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We formulate the problem of determining the volume of the set of Gaussian phys-
ical states in the framework of information geometry. This is done by consid-
ering phase space probability distributions parametrized by their covariances and
endowing the resulting statistical manifold with the Fisher-Rao metric. We then
evaluate the volume of classical, quantum, and quantum entangled states for two-
mode systems, showing chains of strict inclusions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4973507]

I. INTRODUCTION

States of physical systems in classical and quantum mechanics are represented by very different
mathematical structures, nevertheless analogies appear at certain points of comparison.1 Classical
states are depicted as probability density functions (pdfs) in phase space, whereas quantum states
are described by density operators defined on Hilbert spaces.2 In fact, the notion of phase space
is often gotten rid of in quantum mechanics because of the non-commutativity of canonical vari-
ables. Nevertheless, the phase space can be considered as a common playground for both clas-
sical and quantum states when one employs for the latter a description in terms of the so-called
quasi-probability distribution functions, such as the Wigner function.3 Then, one can address the
computation of the volume of different classes of states in the phase space framework. The issue of
the volume of sets of states is of uppermost importance. It can help in distinguishing classical from
quantum states as well as to find separable states within all quantum states. Separable states are
the states of a composite system that can be written as convex combinations of subsystem states, in
contrast to entangled states.4 Determining the volume of physical states is also relevant for defining
the “typical” properties of a set of states. In fact, to this end, one usually resorts to the random
generation of states according to a suitable measure stemming from the volume of states.5

Describing the geometric properties of sets of states is intimately connected with the evaluation
of their volumes. The sets of classical and quantum states are both convex sets. In finite dimensional
systems, several metrics are introduced in order to compute the volume of physical states. Due
to their own nature as pdfs, classical states can be distinguished by the well-known Fisher-Rao
metric.6 Quantum analogue can be found in the setting of pure states, where the Fubini-Study metric
turns out to be proportional to the Fisher-Rao metric.7 However, for quantum mixed states, there
is no single metric.8 Several measures have been analysed, each of them arising from different
physical motivations and advantages.9 Such different measures have been proposed on the set of
density matrices acting on a finite-dimensional Hilbert space; a very natural one employed the
Positive Partial Transpose (PPT) criterion4 to determine an upper bound for the volume of separable
quantum states and figuring out that for any composite quantum system, it is different from zero
regardless of the number of subsystems it contains and its (finite) dimension.10 Other important
measures include the Hilbert-Schmidt measure, the Bures measure, and the measure induced by par-
tial trace on composite systems. All of them use techniques from geometric functional analysis and
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convex geometry to estimate the volume of separable quantum states.11–13 Finally, a generalization
of the Hilbert-Schmidt measure and the volume induced by the partial trace on composite systems,
the so-called α-volume, showed that the PPT criterion is not precise for large dimensions of the
Hilbert space.14 This is an evidence that with increasing Hilbert space dimensions, the procedure
to test the separability becomes more and more difficult to implement. Additionally, when going to
infinite dimensional systems (often referred to as “continuous variable”—CV—systems), problems
also arise from the non-compactness of the support of states.

Thus, on the one hand, we have the difficulties in analysing infinite dimensional systems, while
on the other hand we still lack a unifying approach for evaluating volumes of classical and quantum
states. To deal with these problems, we propose to exploit information geometry. This is the appli-
cation of differential geometric techniques to the study of families of probabilities.15 As such, it can
be applied to Gaussian states, be they either classical or quantum. Indeed, Gaussian classical states
are pdfs in the phase space and the same is true for Gaussian quantum states, which are pdfs coming
from Wigner functions in the phase space.16 The main reason for the focus on Gaussian states is that
they are ubiquitous in physics, mathematics, and information theory (see, e.g., Ref. 1).

Very recently, a method based on the extension of the Hilbert-Schmidt measure has been
proposed17 to evaluate the volume of Gaussian quantum states, which is not applicable however
to the classical states. In the present work, we exploit methods of information geometry in order
to associate a Riemannian manifold to a generic Gaussian system. In such a way, we consider a
volume measure as the volume of the manifold associated with a set of states of the system. More
specifically, we start by considering N identical and indistinguishable particles, i.e., bosonic modes
characterized by their positions and momenta, and we assume that a Gaussian pdf with zero mean
value describes the whole system state. Such a pdf is characterized by a set of parameters, i.e.,
the entries of the covariance matrix (depending on their values, we can have various classes of
states). Then, thanks to these parameters, to each class of states is associated a statistical model
which turns out to be a Riemannian manifold endowed with the well-known Fisher-Rao metric (see
also Ref. 18). We are able to overcome the difficulty of an unbounded volume by introducing a
regularizing function stemming from energy bounds, which acts as a form of compactification of
the support of Gaussian states. We then proceed to consider a different regularizing function which
satisfies some nice properties of canonical invariance. Finally, we find the volumes of classical,
quantum, and quantum entangled states for two-mode Gaussian systems, showing chains of strict
inclusions.

The layout of the paper is as follows. In Sec. II we recall the phase space representation of both
classical and quantum states. Then, in Sec. III we present a volume measure for Gaussian states
based on information geometry. Sec. IV is devoted to the regularization of the introduced volume
measure. Applications to bipartite states of two mode systems are discussed in Sec. V. Finally, we
draw our conclusions in Sec. VI.

II. PHASE SPACE REPRESENTATION OF STATES

The phase space Γ of N identical and indistinguishable particles (i.e., bosonic modes) is the
2N-dimensional space of allowed real values for the canonical position and momentum variables
ξ = (q1,p1, . . . ,qN ,pN)T of such modes (by T we denote the transpose).

A classical state for such a system of N modes is represented by a pdf in Γ, namely,

ρ : Γ → R+,

Γ

dξ ρ(ξ) = 1. (1)

As a particular case, when ρ becomes a Dirac delta δ2N(ξ − ξ0), we have a pure state whose values
of position and momentum variables are (deterministically) given by ξ0. Throughout the paper we
will consider Γ = R2N and the integration is performed on R2N when not otherwise specified.

The probability density function in (1) can be considered as originating from the characteristic
function χρ(τ), through the Fourier transform,
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ρ(ξ) =


dτ e−iξ
Tτ χρ(τ), (2)

where i is the imaginary unit and τ ∈ R2N .
The set of all (mixed and pure) states is a convex set, that is, if ρ j(ξ) for j = 1,2, . . . represent

states and
�
Pj

	
j
is a probability vector, then

ρ(ξ) =

j

Pjρ j(ξ)

is still a possible (mixed) state. Only pure states cannot be decomposed in a nontrivial manner as
convex sum of other states, so they are the extremal points (or extremal elements) in the space of all
states.

The quantum analogue of pdf is the density operator ρ̂ defined on the Hilbert space H =
L2(R)⊗N associated with the N-mode system. The canonical position and momentum variables
become operators q̂k, p̂k, k = 1, . . . ,N on H with the commutation relation [q̂k, p̂k] = i. Setting
R̂2k−1 B q̂k and R̂2k B p̂k, these relations are summarized as

�
R̂k, R̂l

�
= i Ωkl, where Ωkl is the kl

entry of the antisymmetric 2N × 2N matrix

Ω =

N
j=1

*
,

0 1
−1 0

+
-
. (3)

This induces a symplectic structure on the phase space Γ, meaning that a bilinear form ω : Γ × Γ →
R exists, ω being non-degenerate and skew-symmetric.

