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Abstract Forecasting models for photovoltaic energy

production are important tools for managing energy flows.

The aim of this study was to accurately predict the energy

production of a PV plant in Italy, using a methodology

based on support vector machines. The model uses his-

torical data of solar irradiance, environmental temperature

and past energy production to predict the PV energy pro-

duction for the next day with an interval of 15 min. The

technique used is based on m-SVR, a support vector re-

gression model where you can choose the number of sup-

port vectors. The forecasts of energy production obtained

with the proposed methodology are very accurate, with the

R2 coefficient exceeding 90 %. The quality of the predicted

values strongly depends on the goodness of the weather

forecast, and the R2 value decreases if the predictions of

irradiance and temperature are not very accurate.

Keywords Forecasting model � Support vector

machines � PV energy production

1 Introduction

During the last years, researches on sustainable energy

consider the growing use of renewable sources as a

strategic option. Therefore, an increasing attention has

been devoted to the energy production from renewable

sources, because they represent a valid alternative to the

traditional fossil fuel resources, whose future availability is

uncertain and whose cost is constantly increasing. One of

the main renewable energy sources available in nature is

the sun, usable for the direct production of electricity

through photovoltaic (PV) systems. Besides being an

inexhaustible resource in nature, PV solar energy is an

example of clean and directly available energy that can be

simply obtained by exploiting the radiation from the sun to

the Earth. The solar PV is one of the sources of renewable

energy more suitable in Italy, thanks to a particularly fa-

vorable level of radiation.

The major problem related to the PV solar energy and

the consequent scientific challenge is that its production

greatly depends on the weather conditions of the area

where the PV plant is installed. Prediction of the PV solar

energy production for hours or days ahead can contribute to

an efficient and economic use of this resource and can

allow to manage the amount of energy obtained by PV

plants in order to satisfy the growing demand of it. Fur-

thermore, the increasing development of electrical smart

grids has led to the need of knowing in advance the energy

production from renewable sources in order to manage the

energy flows within the smart grid itself: Forecasting the

power output of a PV plant for the next hours or days is

necessary for the optimal integration of this production into

power systems.

There were many scientific investigations in this area

carried out in recent years, and different forecasting

strategies have been used to achieve the desired goals. In

most cases, the studies have focused on the prediction of

solar radiation, while there have been few articles devoted

to the estimation of the production of PV solar energy. The
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state of art in this field is reported in [14]. The traditional

prediction of PV energy production is based on the clas-

sical approach of time series forecasting of solar energy

and weather conditions, which are used to calculate the

electrical energy of PV systems: AutoRegressive models,

Moving Average and Autoregressive Moving Averages [2]

are often used to model linear dynamic structures. Fur-

thermore, Fourier series models [3] can be used in order to

predict the PV production. Another approach used to solve

this problem is based on physical modeling. This approach

seems to be less effective for complex nonlinear systems

such as the forecast of irradiation fluctuation [1]. More-

over, different researches show that nonlinear and non-s-

tationary models are more flexible in capturing the

characteristics of these data and that, in some cases, are

better in terms of estimation and forecasting. Many sci-

entific articles [24] show that a predictive model based only

on a database of historical data is expected to be more

effective for the forecast of the energy production from a

PV plant, because the influence of the specific system is

somehow implicit in the past data. Nowadays, advanced

models based on nonlinear approaches are rapidly spread-

ing in the power production forecasting, using artificial

neural network [6], support vector machines [7, 11] and

hybrid models [17].

The aim of this work was to show how advanced ma-

chine learning techniques can be used for the prediction of

PV energy generation in a real-world scenario.

Specifically, the adopted approach utilizes Support Vector

Machines for Regression. The goal was to obtain daily

forecast for PV energy production with a quarter-hour

frequency, as will be better explained in the next sections.

The paper is organized in the following way. The next

section contains an explanation of support vector machine

(SVM) for regression, then there is a section concerning the

data used and the model implemented, and, at last, com-

putational results, and final conclusions are pointed out.

We briefly describe our notation now. All vectors are

column vectors and will be indicated with lower case Latin

letter ðx; z; . . .Þ. Subscripts indicate components of a vector,

while superscripts are used to identify different vectors. The

set of real numbers is denoted by R. The space of the n—

dimensional vector with real components will be indicated

by R
n. The symbol jxj jj indicates the Euclidean norm of a

vector x. Superscript T indicates transpose. The scalar pro-

duct of two vectors x and y in R
n will be denoted by xT y.

