emitting body is the (n− 1) sphere

Σ0 =
{
(0, x1, . . . , xn) ∈ Rn+1

∣∣ n∑
i=1

x2i = 1
}
.

Let xα : t ∈ [0,+∞[ 7→ pαt ∈ Rn be the one-parameter family of half-lines
emanating from the center of the sphere Sn−1

n∑
i=1

x2i = 1

which are tangent to the sphere

(x1 − c)
2 +

n∑
i=2

x2i = 1,

where the parametrization has been chosen such that xα(1) = pα are the tangency
points. This family of curves comprise a cone whose interior intersects Sn−1 in
the open set C, see Figure 8.

It is not difficult to check that the curves `α : t ∈ [0, 1] 7→ (‖x±(t)‖, x±(t)) ∈
Rn+1 are lightlike geodesics maximizing the time of arrival from Σ0 to Γ among
all those null geodesics from the origin of Rn+1 which do reach Γ . The visible
region is

P0 =
{
(0, x1, . . . , xn) ∈ Rn+1

∣∣ (x1, . . . , xn) ∈ C},
which is non-compact. The existence of “slowest” null geodesics does not con-
tradict Proposition 6.4 because the geodesics `α are tangent to Γ , and thus violate
(HP2). They do not emanate from P0, but from its (compact) closure.
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Sci. Paris 260 (1965) 5662–5665, 6503–6506.

[15] V. PERLICK, Ray optics, Fermat’s principle, and applications to general relativity. Lecture
Notes in Physics. Monographs, 61. Springer–Verlag, Berlin, 2000.

[16] V. PERLICK, Gravitational Lensing from a Spacetime Perspective, Living Rev. Relativity 7,
(2004), 9. http://www.livingreviews.org/lrr-2004-9.

[17] V. PERLICK, P. PICCIONE, A general-relativistic Fermat principle for extended light sources
and extended receivers, Gen. Relativity Gravitation 30 (1998), no. 10, 1461–1476.

[18] A. O. PETTERS, Gravity’s action on light, Notices Amer. Math. Soc. 57 (2010), no. 11, 1392–
1409.

[19] P. PICCIONE, D. V. TAUSK, A note on the Morse index theorem for geodesics between sub-
manifolds in semi-Riemannian geometry, J. Math. Phys. 40 (1999), no. 12, 6682–6688.

[20] J.M.M. SENOVILLA, D. GARFINKLE, The 1965 Penrose singularity theorem, Class. Quantum
Grav. 32 (Focus issue: Milestones of general relativity) 124008

[21] R. THOM, Structural stability and morphogenesis. An outline of a general theory of models.
Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989.

[22] C.T.C. WALL, Geometric properties of generic differentiable manifolds. Geometry and topol-
ogy (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro,
1976), pp. 707–774.

[23] G. WASSERMANN, Stability of caustics, Math. Ann. 216 (1975), 43–50.
[24] H. WHITNEY, On singularities of mappings of Euclidean spaces. I. Mappings of the plane into

the plane, Ann. of Math. (2) 62 (1955), 374–410.

SCUOLA DI SCIENZE E TECNOLOGIE, SEZIONE DI MATEMATICA
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UNIVERSIDADE DE SÃO PAULO
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