A phase space representation of the state ρ̂ can be given by means of the Wigner function
defined as in Ref. 3,

W (ξ) B
(

1
π

)N 
e2i

N
k=1 pk yk ρ(q1 + y1,q1 − y1, . . . ,qN + yN ,qN − yN)dy1 . . . dyN . (4)

Here, ρ(q1+ y1,q1− y1, . . . ,qN + yN ,qN − yN) is the position representation of the density operator,
i.e., the representation of the operator ρ̂ on the eigenvectors of the operators q̂k, k ∈ {1, . . . ,N}. In
such a way, the Wigner function turns out to be defined over the 2N-dimensional phase space Γ
and would be the analogous of classical pdfs ρ(ξ). Nevertheless, the Wigner function is not a pdf
because it can also assume negative values. Hence, it is often called a quasi-probability distribution
function.

Yet, as a proper pdf, the Wigner function can be considered as originating from the character-
istic function χ ρ̂(τ) through the Fourier transform,

W (ξ) =


dτ e−iξ
Tτ χ ρ̂(τ), (5)

where

χ ρ̂(ξ) B tr
�
ρ̂D̂(ξ)� (6)

and

D̂(ξ) B exp

i

k

(qk q̂k + pk p̂k)

.

A. Gaussian states

Gaussian states are those for which the characteristic function is a Gaussian function of the
phase space coordinates ξ, namely,

χρ(ξ) = e−
1
4 ξ

TVξ−iµTξ (7)

or

χ ρ̂(ξ) = e−
1
4 ξ

TVξ−iµTξ, (8)
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where V is the 2N × 2N covariance matrix and µ ∈ R2N the first moment vector (recall that a
Gaussian state is completely determined by V and µ).

Although formally identical, Eqs. (7) and (8) differ by the conditions imposed on the covari-
ance matrix. In fact, for classical states, V is symmetric and strictly positive definite, i.e., V > 0.
Yet, not all symmetric, positive definite matrices correspond to the covariance matrices of quantum
physical states. In fact, due to the non-commutativity of canonical operators, we have the following
theorem.19,20

Theorem 2.1. A real, symmetric 2N × 2N matrix V > 0 describes a Gaussian quantum state if
and only if

V + iΩ ≥ 0. (9)

Relation (9) is equivalent to Schrödinger’s formulation of Heisenberg’s uncertainty principle.21

Furthermore, the if and only if in Theorem 2.1 is a peculiarity of Gaussian states as can be seen,
e.g., by Hardy’s formulation of Heisenberg’s uncertainty principle.22,23 In any case, it is trivial to
show that Eq. (9) implies the positive definiteness of the matrix V , whereas the converse is not
true.

The Gaussian form of the characteristic functions (7) and (8) reflects on the correspond-
ing phase space representations ρ(ξ) and W (ξ) by Eqs. (2) and (5), which we can commonly
write as

P(ξ) = e−
1
2 ξ

TV−1ξ

(2π)N√det V
. (10)

Here we set µ = 0 since the first moments are irrelevant for most of the physical properties of
Gaussian states. Notice that the Wigner function, being in such a case a Gaussian function, is a true
pdf.

Among quantum states, we can also distinguish between separable and entangled states.4 To
this end, it would be helpful to employ the partial transposition. It follows from the definition of
the Wigner function (4) that on the phase space, transposition corresponds to the transformation that
changes the sign to all ps coordinates and leaves the qs unchanged

(q1,p1, . . . ,qN ,pN) → Λ (q1,p1, . . . ,qN ,pN) B (q1,−p1, . . . ,qN ,−pN) . (11)

Consider now a composite Gaussian system with two subsystems A and B; let V be the covariance
matrix describing the whole system, and VA and VB be the ones describing subsystems A and B,
respectively. Denote by ΛA B Λ ⊕ id (respectively, ΛB = id ⊕ Λ) the positive partial transposition
in the A’s system only (respectively B’s system only). Then a necessary and sufficient condition for
the separability of the system is given by the following theorem.24

Theorem 2.2. A Gaussian state described by the covariance matrix V is separable if and only
if there exist covariance matrices VA and VB such that

V ≥ VA ⊕ VB. (12)

Unfortunately this theorem is not easy to verify in practice since doing so requires looking for
covariance matrices VA and VB satisfying (12).

Nevertheless, if we consider a two-mode Gaussian system (N = 2), the criterion to distinguish
separable from entangled states simplifies into the following theorem.25

Theorem 2.3. The 4 × 4 symmetric matrix V satisfying the condition (9) describes a separable
state if and only if

V + iΩ ≥ 0, (13)

where V = ΛBVΛB, with

ΛB(q1,p1,q2,p2) = (q1,p1,q2,−p2). (14)
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III. A VOLUME MEASURE BASED ON INFORMATION GEOMETRY

Let us consider the family S of a Gaussian pdf with zero mean in the 2N-dimensional phase
space Γ. Each such pdf takes on the form P(ξ) of Eq. (10) and may be parametrized using
m ≤ N(2N + 1) real-valued variables θ1, . . . , θm (the nonzero entries of the covariance matrix) so
that

S B



P(ξ) ≡ P(ξ; θ) = e−
1
2 ξ

TV−1(θ)ξ

(2π)N
det V (θ) ,

��� θ ∈ Θ


, (15)

where Θ is a subset of Rm obtained by requiring some specific constraints on V (θ), and the mapping
θ → P(.; θ) is injective. In such a way, S turns out to be an m-dimensional statistical model (in
fact a Gaussian statistical model). The parametrization is provided by the entries of the covariance

matrix V =
�
Vµν

�
µν

, by defining θl = Vµν, with l =
µ−2
r=0

(2N − r) + ν − µ + 1 and 1 ≤ l ≤ m (the

summation over r disappears when µ = 1).
Given the statistical model S of Eq. (15), the mapping ϕ : S → Rm defined by ϕ(P(.; θ)) = θ is

injective and it allows us to consider ϕ =
�
θl
�

as a coordinate system for S. In addition, we assume
that a change of coordinates ψ : Θ → ψ(Θ) ⊂ Rm is such that the set {P(.;ψ−1(κ)) | κ ∈ ψ(Θ)},
where κ is the set of new coordinates given by κl B ψ(θl), represents the same family of probability
functions as S = {P(.; θ) | θ ∈ Θ}. Moreover, we also assume that such a change of coordinates
is differentiable. Thereby, S can be considered as a C∞ differentiable manifold, called statistical
manifold.15

Remark 3.1. From here on, we assume that θl+1 = 0 with l =
µ−2
r=0

(2N − r) + 1, for µ = 2k + 1.

This implies that there is no correlation between position qk and momentum pk of the kth mode, for
all k = 1, . . . ,N.

Consider now a point θ ∈ Θ; then, the Fisher information matrix of S at θ is the m × m matrix
g(θ) whose entries are given by15

gµν(θ) B

R2N

dx P(ξ; θ) ∂µ ln P(ξ; θ)∂ν ln P(ξ; θ), (16)

with ∂µ standing for ∂
∂θµ

. The resulting matrix g(θ) is symmetric and positive semidefinite. Yet,
we assume from now on that g(θ) is positive definite. In such a way, we can endow the parameter
space Θ with a Riemannian metric, the Fisher-Rao metric, given by G(θ) B 

µν
gµν(θ) dθµ ⊗ dθν,

with gµν(θ) as in Eq. (16). With this metric, the manifold M B (Θ,G(θ)) becomes a Riemannian
manifold.