2 Support vector machines for regression

SVM is a new and promising nonparametric technique

for data classification and regression [29], developed

over the last fourth decades within the framework of

statistical learning theory or VC theory (Vapnik–Cher-

vonenkis Theory) [27, 28, 30]. The VC theory studies

properties of learning machines, which enable them to

well generalize to unseen data. SVMs were developed at

AT&T Laboratories by Vapnik et al. and due to this

industrial context, SV research has an orientation toward

real-world applications [21, 25]. In this section, we

briefly introduce the support vector regression (SVR),

which can be used for time series prediction models,

where excellent performances were obtained until now

[8–10, 15, 16, 26].

Given training data fðx1; y1Þ; . . .; ðxl; ylÞg � X � R,

where xi are input vectors, X � R
n denotes the space of

input patterns of dimension R
n and yi are the associated

output values for xi, the goal in SVR is to determine a

function f ðxÞ that has at most e deviation from the set of

target values yi ði ¼ 1; . . .; lÞ for all the training data and, at

the same time, is as flat as possible. The SVR model [4]

requires the solution of the following optimization

problem:

min
w;b;n;n�

1

2
wT wþ C

Xl

i¼1

ðni þ n�i Þ

subject to yi � ðwT/ðxiÞ þ bÞ� eþ n�i ;

ðwT/ðxiÞ þ bÞ � yi� eþ ni;

ni; n
�
i 	 0; i ¼ 1; . . .; l:

ð1Þ

where the vector xi is mapped into a higher dimensional

space by the function /. The quantity ni is an upper bound

on the training error (and n�i is a lower bound) subject to

the e-insensitive tube

y� ðwT/ðxÞ þ bÞ
�� ��� e: ð2Þ

The parameters which control the regression quality

are the cost of error ðCÞ, the width of the tube ðeÞ and

the mapping function ð/Þ. The positive constant C

determines the trade-off between the flatness of the

function

f ðxÞ ¼
Xl

i¼1

wT
i /ðxiÞ þ b ð3Þ

and the amount up to which deviations larger than e are

tolerated. If the inequality (2) is not satisfied by xi, there is

an error ni or n�i which the SVR model minimizes in the

objective function. In fact, SVR avoids underfitting and

overfitting of the training data by minimizing the training

error C
Pl

i¼1ðni þ n�i Þ as well as the regularization term
1
2

wT w ¼ 1
2

w2
�� ��. For traditional least-square regression, the

quantity e is always zero, and data are not mapped into
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higher dimensional spaces. Hence, SVR is a more general

and flexible tool for regression problems.

The use of the mapping function / allows to take into

account the fact that normally the function f ðxÞ that best

fits the training data is nonlinear. Hence, the function / is a

way to make the SV model nonlinear. The function / :
R

n ! H is a function mapping R
n into a higher-dimension

Hilbert space H. In the dual formulation of problem (1),

the kernel function is introduced

kðxi; xÞ ¼ /ðxiÞT/ðxÞ:

Examples of kernel functions are shown in Table 1. In

recent years, several methods have been proposed to

combine multiple kernels, instead of classical kernel-based

algorithm using a single kernel [13]. These methods are

known as Multiple Kernel Learning and Infinite Kernel

Learning [12, 13, 20]. Nevertheless, in our study, we prefer

to use a single kernel, as the literature suggests.

For the experiments in this paper, we use the open-

source library LIBSVM [5] available for MATLAB. It

enables using two different versions of SVR: the e-SVR

and the m-SVR [4].

The version illustrated above is the e-SVR, while the m-

SVM [4, 22, 23] problem is defined as follows:

min
w;b;e;n;n�

1

2
wTwþ Cðmeþ 1

l

Xl

i¼1

ðni þ n�i ÞÞ

subject to yi � ðwT/ðxiÞ þ bÞ� eþ n�i ;

ðwT/ðxiÞ þ bÞ � yi� eþ ni;

ni; n
�
i 	 0; i ¼ 1; . . .; l:

ð4Þ

Since it is difficult to select an appropriate e, Schölkopf

et al. [23] introduced the new parameter m which allows to

control the number of support vectors and training errors.

To be more precise, m is an upper bound on the fraction of

margin errors, that is to say of training samples which are

errors (badly predicted), and a lower bound of the fraction

of support vectors: For regression, the parameter m replaces

e and in our situation, it might be easier to use m-SVR [4].

The main motivation for the m version of SVR is that it has

a more meaningful interpretation than e: e or m are just

different versions of the penalty parameter.

3 The photovoltaic energy production model

The aim of this paper was to predict the daily PV energy

production. The work was carried out using historical data

of an existing solar PV plant. These data were provided by

the Loccioni Group (located in Angeli di Rosora, AN,

Italy). A detailed study of the PV plant has been possible

thanks to the availability of a large amount of recorded

measurements, stored during the past years. Specifically,

the data used are those related to the PV plant placed in

their location in Angeli di Rosora, consisting of Solyndra

panels, positioned on the roof of a building, with a nominal

power of 112 kWp.