The parameter space Θ in (15) does not coincide, in general, with the whole linear space
Rm. The central issue is that by requiring that the covariance matrix V (θ) satisfies some specific
conditions, Θ can represent different states of the physical system.

Definition 3.1. Consider the Gaussian statistical model S = {P(ξ; θ)} in Eq. (15). Then, the
classical states of the physical system are represented by the parameter space Θ given by

Θclassic B {θ ∈ Rm|V (θ) > 0}. (17)

The quantum states, instead, are represented by means of the following parameter space Θ:

Θquantum B {θ ∈ Rm|V (θ) + iΩ ≥ 0}. (18)

If the physical system is composed by two subsystems A and B, then its separable states stand for

Θseparable B {θ ∈ Rm |V (θ) ≥ VA ⊕ VB}. (19)

Finally, in this case, the entangled states are given by

Θentangled B Θquantum − Θseparable. (20)



012201-6 Felice, Quang, and Mancini J. Math. Phys. 58, 012201 (2017)

Remark 3.2. Eq. (17) represents all the possible classical states of the physical system described
by the 2N-dimensional phase space Γ. A labelling permutation σ of the system’s modes acts on
the pdf P(ξ; θ) by a permutation congruence of the covariance matrix: V (θ) → ΠTV (θ)Π, where
Π is the permutation matrix corresponding to σ. Now, ΠTV (θ)Π is still positive definite; so, the
parameter space Θclassic has a permutation invariant form.

Eq. (18) represents all the possible quantum states of the physical system described by the
2N-dimensional phase space Γ. It is well-known that the uncertainty relation V (θ) + iΩ ≥ 0 has a
symplectic invariant form,25 i.e., given any symplectic matrix S, then also STV (θ)S + iΩ ≥ 0 holds
true. Thus, the parameter space Θquantum has also a symplectic invariant form in addition to the
permutation one.

In general, the definition given in Eq. (19) is not operational; indeed, to use it, it is necessary
to prove the existence of the matrices VA and VB. However, when dealing with two-mode systems,
such a criterion becomes useful in practice by providing a necessary and sufficient condition to
distinguish separable states among all the quantum states.

Going on to multipartite systems, the task to describe separable states becomes harder and
harder. In fact, a general criterion is still missing.

A. The volume measure

From Definition 3.1, we see that, each different set of Gaussian states is associated with a
Riemannian manifold. Thus, a natural volume measure for a set of states is the volume of the
associated manifold.

Definition 3.2. Consider a physical system of N modes in a Gaussian state. Let Θ be the
parameter space as in 3.1 andM = (Θ,G(θ)) be the Riemannian manifold associated with the class
of Gaussian states Θ, with G(θ) being the Fisher-Rao metric. Then the volume of the physical states
represented by Θ is

V(V ) B

Θ

dθ


det g(θ), (21)

where g(θ) is the real symmetric matrix with entries given by (16).

Given the formal definition of the Fisher-Rao metric tensor (16), in order to apply it in prac-
tice, we consider a clearer analytical relation between the components of the metric G(θ) and the
covariance matrix V (θ).

Theorem 3.1. The entries (16) of the Fisher-Rao metric are related to V by

gµν =
1
2

tr
�
V−1 �

∂µV
�

V−1 (∂νV )� , (22)

for every µ, ν ∈ {1, . . . ,m}.

Such a relation is well-known in literature (see, for example, Refs. 26 and 27); however, here
we propose an alternative derivation (see Appendix A).

At this point, we proceed to show some properties of the volume defined in Definition 3.2.
Given Remark 3.2, we would require the volume in (21) to be invariant under labelling permutations
of the modes. So, consider a point ξ = (q1,p1, . . . ,qN ,pN) ≡ (ξ1, . . . , ξN) ∈ Γ and a permutation
σ : {1, . . . ,N} → {1, . . . ,N} such that ξσ = (ξσ(1), . . . , ξσ(N )) is still a point in the phase space Γ.
At the level of pdf in (10), such a permutation acts by transforming the covariance matrix V (θ) in
the following way:

V ′(θ) = ΠT V (θ) Π, (23)

where V and V ′ are the covariance matrices of the state described by variables ξ and ξσ(i), respec-
tively, and Π is the permutation matrix given by Π = (eσ(1), . . . ,eσ(N ))T , with e j denoting a row
vector of length 2N with 1 in the jth position and 0 everywhere else.
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Another feature we would require is the invariance of the volume measure in (21) under
symplectic transformations S ∈ Sp(2N,R), i.e., S such that

ST
Ω S = Ω, (24)

where Ω is the antisymmetric matrix defined in (3). This requirement is motivated by the fact that
from Eq. (24) it follows that the uncertainty relation (9) has an Sp(2N,R) invariant form.

The following proposition shows that both of these properties are satisfied by the volume V
defined in Definition 3.2.

Proposition 3.1. If there exists a permutation matrix Π (respectively a symplectic matrix S)
such that V ′ = ΠT V Π (respectively V ′ = ST V S), then

V(V ′) = V(V ). (25)

In fact, the Fisher-Rao metric is invariant under more general transformations, namely, the
congruent transformations defined by elements of the general linear group (see, for example,
Refs. 28–30). However, for our purposes, it suffices to consider the behavior of the volume under the
congruent transformations defined by permutation and symplectic matrices. See Appendix B.

IV. REGULARIZED VOLUME

In general, the integration space Θ given in Definition 3.1 is not bounded. However, this is not
the only reason for the possible divergence of the integral (21). Indeed, let us recall that such an
integral is computed by means of the volume element coming from the Fisher-Rao metric G(θ),
which is

νG B


det g(θ) dθ1 ∧ . . . ∧ dθm. (26)

Here, by Eq. (22), the entries of the m × m symmetric matrix g(θ) can be written in the form

gµν = F(V ) (det V )−2, (27)

where F(V ) is what is left after grouping the common factor (det V )−2 in (22). Such a factor comes
from the well-known relation V−1 = (det V )−1adj(V ), where adj(V ) denotes the adjunct of the matrix
V .

Hence, we have

det g(θ) = 1

(det V (θ))2m
F(V (θ)), (28)

where F(V (θ)) denotes a non-rational function of the coordinates θ1, . . . , θm.
Now, from Eq. (28), it is clear that the reasons for the possible divergence of the integral in

(21) are twofold: the set Θ in Definition 3.1 is not compact because the variables θl are unbounded
from above, which makes the quantity F(V (θ)) divergent; furthermore, det g(θ) diverges since det V
approaches zero for some θl ∈ Θ.

It is then necessary to introduce a regularizing function Φ(V ) which eliminates these possible
divergences. It should supply a kind of compactification of the parameter space and excludes the
contributions of θl making det g(θ) divergent. Such a function might stem on physical arguments
related to the finiteness of energy.

In general, for an arbitrary Gaussian state ρ with zero first moments, the trace of the covariance
matrix is directly linked to the mean energy per mode, namely, E = 1

2N tr (V ).31 Thereby, we propose
to bound the parameter space with a suitable energy value of the state. To this end, we define a
regularizing function as

Φ(V ) B H(E − tr(V )) log [1 + (det V )m] , (29)

where H(·) denotes the Heaviside step function and E is a positive real constant (equal to 2NE).
With this regularizing function, we arrive at the following volume for sets of states:
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Definition 4.1. Given a set of Gaussian states represented by a parameter space Θ as in Defini-
tion 3.1, we define its volume, regularized by the functionalΦ, to be

VΦ(V ) B

Θ

Φ(V ) νG, (30)

where νG andΦ(V ) are given by Eqs. (26) and (29), respectively.

The integral in (30) is now meaningful. Indeed, we have the following results.

Theorem 4.1. Let E denote the constant m × m matrix defined by

Eµν =
1
2

tr[(∂µV )(∂νV )], 1 ≤ µ, ν ≤ m. (31)

Let adj(V ) denote the adjunct matrix of V . The Fisher-Rao information matrix g satisfies

det g ≤
(
λmax[adj(V )]

det V

)2m

det(E) =
(

1
λmin(V )

)2m

det(E), (32)

where λmax[adj(V )] denotes the largest eigenvalue of adj(V ) and λmin(V ) denotes the smallest
eigenvalue of V .

Proof. See Appendix C. �

Corollary 1. The regularized volume element satisfies

Φ(V )det g ≤
√

det E H(E − tr(V ))λm
max[adj(V )] log[1 + (det V )m]

(det V )m . (33)

Consequently, the integral 
Θ

Φ(V )det gdθ (34)

is well-defined and bounded for any measurable subset Θ ⊂ Rm over which V is positive definite.

Proof. See Appendix C. �

Remark 4.1. Setting the energy of the Gaussian states to be smaller than or equal or to E
results in an upper bound for parameter space Θ. Furthermore, the singularity occurring when
det V goes to zero is eliminated by the logarithm log [1 + (det V )m], using the well-known relation
lim
x→0

log(1+x)
x
= 1. So the integral (30) is now meaningful.

However, the regularizing functionΦ(V ) of Eq. (29) is not invariant under symplectic transfor-
mations. Indeed, consider S ∈ Sp(2N,R) and V ′ = ST V S; then, tr(V ′) = tr(S ST V ), which is in
general not equal to tr(V ).

From Remark 4.1, the following issue arises: the well-known Williamson’s theorem32 states
that given a positive definite and symmetric 2N × 2N matrix V , there exist a symplectic 2N × 2N
matrix S and a diagonal and positive defined 2N × 2N matrix D such that V = STDS.36 This im-
plies that two Gaussian states are similar under the congruence transformation via a symplectic
matrix. The regularizing functionΦ(V ) is not invariant under such transformations.

In order to overcome this problem, we propose a different regularizing function Υ(V ) which is
devised by exploiting the relation given by Theorem 3.1 and the property stated in Proposition 3.1.
We define it as follows:

Υ(V ) B e−
1
κ tr[adj(V )] log [1 + (det V )m] , (35)

where κ is a real positive number. Here, adj(V ) denotes the adjunct of V , given by adj(V ) =
det(V )V−1.

As required, the regularizing function Υ(V ) fulfills the following properties:
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Proposition 4.1. Let V , V ′ be two covariance matrices and Π be a permutation matrix (respec-
tively, S be a symplectic matrix) such that V ′ = ΠT V Π (respectively, V ′ = ST V S), then

Υ(V ′) = Υ(V ). (36)

Proof. See Appendix D. �

With the regularizing function Υ(V ), we arrive at the following volume for sets of states:

Definition 4.2. Given a set of Gaussian states represented by a parameter space Θ as in Defini-
tion 3.1, we define its volume, regularized by the functional Υ, to be

VΥ(V ) B

Θ

Υ(V ) νG, (37)

where νG and Υ(V ) are given by Eqs. (26) and (35), respectively.

The integral (37) is now meaningful. Indeed, as a consequence of Theorem 4.1 we have the
following result.

Corollary 2. The regularized volume element satisfies

Υ(V )det g ≤
√

det E exp(−tr[adj(V )])λm
max[adj(V )] log[1 + (det V )m]

(det V )m . (38)

Consequently, the integral 
Θ

Υ(V )det gdθ (39)

is well-defined and bounded for any measurable subset Θ ⊂ Rm over which V is positive definite.

Proof. See Appendix D. �

Remark 4.2. Recalling that adj(V ) = det V V−1, we now have all the possible divergences in
(37) suppressed: if λmax goes to infinity then the integrand is killed to zero by the exponential
e−tr(det(V ) V−1); while if det V goes to zero then the singularity is eliminated by the logarithm
log [1 + (det V )m], using the well-known relation lim

x→0

log(1+x)
x
= 1.

Furthermore, thanks to Propositions 3.1 and 4.1 it follows that the regularized volume in (37) is
invariant under permutation transformations and, if the states are quantum, is also invariant under
symplectic transformations.

V. EXAMPLE OF BIPARTITE STATES IN TWO-MODE SYSTEM

We now apply the method proposed in Section IV to a two-mode physical system (N = 2).
Hence, the elements of the statistical model S are the pdfs in (15), where V (θ) is a 4 × 4 covari-
ance matrix and ξ = (q1,p1,q2,p2)T ∈ Γ = R4. This implies that S = {P(ξ; θ)} can be at most a
10-dimensional statistical model.

According to Remark 3.1, we consider that position and momentum variables of the same mode
are not correlated. Thus the highest possible dimension of S reduces from m = 10 to m = 8. Then
the parameter space Θ is a subset of the linear space R8. The Gaussian classical and quantum states
are represented by

Θclassic = {θ ∈ R8|V (θ) > 0}, (40)

Θquantum = {θ ∈ R8|V (θ) + iΩ ≥ 0}, (41)

whereΩ is the canonical symplectic real 4 × 4 matrix defined in (3).
The separable states have to respect not just the uncertainty relation V (θ) + iΩ ≥ 0 but also

the restriction V (θ) + iΩ ≥ 0, as stated in Theorem 2.3, or equivalently V (θ) + iΩ ≥ 0, where
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Ω = ΛBΩΛB and ΛB is the partial transposition defined in (14). Hence, the parameter space Θ
representing Gaussian separable states is given by

Θseparable = {θ ∈ R8|V (θ) + iΩ ≥ 0,V (θ) + iΩ ≥ 0}. (42)

As a consequence of Eqs. (41) and (42), we also have that the Gaussian entangled states are
represented by

Θentangled = Θquantum − Θseparable. (43)

Finally, to each set of states, classical, quantum, separable, and entangled, we associate a Rie-
mannian manifold given by M = (Θ,G(θ)), where Θ is specified by Eqs. (40)–(43), respectively.
Furthermore, G(θ) is the Fisher-Rao metric whose components gµν are given by (22), which is an
explicit expression in terms of the covariance matrix V.