The collected measurements are energy and power

produced by the plant, radiation (recorded directly by

sensors placed on the roof, in the same position of the PV

modules) and external environmental temperature. As the

PV modules have a particular cylindrical shape, module

temperature has little effect on their performance and it is

not measured.

3.1 Data organization

In the previous section, we have briefly described the SVR

model. Now we need to prepare the datasets used to build

this model. In order to train the SVR model, we have to

choose a diversified dataset of input vectors, representative

of the real situation. Each component of the training data is

called feature (or attribute). The first analysis consists on

the selection of the necessary features of the input data.

Scientific researches have shown that there are many

physical parameters, which PV production depends on:

environmental temperature, solar irradiance, atmospheric

pressure, wind speed, humidity and cloud coverage.

However, many of these values are not available. For this

reason, the model will consider in the training input data

only the external temperature and the solar irradiance as

features. Nevertheless, a preliminary study on the his-

torical collected data has proved that the solar irradiance

is the physical quantity mostly affecting the PV energy

production. The scatterplot in Fig. 1 shows the correla-

tion between the PV energy produced and the measured

irradiance. The value of the Pearson correlation coeffi-

cient between the two measures is approximately 0.95, a

high value suggesting a strong relationship between en-

ergy and irradiance. However, this strong relationship is

not perfectly linear, in particular during the central hours

of the day, and this is the reason why a model based on m-

SVR with a nonlinear kernel, as explained in the fol-

lowing section, is created for the energy production

forecast.

Table 1 Examples of the principal kernel functions

Kernel function Formulation

Linear kðx; yÞ ¼ xT Ay

Polynomial kðx; yÞ ¼ ðxT xþ cÞd

Radial basis function (RBF) kðx; yÞ ¼ e�c x�yk k2
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3.2 Model description

As discussed in the previous section, the training set of our

m-SVR model utilizes two different features (solar irradi-

ance and environmental temperature), and hence, with

reference to Sect. 2, xi 2 R
2 and yi are the energy pro-

duction. The SVR model forecasts the energy production

from the PV plant for the next day with a timestep interval

of 15 min.

Upon the selection of the dataset for training, the SVM

model is built to forecast energy production in the following

time steps. First of all, the training data are scaled in the

interval (0,1). Then, in training a SVM model, there are some

parameters to choose, which would influence the perfor-

mance of the m-SVR algorithm. These parameters need to be

properly selected in order to get a good model. They are

1. the cost of error C,

2. the kernel type and the constant appearing in the kernel

formula,

3. the number of support vectors m,

4. how many previous data to include for training.

In our experiments, since we assume a daily prediction

and since the algorithm will be retrained every night in

order to obtain the energy production forecast for the next

day, we simply include the irradiance, the temperature

and the production data every 15 min of the previous

14 days as training set. In addition, we consider the radial

basis function (RBF) as kernel function, which is one of

the most commonly used mapping functions and the most

commonly used for time series prediction. In this case,

the parameter associated with the RBF kernel is c and it

has to be fine tuned. In our experiments, we fix c to its

default value. Also, we fix m ¼ 0:5 which is again the

default of LIBSVM [5]. The only parameter left is C.

Searching the proper value of the cost of the error C is

time-consuming and needs a great amount of ex-

perimental tests. After those tests, the value of C has been

chosen equal to 1.8.

Once the SVR model is defined, we can use it to make

prediction for the next day. The only inputs the algorithm

needs to forecast are the estimated irradiance and envi-

ronmental temperature for the next 24 h. In the following

section, we show the results obtained with the new tech-

nique based on m-SVR.

4 Computational results

In this section, we will report the computational results for

three different days as obtained with the proposed SVR

model. In our case of a real-world PV plant, the daily PV

energy production was estimated from 00:00 to 23:45 with

Fig. 1 The scatterplot of the correlation between solar irradiance and

energy production from a PV plant

Fig. 2 The plot of the PV

energy production for June 15,

2012. In black the real values, in

red the forecasted ones (color

figure online)
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steps of 15 min. Figure 2 plots the real and forecasted

energy production values, for a sunny day in June 2012.

For the purpose of evaluating the quality of the fore-

casting, we examine the prediction accuracy by calculating

three different evaluation statistics: the root mean square

error (RMSE), the mean absolute percentage error (MAPE)

and the coefficient of determination (R2).

The RMSE, as in Eq. 5,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � ŷiÞ2

n

s
ð5Þ

denotes the mean square discrepancy between the values of

the observed data ðyiÞ and the estimated data ðŷiÞ: The

closer this value is to 0, the more accurate is the model.