However, the most general parametrization of a two-mode covariance matrix V (θ) is realized
through its canonical form and it only employs four parameters,25

V (θ) =
*.....
,

a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

+/////
-

(44)

where, according to our notation, the only nonzero parameters are θ1 = θ5 = a ∈ R, θ8 = θ10 = b ∈
R, θ3 = c ∈ R, and θ7 = d ∈ R. In this case, the domains of integration given by Eqs. (40)–(42),
apart from null sets, assume the following form:

Θclassic = {(a,b,c,d) ∈ R4| a > 0,b > 0, −
√

ab < c <
√

ab, −
√

ab < d <
√

ab}, (45)

Θquantum = {(a,b,c,d) ∈ R4| a > 1, 1 < b < a, −
√

c1 < c <
√

c1, d1 ≤ d ≤ d2} (46)

∪ {(a,b,c,d) ∈ R4| a > 1, 1 < a < b, −
√

c2 < c <
√

c2, d1 ≤ d ≤ d2},
Θseparable = {(a,b,c,d) ∈ R4| a > 1, b > 1, −

√
c3 < c < 0, d1 ≤ d ≤ −d1} (47)

∪ {(a,b,c,d) ∈ R4| a > 1, b > 1, 0 < c <
√

c3, −d2 ≤ d ≤ d2},
with

c1 B
a
b
�
b2 − 1

�
, c2 B

b
a
�
a2 − 1

�
, c3 B

1 − a2 − b2 + a2b2

ab
,

d1 B
−c −

√
∆

ab − c2 , d2 B
−c +

√
∆

ab − c2 , ∆ B c2 − (ab − c2) �abc2 − (a2 − 1)(b2 − 1)� .
Then, from the relation (22), we can compute the Fisher-Rao metric g(θ) = gµνdθµ ⊗ dθν (µ, ν =
1, . . . ,4), whose components gµν result

g11 =
b2(2a2b2 + c4 + d4 − 2ab(c2 + d2))

2(ab − c2)2(ab − d2)2 , g12 =
(a2b2 + c2d2)(c2 + d2) − 4abc2d2

2(ab − c2)2(ab − d2)2 ,

g13 = −
bc

(ab − c2)2 , g14 = −
bd

(ab − d2)2 , g22 =
a2(2a2b2 + c4 + d4 − 2ab(c2 + d2))

2(ab − c2)2(ab − d2)2 ,

g23 = −
ac

(ab − c2)2 , g24 = −
ad

(ab − d2)2 , g33 =
ab + c2

(ab − c2)2 , g34 = 0, g44 =
ab + d2

(ab − d2)2 .

At this point, we are able to compute the volumes of Gaussian states whether they are classic,
quantum, or entangled. First, it is evident from (45)–(47) that Θseparable ⊆ Θquantum ⊆ Θclassic.

Consider now the measure VΦ of Eq. (30); then, from Corollary 1 it follows that it is absolutely
continuous with respect to the Lebesgue measure on R4. Also, it is monotonic. For all these reasons,
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FIG. 1. Ratios of volumes VΦ of Eq. (30) vs E (from top to bottom quantum over classical, separable over classical, and
entangled over classical).

we have 
Θseparable

Φ(V ) νG ≤

Θquantum

Φ(V ) νG ≤

Θclassic

Φ(V ) νG, (48)

for every E ∈ R+. Here, Φ(V ) = H(E − tr(V )) log
�
1 + (det V )4� = H(E − 2(a + b)) log [1+�(ab − c2)(ab − d2)�4 .

Given the sets of states as in (45)–(47), after having obtained the set of entangled states by
Eq. (43), we can also compute the volume of the latter set by the measure VΦ of Eq. (30). In
Fig. 1 are reported the ratios of quantum over classical volumes, separable over classical, and
entangled over classical. Figure 1 clearly shows the chain of inclusion VΦ,entangled ⊂ VΦ,separable ⊂
VΦ,quantum ⊂ VΦ,classical holding true for any value of E ∈ R+. In addition all the volumes go to

infinity when E → ∞, however this takes place at higher rate for VΦ,classical, so that all the ra-
tios approach zero when E → +∞. Analogously, for E → 0, all sets become empty and the ratios
become zero.

Remark 5.1. The form of the covariance matrix V in (44) is a very special one. Indeed, any
4 × 4 covariance matrix can be brought to that by a suitable transformation corresponding to some
element of Sp(2,R) × Sp(2,R).

Unfortunately, the function Φ just employed to get the inclusions (48) is not invariant under
Sp(2,R) × Sp(2,R) transformations.

On the other hand, the parameter space given in Eq. (42), which describes the Gaussian sepa-
rable states of a two-mode system, has a Sp(2,R) ⊗ Sp(2,R) ⊂ Sp(4,R) invariant form. Hence, the
function Φ seems to be unsuitable to describe the volume of Gaussian states. In contrast, the regu-
larizing function Υ of Eq. (35) is invariant under local symplectic transformations, as it immediately
follows from Proposition 4.1. For this reason, we propose the volume (37) as a suitable measure
assessing differences among the Gaussian states. Again, we obtain strict inclusions among the
volumes of classical, quantum, entangled, and separable states, namely,

Θseparable

Υ(V ) νG ≤

Θquantum

Υ(V ) νG ≤

Θclassic

Υ(V ) νG, (49)

with Υ(V ) = e−
1
κ (2a2b+a(2b2−c2−d2)−b(c2+d2)) log


1 +

�(ab − c2)(ab − d2)�4 and for all κ ∈ R+. It is
worth stressing that due to the regularization, the important quantities are not the absolute values of
volumes but rather their ratios.
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FIG. 2. Ratios of volumes VΥ of Eq. (37) vs κ (from top to bottom quantum over classical, entangled over classical, and
separable over classical).

In Fig. 2 are reported the ratios of the volumes of different sets of Gaussian states computed
through the measure (37). In particular the ratios of quantum over classic, entangled over classic,
and separable over classic are shown vs κ.

Figure 2 clearly shows the chain of inclusion VΥ,separable ⊂ VΥ,entangled ⊂ VΥ,quantum ⊂ VΥ,classical

holding true for any value of κ. For κ → 0 all sets become empty and the ratios become zero, while
for κ → ∞ they tend to asymptotic values.

Both Figs. 1 and 2 put forward a non-monotonic behavior of the volume ratios. This effect turns
out to be of purely geometric nature and has to be ascribed to the curved metric (16) (by contrast
one can check that with standard Euclidean metric the behavior is monotonic). By comparing
Figs. 1 and 2, it is worth noticing that the different hierarchies of volumes appearing there. This fact
can be explained as follows. First, we recall that a symplectic transformation S acts by congruence
on a covariance matrix V → SV ST , hence the set of Gaussian states can be thought as the orbit for
the action of Sp(2N,R) on a seed V . Then, the regularization (35) provides a “homogeneous” cutoff
on the space of Gaussian states and as consequence a hierarchy of volumes similar to that of finite
(low) dimensional case is obtained (in Ref. 11, it was shown that the volume of separable states is
contained in the volume of entangles states, which in turn is contained in the volume of quantum
states). In contrast, the regularization (29) provides a non-“homogeneous” cutoff on the space of
Gaussian states. In fact it only cuts the states arising from the action of elements of the non-compact
subgroup of Sp(2N,R), leaving unaffected states arising from the action of the compact subgroup
of Sp(2N,R) (actually Sp(2N,R) ∩ SO(2N,R)). Consequently the hierarchy of volumes obtained
differs from that of the finite (low) dimensional case.

VI. CONCLUSION

In the present work, we tackled the problem of evaluating the volume of Gaussian physical
states, both classical and quantum. The relevance of considering Gaussian states is twofold: first,
Gaussian states are the most commonly experimentally used CV states. Second, Gaussian quantum
states are represented in the phase space picture of quantum mechanics as proper pdfs. Hence,
Gaussian classical states are pdfs in the phase space and Gaussian quantum states are pdfs com-
ing from Wigner functions in the phase space. Thereby, dealing with pdfs, information geometry
appears as a natural and unifying approach for evaluating the volume of classical and quantum
states.
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By exploiting methods of information geometry, we associated manifolds with different sets
of states; thus there is one manifold corresponding to classical states, one manifold to quantum
states, another one to separable, and another to entangled states. The key point in setting up such
connections was that each set of states can be obtained by considering the pdfs parametrized by
the entries of the covariance matrix. Then the manifolds are exactly the parameter spaces obtained
by imposing constraints on the covariance matrix in order to describe classical or quantum states.
Concerning separable and entangled states, the question is more delicate. Indeed, there is no general
criterion to characterize multipartite entangled states. Nonetheless, by reducing to bipartite systems
one could use the condition (19) (which turns into an operational condition for two-mode systems
thanks to (13)). Then, in this case, we can also associate a manifold with separable states and a
manifold to entangled states. Next we endowed each of these manifolds with a Riemannian metric,
the Fisher-Rao one. Thus it was natural to define the volume of a set of Gaussian states as the
volume (21) of the Riemannian manifold associated with it.

Thanks to Eq. (22), we were able to show that the volume measure introduced in (21) is
invariant under labelling permutations of modes; moreover, we proved that it has a symplectic
invariant form. These results showed that the volume measure in (21) is suitable for estimating
the volume of Gaussian states. However, since we analysed infinite dimensional systems, problems
arose from the non-compactness of the support of the states. We overcome this difficulty first of
all by resorting to an energy constraint. Hence we defined the regularizing function (29). However,
such kind of regularization turns out to be not invariant under symplectic congruence. Then we
introduced a different regularizing function, namely, the one in (35), which came about by figuring
out the functional relation given by Eq. (27). We proved that also such a function has a permutation
and symplectic invariant form (Proposition 4.1).

Accordingly with these regularizing functions, we have explicitly evaluated the volume of
two-mode Gaussian states. Note that it is not the values of the volumes per se that are really
relevant but rather the ratios between the volumes of the various sets. As such we presented in
Figs. 1 and 2 the ratios with respect to the volume of classical states. The figures show different
hierarchies of volumes with the one in Fig. 2 resembling that of finite dimensional systems (at least
for quantum states, see, e.g., Ref. 11). In both cases, the ratios depend on the cutoff parameter
in a non-monotonic way due to geometric effects. This makes evident a rich structure for sets of
Gaussian states.

Finally, the presented volume measure could also be applied to three-mode systems, for
which an operational criterion to distinguish separable states among all the quantum states is
well-known.33 Indeed, in such a way, the parameter space in Definition 3.1 can be implemented for
separable states as well as for classical and quantum states. Thereby, the volumes can be computed.
Beyond that, a necessary and sufficient criterion to describe Gaussian separable states still lacks,
hence the introduced volume measure can only be useful to provide bounds on the volume of sets of
multipartite states.
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APPENDIX A: PROOF OF THEOREM 3.1

Let us notice that because of the form of P(ξ; θ) in (15), the expression in (16) involves a
Gaussian integral. However, before evaluating it, let us study the function

fµν(ξ) B ∂µ log P(ξ; θ)∂ν log P(ξ; θ). (A1)
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By means of logarithm’s properties, we can write

log[P(ξ; θ)] = −1
2


log[(2π)N det V (θ)] +

2N
α,β=1

V−1
αβ(θ)ξαξβ


, (A2)

where V−1
αβ(θ) is the entry αβ of the inverse of the covariance matrix V (θ). Then the derivative ∂µ of

Eq. (A2) reads

∂µ log[P(ξ; θ)] = −1
2


∂µ(det V )

det V
+

2N
α,β=1

∂µ(V−1
αβ)ξαξβ


. (A3)

Recall that the following relation holds

∂µ(det V (θ)) = det V (θ) tr
�
V−1(θ) ∂µ(V (θ))� . (A4)

Hence, using (A3) and (A4), we arrive at

fµν(ξ) = 1
4


tr
�
V−1(θ) ∂µ(V (θ))� +

2N
α,β=1

∂µ
(
V−1
αβ(θ)

)
ξαξβ



×

tr
�
V−1(θ) ∂ν(V (θ))� +

2N
α,β=1

∂ν
(
V−1
αβ(θ)

)
ξαξβ


. (A5)

For an analytic function f (ξ) and a symmetric definite-positive 2N × 2N matrix A, it results


dξ f (ξ)e


− 1

2
2N
i, j=1 Ai jξiξ j


=


(2π)2N
det A

exp


1
2

2N
i, j=1

A−1
i j

∂

∂ξi

∂

∂ξ j


f |ξ=0, (A6)

where A−1
i j is the entry i j of the inverse of the matrix A and the exponential means the po-

wer series over its argument (the differential operator). Indeed, by expanding f (ξ), we have that
f (ξ) = 

α

Dα f (0)
α! ξα = eΣξ, where Σ = (D f )(0), with α a multi-index andD the differential operator

with respect to local coordinates ξ1, . . . , ξN . At this point, the left hand side of Eq. (A6) can be
written as 

dξe


− 1

2
2N
i, j=1 Ai jξiξ j


+Σξ

.

Then by performing an orthogonal transformation O, we have

−1
2
ξT Aξ + Φξ → −1

2
yTDy + ΣO y,

where D is diagonal matrix with element eigenvalues of A. Finally, through some algebras, we
arrive at 

dξe


− 1

2
2N
i, j=1 Ai jξiξ j


+Σξ
=


(2π)2N
det A

e−
1
2 Σ

T A−1Σ,

which gives exactly Eq. (A6).
Inserting the expression of P(ξ; θ) in (15) into the relation (16) and employing Eq. (A6), we

find

1(2π)2N det V


dξ fµν(ξ)e[− 1

2 ξ
TV−1ξ] = exp



1
2

n
i, j=1

Vi j
∂

∂ξi

∂

∂ξ j


fµν |ξ=0. (A7)

We are now going to evaluate the Gaussian integrals in Eq. (16) by means of the following
Lemma.
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Lemma A.1. Let be D B 1
2

2N
i, j=1

Vi j
∂
∂ξi

∂
∂ξ j

, expanding the right-hand side of (A7), we have

gµν(θ) = fµν(0) + D fµν |ξ=0 +
1
2

D2 fµν |ξ=0, (A8)

with

D fµν |ξ=0 =
1
4

tr
�
V−1(θ) ∂µ(V (θ))� tr

�
V (θ) ∂ν(V−1(θ))�

+
1
4

tr
�
V (θ) ∂µ(V−1(θ))� tr

�
V−1(θ) ∂ν(V (θ))� (A9)

and
1
2

D2 fµν |ξ=0 =
1
4

tr
�
V (θ) ∂µ(V−1(θ))� tr

�
V (θ) ∂ν(V−1(θ))�

+
1
2

tr
�
V (θ)∂µ(V−1(θ))V (θ)∂ν(V−1(θ))� . (A10)

Proof. From Eq. (A5), with i, j ∈ {1, . . . ,2N}, by a straightforward calculation, we have

∂

∂ξi

(
∂ fµν
∂ξ j

)
(ξ) = 1

2
∂µV−1

i j
*.
,
tr
�
V−1 ∂νV

�
+

2N
α,β=1

∂ν
(
V−1
αβ

)
ξαξβ

+/
-

+
*.
,

2N
β=1

∂µ
(
V−1
iβ

)
ξβ
+/
-

*.
,

2N
β=1

∂ν
(
V−1
jβ

)
ξβ
+/
-

+
*.
,

2N
β=1

∂µ
(
V−1
jβ

)
ξβ
+/
-

*.
,

2N
β=1

∂ν
(
V−1
iβ

)
ξβ
+/
-

+
1
2
∂νV−1

i j
*.
,
tr
�
V−1 ∂µV

�
+

2N
α,β=1

∂µ
(
V−1
αβ

)
ξαξβ

+/
-
.