The MAPE, defined in Eq. 6,

MAPE ¼ 100 %

n

Xn

i¼1

���
yi � ŷi

yi

��� ð6Þ

is another measure of accuracy, to be interpreted in this

way: In case of a perfect fit, its value is 0, while there are

no restrictions with regard to the upper bound.

At last, the coefficient R2, as in Eq. 7 where �y indicates

the mean of the actual data,

R2 ¼
Pn

i¼1ðŷi � �yÞ2
Pn

i¼1ðyi � �yÞ2
ð7Þ

is a proportion of the variability in the data and the cor-

rectness of the model used; R2 varies in (0,1): It is 0 when

the used model does not explain the data at all, it is 1 when

the model explains the data perfectly.

In the first result, we obtain good values for the three

measures of accuracy illustrated above:

– RMSE ¼ 0:5275;

– MAPE ¼ 0:0785;

– R2 ¼ 0:9944.

The quality of the prediction is confirmed by the scat-

terplot of the correlation between the measured energy

production and forecasted values, as illustrated in Fig. 3.
Fig. 3 The scatterplot of the correlation between real and forecasted

energy production. The red line is the regression line (color figure online)

Fig. 4 The plot of the PV

energy production for April 16,

2012. In black the real values, in

red the forecasted ones (color

figure online)
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Figure 4 plots the real and forecasted PV energy pro-

duction values based on the m-SVR model for a cloudy day

in April 2012. The comparison between actual and pre-

dicted data shows an almost full agreement between both

series. The accuracy measures prove this result:

RMSE ¼ 0:2810, MAPE ¼ 0:1143 and R2 ¼ 0:9926.

Things are different when the input values of solar ir-

radiance and environmental temperature for the next day

are not fully accurate. Figure 5 shows this situation for a

day in October 2013, where the forecasted irradiance

provided by a weather site is far from reality, as pointed out

in Fig. 6. The error made in the irradiance prediction is

crucial for the forecast of the solar energy production. If

the irradiance data used for the prediction were the mea-

sured ones, in fact, the production forecast would have

good results: RMSE ¼ 0:9955, MAPE ¼ 0:3585 and

R2 ¼ 0:9508. Instead, these measures get significantly

worse if the solar irradiance and external temperature

provided by the weather site are not accurate. In this case,

the values of the three previous measures of goodness are,

respectively RMSE ¼ 3:5876, MAPE ¼ 3:5718 and

R2 ¼ 0:3616. Also, the scatterplot in Fig. 7 shows that the

predicted values are far from the regression line. As we

have observed before about the influence of irradiance in

the PV energy production, the forecasted result follows the

estimated error in the solar irradiance prediction. The

presence of a correct irradiance is decisive for the energy

prediction by the m-SVR model. In fact, previous analysis

show that the correlation between the two variables (irra-

diance and energy production) exceeds 95 %.

Fig. 5 The plot of the PV

energy production for October

11, 2013. In black the real

values, in red the forecasted

ones using actual data of

irradiance and temperature, in

blue the prediction using

estimated weather data (color

figure online)

Fig. 6 The plot of the solar irradiance for October 11, 2013. In black

the real values, in red the forecasted ones by the weather site (color

figure online)

Fig. 7 The scatterplot of the correlation between real production and

forecasted one obtained using estimated weather data. The red line is

the regression line (color figure online)
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5 Conclusions

A new short-term energy forecasting model for PV plants,

based on SVR, has been described in this paper. The aim of

the model was to create a daily prediction of the PV energy

production with values every 15 min. The main innovative

characteristic of the model is the use of the m-SVR, where

we can tune the number of support vectors during the

training of the algorithm.

The forecasting model of this paper has been tested using

real-world data from a PV plant installed in Italy. The

model takes into account the past energy production data

and the historical measurements of irradiance and tem-

perature. These values, provided by the Loccioni Group,

show high intra-hour variability of the energy production

output of the plant. This new forecasting model presents

accurate results compared with the three different evalua-

tion statistics explained above (RMSE, MAPE, R2). The

only risk of the forecasting model is associated with fore-

casting errors on input data (solar irradiance and environ-

mental temperature) provided by weather internet sites.

6 Further works

Future researches will focus on the study of making the PV

energy production forecast more robust, so that it does not

depend so deeply from recorded solar irradiance, in order

to use weather prediction provided by internet sites. One

look will be directed to algorithms based on Infinite Kernel

Learning [18, 19].

Furthermore, the study on energy production forecast

can be inserted in the context of electrical smart grid. A

smart grid is an electrical distribution network comprising

various distributed power plants, storage devices and con-

trollable loads: Knowing in advance the production from

renewable sources present in the network allows to manage

the energy flows within the smart grid itself, in order to

satisfy the local demand, to achieve the goal of energy

autonomy for the most of time and to ensure the maximum

economic benefit.
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