Taking the sum over i, j ∈ {1, . . . ,2N} and evaluating the above expression at ξ = 0, we obtain

D fµν |ξ=0 =
1
4

2N
i, j=1

Vi j∂µV−1
i j tr

�
V−1 ∂νV

�
+

1
4

2N
i, j=1

Vi j∂νV−1
i j tr

�
V−1 ∂µV

�
.

Now, recall that

1. tr [AB] = 2N
i, j=1

Ai jBi j, for any pair of N × N matrices A,B;

2. ∂µ(V (θ)) =  ∂Vi j

∂θµ


i j

for any matrix V .

Hence, we get Eq. (A9).
Furthermore, letting i, j,h, k ∈ {1, . . . ,2N}, we have

∂

∂ξh

(
∂

∂ξk

∂

∂ξi

∂

∂ξ j
fµν

)
(ξ) = ∂µV−1

i j ∂νV−1
hk + ∂µV−1

ih ∂νV−1
jk

+ ∂µV−1
ik ∂νV−1

jh + ∂µV−1
jh ∂νV−1

ik

+ ∂µV−1
jk ∂νV−1

ih + ∂µV−1
hk ∂νV−1

i j .

Taking the sum over i, j,h, k ∈ {1, . . . ,2N}, we obtain

1
2

D2 fµν(ξ) = 1
8

 
i, j,h,k

Vi jVhk ∂µV−1
i j ∂νV−1

hk +


i, j,h,k

Vi jVhk ∂µV−1
ih ∂νV−1

jk

+


i, j,h,k

Vi jVhk ∂µV−1
ik ∂νV−1

jh +


i, j,h,k

Vi jVhk ∂µV−1
jh ∂νV−1

ik
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+


i, j,h,k

Vi jVhk ∂µV−1
jk ∂νV−1

ih +


i, j,h,k

Vi jVhk ∂µV−1
hk ∂νV−1

i j



=
1
8


2tr

�
V∂µV−1� tr

�
V∂νV−1� + 4tr

�
V ∂µ V−1 V ∂νV−1�


.

Finally, thanks to the above expression of 1
2 D2 fµν(ξ), we have that the expansion in the right-hand

side of Eq. (A7) only contains terms up to the second order. �

At this point, collecting the results in Lemma A.1 together Eq. (A5) evaluated in ξ = 0, we
obtain

gµν =
1
4
�
tr
�
V−1 ∂µV

�
+ tr

�
V∂µV−1�� �tr

�
V−1 ∂νV

�
+ tr

�
V∂νV−1�� + 1

2
tr
�
V ∂µ V−1 V ∂νV−1� . (A11)

Then, the statement of Theorem 3.1 easily follows from relation ∂µV−1 = −V−1(∂µV )V−1. �

APPENDIX B: PROOF OF PROPOSITION 3.1

Let us consider the permutation σ : {1, . . . ,N} → {1, . . . ,N} and the corresponding permuta-
tion matrix Π which entails a labelling permutation in the phase space Γ, i.e., Π : ξ ∈ Γ → ξσ ∈ Γ.
From the P(ξ; θ) in (15), it follows that such a permutation acts on the covariance matrix V in the
following manner:

V → Π V ΠT .

So, let V ′(θ) and V (θ) be two parametrized covariance matrices and Π a permutation matrix
such that V ′(θ) = Π V (θ) ΠT . Let Θ and Θ′ be the parameter spaces corresponding to V (θ) and
V ′(θ), respectively. Then there exists a diffeomorphism ϕ : Θ → Θ′ with Jacobian Jϕ such that
| det Jϕ | = 1. Therefore we have

V(V ′) =

Θ′

dθ


det g′(θ) =

Θ

dθ


det g(θ) = V(V ),
where we used the equality det g′(θ) = det g(θ) intending g′(θ) as the Fisher-Rao information ma-
trix corresponding to V ′(θ).

Actually, showing that det g′(θ) = det g(θ), we are proving a stronger relation between the
Fisher-Rao metrics corresponding to V and V ′. In fact the following relation holds true:

tr
�
V ′ ∂µ (V ′)−1 V ′ ∂ν(V ′)−1� = tr

�
ΠVΠT ∂µ (ΠVΠT)−1

ΠVΠT ∂ν(ΠVΠT)−1�

= tr
�
V ∂µ V−1 V ∂νV−1� ,

where we used the independence of Π from θ and the invariance of the trace under cyclic permuta-
tion.

Then, recalling the relation (22), we arrive at g′µν = gµν, for every µ, ν ∈ {1, . . . ,m}. Here, g′µν
denotes the component of the metric corresponding to V ′. Thereby, det g′(θ) = det g(θ) trivially
holds true.

Focusing on the quantum states, it is well-known that the uncertainty relation V + iΩ ≥ 0
is invariant under symplectic transformation.25 So, let us consider two parametrized covariance
matrices V ′(θ) and V (θ) and a symplectic matrix S such that V ′(θ) = S V (θ) ST . Then, the parameter
spaces Θ′quantum and Θquantum, corresponding to those different matrices, coincide.

Furthermore, we have

tr
�
V ′ ∂µ (V ′)−1 V ′ ∂ν(V ′)−1� = tr

�
SV ST ∂µ (SV ST)−1 SV ST ∂ν(SV ST)−1�

= tr
�
V ∂µ V−1 V ∂νV−1� ,

where we used the independence of S from θ and the invariance of the trace under cyclic permuta-
tion. Thus, from (22) it trivially follows that

V(V ′) =

Θ′quantum

dθ


det g′(θ) =

Θquantum

dθ


det g(θ) = V(V ),
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where g′(θ) and g(θ) denote the Fisher-Rao information matrices corresponding to the covariance
matrices V ′ and V , respectively. �

APPENDIX C: PROOF OF THEOREM 4.1 AND COROLLARY 1

The proof of Theorem 4.1 relies on an inequality of the determinants of Gram matrices.34 We
recall that for an inner product space H and a set of points {x1, . . . , xn} in H , the Gram matrix of
this set is the n × n matrix defined by G(x1, . . . , xn) = (⟨xi, x j⟩)ni, j=1.

Lemma C.1. [Ref. 34] Let H1,H2 be two inner product spaces and T : H1 → H2 be a bounded
linear operator. Let {x1, . . . , xn} ∈ H1 be an arbitrary set. Then

det G(T x1, . . . ,T xn) ≤ ∥T ∥2n det G(x1, . . . , xn), (C1)

where ∥T ∥ denotes the operator norm of T.

Proof of Theorem 4.1. Since V is symmetric, positive definite, its adjunct, given by adj(V ) =
det(V )V−1 is also symmetric, positive definite. We have

gµν =
1
2

tr[V−1(∂µV )V−1(∂νV )] = 1
2

1
(det V )2 tr[adj(V )(∂µV )adj(V )(∂νV )]

=
1

(det V )2 g̃µν,
where the matrix (g̃µ,ν)mµ,ν=1 is given by

g̃µν =
1
2

tr[adj(V )(∂µV )adj(V )(∂νV )]

=
1
2

tr[(adj(V )1/2(∂µV )adj(V )1/2)(adj(V )1/2(∂νV )adj(V )1/2)]

=
1
2
⟨(adj(V )1/2(∂µV )adj(V )1/2), (adj(V )1/2(∂νV )adj(V )1/2)⟩F,

with ⟨·, ·⟩F denoting the Frobenius inner product given by ⟨A,B⟩F = tr
��

BT A
��

for any matrices
A,B with same dimension.

Consider the linear operator TV : R2N×2N → R2N×2N , with R2N×2N under the Frobenius inner
product, defined by

TV A = adj(V )1/2Aadj(V )1/2. (C2)

Then

∥TV A∥F = ∥adj(V )1/2Aadj(V )1/2∥F ≤ ∥adj(V )1/2∥ ∥Aadj(V )1/2∥F
≤ ∥adj(V )∥ ∥A∥F,

with equality if A = I, where we have used the property that ∥adj(V )∥ = ∥adj(V )1/2∥2 by the sym-
metric, positive definiteness of adj(V ). Thus

∥TV ∥ = ∥adj(V )∥. (C3)

Then we have

g̃µν =
1
2
⟨T(∂µV ),T(∂νV )⟩F .

Let E be the m × m matrix defined by

Eµν =
1
2

tr[(∂µV )(∂νV )] = 1
2
⟨(∂µV ), (∂νV )⟩F .

By Lemma C.1,

det g̃ ≤ ∥TV ∥2m det E = ∥adj(V )∥2m det E.
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It follows that

det g ≤ ∥adj(V )∥2m

(det V )2m det E =
( ∥adj(V )∥

det V

)2m

det E =
(
λmax[adj(V )]

det V

)2m

det E.

Let {λk}2N
k=1 be the eigenvalues of V . From the relation adj(V ) = det(V )V−1, it follows that the

eigenvalues of adj(V ) are


det(V )
λk

2N

k=1
and thus

λmax(adj(V )) = det(V )
λmin(V ) ⇒ det g ≤

(
1

λmin(V )
)2m

det E.

This completes the proof of the theorem. �

Proof of Corollary 1. The first expression of the Corollary follows from the bound given in
Theorem 4.1 and the definition ofΦ.

We now show that the integral 
Θ

Φ(V )det gdθ

is bounded. By the inequality log(1 + x) ≤ x for all x ≥ 0 and the limit lim
x→0

log(1+x)
x
= 1, we always

have
log[1 + (det V )m]

(det V )m ≤ 1 whenever det V ≥ 0.

Consider now the factor H(E − tr(V ))λm
max(adj(V )). As in the proof of Theorem 4.1, let {λk}2N

k=1 be
the eigenvalues of V , arranged in decreasing order. Then

λmax(adj(V )) = det V
λ2N

=

2N−1
j=1

λ j ≤ *
,

2N−1
j=1 λ j

2N − 1
+
-

2N−1

≤
(

tr(V )
2N − 1

)2N−1

≤
(

E
2N − 1

)2N−1

,

where E is a suitable real positive constant bounding from above tr(V ), which is a positive linear
function in θ. Furthermore, the domain of integration is now bounded from above, indeed it is given
by {θ ∈ Rm | V (θ) > 0} ∩ {θ ∈ Rm | tr(V ) ≤ E}. As sort of evidence, let us consider the following
expression for det(V ):35

det(V ) =


k1, ...,kN

N
l=1

(−1)kl+1

lklkl!
tr(V l)kl, (C4)

where the sum is taken over the set of all integers kl ≥ 0 satisfying the equation
N
l=1

lkl = N .

Now, whenever V is a positive definite matrix, through Cauchy-Schwarz inequality we have that
tr(V 2) ≤ tr(V )2; thus, by induction on n, with 1 ≤ n ≤ N , we arrive at tr(V l) ≤ tr(V )l for every
l ≤ N . So, from Eq. (C4) we have that

0 < det(V ) ≤


k1, ...,kN

N
l=1

(−1)kl+1

lklkl!
Elkl, (C5)

whenever V is positive definite. Moreover, because of the trace of a principal minor of V is smaller
than tr(V ) then, we earn same bounds as in (C5) for determinant of every principal minors whenever
V is positive definite. Thus, we have the convergence of the integral. �

APPENDIX D: PROOF OF PROPOSITION 4.1 AND COROLLARY 2
Proof of Proposition 4.1. Consider a permutation matrixΠ such that V ′ = ΠTVΠ. Then, because

of the property of unitary determinant detΠ = detΠT = 1, and the fact that the permutation matrices
Π do not depend on the parameters θl, we have

det V ′ = det
�
Π

TVΠ
�
= detΠT det V detΠ = det V,



012201-19 Felice, Quang, and Mancini J. Math. Phys. 58, 012201 (2017)

tr
�(det V ′)(V ′)−1� = det V ′ tr

�(V ′)−1� = tr
�(det V )(V )−1� .

Hence, from Eq. (35), it immediately follows that Υ(V (θ)) = Υ(V ′(θ)).
In the same way, since det S = 1 = det ST , with S a symplectic matrix such that V ′ = STV S,

then we have

det V ′ = det V,

tr
�(det V ′)(V ′)−1� = tr

�(det V )(V )−1� .
Hence, from Eq. (35), it immediately follows that Υ(V (θ)) = Υ(V ′(θ)). �

Proof of Corollary 2. The first expression of the corollary follows from the bound given in
Theorem 4.1 and the definition of Υ.

We now show that the integral 
Θ

Υ(V )det gdθ

is bounded. By the inequality log(1 + x) ≤ x for all x ≥ 0 and the limit lim
x→0

log(1+x)
x
= 1, we always

have
log[1 + (det V )m]

(det V )m ≤ 1 whenever det V ≥ 0.

Consider now the factor exp(−tr[adj(V )])λm
max(adj(V )). As in the proof of Theorem 4.1, let {λk}2N

k=1
be the eigenvalues of V , arranged in decreasing order. From the relation adj(V ) = det(V )V−1, it
follows that the eigenvalues of adj(V ) are


det(V )
λk

2N

k=1
. We have

tr[adj(V )] =
2N
k=1

det V
λk
=

2N
k=1

2N
j=1, j,k

λ j,

which is a positive polynomial in the parameters (θ i)m
i=1. Furthermore

λmax(adj(V )) = det V
λ2N

=

2N−1
j=1

λ j ≤ *
,

2N−1
j=1 λ j

2N − 1
+
-

2N−1

≤
(

tr(V )
2N − 1

)2N−1

,

where tr(V ) is a positive linear function in θ. Thus as θ grows, the expression

exp(−tr[adj(V )])λm
max(adj(V ))

decays exponentially, leading to the convergence of the integral. �
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